
Recall: Agent-Based Models
• One or more populations composed of individual

agents, each associated with
• Parameters – discrete (e.g., Gender, Ethnicity) or

continuous (e.g., birthweight, income)
• State (continuous or discrete) e.g., age, smoking

status, networks, preferences
• Rules for evolving state
• Means of interaction with other agents via one or

more environments (e.g. spatial & topological
context)

• Time horizon & characteristics
• Initial state

Contrasting Organization in Aggregate
Stock-Flow & ABM

Aggregate Stock & flow modelsAggregate Stock & flow models
● Within unit (e.g. city)

– Subdivided according to state (eg #
susceptible, # infective)

– Each stock counts number associated
with that state

● State for different units of analysis
are found in stocks & flows at same
“level” of the model
– Summaries for city & country are both

stocks in model
● Relationships between units implicit

in data (e.g. connectivity matrix)

Agent-based modeling
● Within unit (e.g. city)

– Subdivided according to
constitutive smaller units (e.g.
individual people)

– Each unit maintains its own state
● The nested or networked

relations among units of
analysis mimic that in world
– If a city “contains” people, the

(references to) people appear
“inside” the citySusceptible Infectives Recovered

New Infections Recoveries

Contacts per
Month c

Likelihood of Infection
Transmission Given

Exposure Beta

Total Population
Size

Prevalence of
Infection

Mean Time Until
Recovery

Force of Infection

Vaccinated

VaccinationAnnual Likelihood of
Vaccination

City

Neighborhood 1
Neighborhood 2

Contrasting Organization in Aggregate
Stock-Flow & ABM

Aggregate Stock & flow models

•Within unit (e.g. city)
Subdivided according to state and
characteristics (e.g. SES)

Each stock counts # people in
associated population group

•State for different levels and
other actors are found in stocks
& flows at same “level” of the
model

Summaries for entire pop. &
subpops are stocks in model

•Relationships between units
implicit in data (e.g. mixing
matrix)

Agent-based modeling

•Within unit (e.g. city)
Subdivided according to
constitutive smaller actors (e.g.,
individual people)

Each unit maintains its own state,
attributes

•The nested or networked
relations among actors mirror
that in world

If a city “contains” people, the
(references to) people appear
“inside” the city

Emergent Behavior
• “Whole is greater than the sum of the parts”,

“Surprise behavior”
• Frequently observed in stock and flow models

as interaction between stocks & flows
• In ABMs, we see this phenomena not only at

level of aggregate stocks & flows, but – most
notably – between agents
• Patterns over time
• Patterns over space
• Patterns over networks

Emergent Behaviour & Modeling
Types

● Agent-based modeling particularly emphasizes multi-level Agent-based modeling particularly emphasizes multi-level
emergence – how distinctive patterns can emerge at different emergence – how distinctive patterns can emerge at different
levels of the systemlevels of the system
– Ability to look at high-level emergence reflects the presence of Ability to look at high-level emergence reflects the presence of

many individual agents within one modelmany individual agents within one model
● The emergent behaviours can change significantly with The emergent behaviours can change significantly with

changes in model structure¶meter valueschanges in model structure¶meter values

Aggregate & Spatial Emergence

Emergent Aggregate & Spatial
Dynamics

Early Origins of Modern ABM
● Modern Agent-Based Modeling reflects two

● Origins
● Theoretical bases

● Computer Science/Applied Mathematics/Physics: Von
Neumann's and Ulam's theory of automata (1940s)
● Interacting finite state automata
● Cellular automata
● Reproduction
● Theoretical&practical foundation in FSA/FSM formulaion

● Economics: Microsimulation
● Statistical formulation of transitions
● Sometimes framed as challenge to neoclassical

economics and rational actor theory
● Often less central focus on direct agent interactions

● These contributions are each associated with distinct
underlying theories, traditions

Additional Comments on ABM History

● Other notable influences:
● Axelrod's work on interacting prison's dilemma
● Los Alamos (CS/Physics)
● Schelling segregation model (1971)
● Conway's game of Life
● Computational Mathematical & Organization Theory

(OR/MS, SS, Mathematics)
● Lucas' Microfoundations
● Object-oriented programming

Agent-Based Models & Theory

● While ABM has roots in domains with deep theory (e.g.,
finite state automata, object orientation), it has hewed
pluralism and openness to evolving and diverse
formalisms

● Reflecting ABM's emphasis on decentralization&evolution,
it embraces community contributions of software & theory

– Open-source software has been fundamental to the
evolution of the field

● Particular ABMs may be associated with well-defined
theoretical underpinnings

Comments on Building Up an
Agent-Based Model

Model Specification

Stock & Flow Models

● Small modeling vocabulary
● Power lies in combination of a

few elements (stocks & flows)
● Analysis conducted

predominantly in terms of
elements of model vocabulary
(values of stocks & flows)

● Directly maps onto crisp
mathematical description
(Ordinary Differential
Equations)

Agent-Based Modeling

● Large modeling vocabulary
● Different subsets of

vocabulary used for different
models

● Power in flexibility &
combination of elements &
algorithmic specification

● Variety in analysis focus
● Mathematical underpinnings

differ
● In most cases, lacks

transparent mapping to
mathematical formulation

ABMs: Larger Model Vocabulary & Needs
● Events
● Multiple mechanisms for

describing dynamics
– State transition diagrams

• Multiple types of transitions

– Stock and flow
– Custom update code

● Inter-Agent communication
(sending & receiving)

● Diverse types of agents
● Data output mechanisms
● Statistics

● Subtyping
● Mobility & movement
● Graphical interfaces
● Stochastics complicated

– Scenario result interpretation
– Calibration
– Sensitivity analysis

● Synchronous &
asynchronous distinction,
concurrency

● Spatial & topological
connectivity & patterning

Agent-Based Models: Skill Sets
• Construction of ABMs have traditionally required

significant software engineering
• In recent years, ABM platforms have included

increasing support for declarative specification
– Such features greatly lower the programming

requirements

– Maintaining on-call computational consults
remains important

Agent-Based Systems
● Agent-based model characteristicsAgent-based model characteristics

– One or more populations composed of individual One or more populations composed of individual
agents agents
• Each agent is associated with some of the following

– State (continuous or discrete e.g. age, health, smoking status,
networks, beliefs)

– Parameters (e.g., Gender, genetic composition, preference fn.)
– Rules for interaction (traditionally specified in general purpose

programming language)
• Embedded in an environment (typically with localized

perception)
• Communicate via messaging and/or flows

– EnvironmentEnvironment
● Emergent aggregate behaviorEmergent aggregate behavior

Agent-Based Models
• One or more populations composed of individual

agents, each associated with
• Parameters – discrete (e.g., Gender, Ethnicity) or

continuous (e.g., birthweight, income)
• State (continuous or discrete) e.g., age, smoking

status, networks, preferences
• Rules for evolving state
• Means of interaction with other agents via one or

more environments (e.g. spatial & topological
context)

• Time horizon & characteristics
• Initial state

Agent-Based Models: Skill Sets
• Construction of ABMs have traditionally required

significant software engineering
• In recent years, ABM platforms have included

increasing support for declarative specification
– Such features greatly lower the programming

requirements

– Maintaining on-call computational consults
remains important

In Simulation….

In Model….
Model Population

Agent-Based Models
• One or more populations composed of individual

agents, each associated with
• Parameters – discrete (e.g., Gender, Ethnicity) or

continuous (e.g., birthweight, income)
• State (continuous or discrete) e.g., age, smoking

status, networks, preferences
• Rules for evolving state
• Means of interaction with other agents via one or

more environments (e.g. spatial & topological
context)

• Time horizon & characteristics
• Initial state

In Simulation

Model

Properties of
Individual Agents

Agent-Based Models
• One or more populations composed of individual

agents, each associated with
• Parameters – discrete (e.g., Gender, Ethnicity) or

continuous (e.g., birthweight, income)
• State (continuous or discrete) e.g., age, smoking

status, networks, preferences
• Rules for evolving state
• Means of interaction with other agents via one or

more environments (e.g. spatial & topological
context)

• Time horizon & characteristics
• Initial state

Example of Discrete States &
Associated Transitions

Contrast to Agg. Stock & Flow Models: Adding
Heterogeneity Yields No Combinatorial Explosion in

Structure

History information is readily accumulated
(e.g., count of infections, dates & times &
complaints associated with care seeking,
environmental exposures , etc.)

Agent-Based Models
• One or more populations composed of individual

agents, each associated with
• Parameters – discrete (e.g., Gender, Ethnicity) or

continuous (e.g., birthweight, income)
• State (continuous or discrete) e.g., age, smoking

status, networks, preferences
• Rules for evolving state
• Means of interaction with other agents via one or

more environments (e.g. spatial & topological
context)

• Time horizon & characteristics
• Initial state

Adding Contact Network

Stochastics
• In contrast to most system dynamics models,

ABMs are typically stochastic
• To ensure model results are not merely flukes, a

model must be run many times
• This adds substantially to the cost associated with

such models
• This is easily parallelizable

• Stochastics as assets: Observing variability can
lend insights into the variability seen in
real-world data

Monte Carlo Ensemble Output

Single Run

Incremental Model Development
• Great advantages are conferred by building a

simulation model in a step-by-step fashion
• With each iteration, the model is modified in

some small fashion
• A new version of the model is “docked”

against older versions of the model
– Confirming identical behavior when the changes

are disabled
– Understanding behavior with the new feature

enabled

• Frequently these incremental versions
– Can be demonstrated to system stakeholders
– Produce insight that inform the next step

undertaken

Benefits of Incremental
Development

• Greater understanding of where model patterns
emerge & interactions

• Much faster defect identification & diagnosis
• Flexibility to change direction based on learning
• Capacity to secure feedback from stakeholders

(e.g. observations of unexpected emergent
model patterns, prioritization of issues)

• Greater clarity in prioritization
• More effective time-boxing
• Enhanced stakeholder confidence
• Improved morale

Hands-On Components

Notable Themes
● Heterogeneity –

continuous & discrete
● Events
● Non-linearity
● ABM Structure
● Network & spatial

context
● Agent parameters and

state
● Specification of agent

evolution

● Agent interactions
● Maintaining

longitudinal
(“biographical”)
information

● Scenarios for
intervention

● Reporting processes
& granularity

● Emerging declarative
ABM specification
mechanisms

● Stochastics

Avoiding a Common Mistake

• AnyLogic projects typically contain a
variety of “classes”

• The AnyLogic interface for accessing
these classes is deceptively similar

• The semantics of the model will typically
be very different depending on whether
you add a component to one class or
another

• Reflect on be very clear as to which class
you wish to add an element

Creating an Agent

Adding a Parameter for pop
Size & Enforcing it

Parameters: Static Quantities

• Parameters normally
– Define constants that represent assumptions
– Serve as mechanism to communicate such

assumptions

• In Java, such parameters can have many types
– Integer, Double precision value, boolean, etc.

• For parameters in the Main class, we can override
the value of the parameters in an experiment

• Presentation elements associated with an Agent
have special “Presentation” tab for their
parameters

Model-Wide Parameters

• Values for agent
parameters are specified
by the associated
Population

• We can also associate parameters with the
“Main” class
– These parameters can be model-wide quantities

(e.g. the size of the population, or the duration of
infectiousness to assume for all agents)

– Values for these parameters are specified by
Experiments

Parameters and
Communication

• Beyond defining assumptions, parameters in
AnyLogic serve as mechanism to communicate
such assumptions

• This communication takes place from an enclosing
object at the point of creation of an enclosed object
• From an Experiment (scenario) to the single instance of

the Main class (as it is being created)
• From the single instance of the Main class to a particular

agent (as it is being created)
• From a collective agent (e.g. City, Farm) to a particular

enclosed agent (Person, Horse) as that enclosed agent is
being created

Specifying a (Temporary)
Layout for Agents

Layout Type
• Random: Uniformly distribute X and Y

position of nodes
• Arranged: Set node locations in a regular

fashion (normally in a 2D grid)
• Ring: Set node locations in periodically

spaced intervals around a ring shape
• Spring Mass: Adjust node locations such

that node locations that are most tightly
connected tend to be closer together
– (Sets location based on network!)

• User-Defined User can set location (e.g. in
initialization code)

Adding an Experiment

Adding a Parameter

Name this parameter “income”

Run the Model &
Observe the Population

Drill Down to Population Members

Erratum: Should say “income”

The Associated Code

Hands-On Components:
Heterogeneity

Elements of Individual
Characteristics

● Example Discrete
– Ethnicity
– Gender
– Categorical infection status

● Continuous
– Age
– Elements of body composition
– Metabolic rate
– Past exposure to environmental factors
– Glycemic Level

Importance of Heterogeneity

• Heterogeneity often significantly impacts policy
effectiveness
– Policies preferentially affect certain subgroups

• Infection may be maintained within certain subgroups even though would
tend to go extinct with random mixing in the entire population

– Policies alter balance of heterogeneity in population
• Shifts in the underlying heterogeneity can change aggregate

population statistics

– Given a non-linear relationship, inaccurate to use the
mean as a proxy for whole distribution

• Assessing policy effectiveness often requires
representing heterogeneity

• Flexibility in representing heterogeneity is
hard to achieve in aggregate (coarse-grained)
models

Impacts of Heterogeneity
on Policy Effectiveness

• Value of breast cancer detection (Park & Lees)
• Impact of airbags on deaths (Shepherd&Zeckhauser)
• Value of hernia operations (Neuhauser)
• Impact of cardiovascular disease interventions

(Chiang)
• Controlling blood pressure (Shepherd&Zeckhauser)
• Effectiveness of mobile cardiac care unit

(Shepherd&Zeckhauser)
• Value of breast cancer treatment (Fox)
• Taeuber paradox (Keyfitz)

Heterogeneity & Equity
Considerations

• Failure to disaggregate (to represent
heterogeneity) can impose implicit value
judgements! e.g.
– Treating situation as net zero cost if

favouring group A while disadvantaging
group B

Challenges for Aggregate Model
Formulation: Heterogeneity

• Two aggregate means for representing
heterogeneity are limited:
–Attribute-based disaggregation (e.g. via

subscripts)
• Need n dimensions to capture individual state with

respect to n factors of heterogeneity

• Poor (geometric) scaling to large #
dimensions

• Global structural, equation changes required to
incorporate new heterogeneity dimensions

• Awkwardness in stratifying

–Co-flows
• Efficient and precise but highly specialized

Fragility of Multi-Dimensional
Subscripting

Combinatorial Subscripting:
Multi-Dimensional Progression

Parallel
 Transitions

Parallel State Transition
Diagrams

Department of Computer
Science

A person is in some particular
state with respect to each of
these (condition specific)
state transition diagrams

This requires representing
combinations of possibilities
in an aggregate model

Capturing Heterogeneity in
Individual-Based vs. Aggregate Models

• Consider the need to keeping track a new
piece of information for each person (with d
possible values)
– E.g. age, sex, ethnicity, education level, strain

type, city of residence, etc.

• Aggregate Model: Add a subscript
– This multiplies the model size (number of state

variables into which we divide individuals) by d!

• Individual based model: Add field
(variable/param)
– If model already has c fields, this will increase

model size by a fraction 1/c.

Desired: Flexibility in Representing
Heterogeneity

• It is desirable to capture heterogeneity in a
flexible fashion.

• More judicious exploration of whether to
represent heterogeneity
– Examine whether some observed covariation

might simply be due to colinearity
• Represent added heterogenity dimensions with no

causal interaction, see if model covariations matches
what is seen in external world

– e.g. represent age in a TB model, see if rates of LTBI by age in
the model match age-specific infection rate observations

– Try adding in new dimension of heterogeneity &
effects, and see if has impact that is both
substantive & plausible

Hands-On Components:
Spatial Embedding

Linking Location for each Agent
to their Income

Income Segregation

A Larger Population

2D Spatial Embedding: Two Options
• Continuous embedding (e.g. Wandering

elephants, our built-up model)
– No physical exclusion: Agents are assumed to

be small compared to landscape scale, and
exhibit arbitrary spatial density without
interfering

– We have seen this much with distributing agents
initially around the space, adding agents in

• Discrete cells (e.g. The Game of Life,
Agent-based predator prey, Schelling
Segregation)
– Divided into “Columns” and “Rows”
– Physical exclusion: Only one agent in a cell at a

time

Hands-On Components:
Network Context

Networks & Spatial Layouts

• Distinct node attributes: Location &
connections
– Spatial layouts determine where nodes appear in

space (and on the screen!)
– Network type determines who is connected to

whom
– For the most part, these characteristics are

determined independently

• Network topologies (connectedness) can be
defined either alternative to or in addition to
spatial layouts
– Agents will have spatial locations in either case

Common Supported Networks
• Highly localized

– Distance based (spatial locality)
– Ring lattice (network locality)

• Poisson Random

– Disordered
– Global connections – no sense of locality

• Small world : Mix of global (poisson random)
and ring lattice

• Scale free: Power-law distribution for # of
connections (“long tail” to the right)

Defining a Network

Setting each Person to be
Visually Connected to Network

Neighbors

Examining the Neighbour of a
Particular Person

Displaying the Network Structure

Slide Template

The Locus of Control:
Environment

• The Anylogic Environment sets the
parameters for the nature of the 2D
landscape
– Width
– Breadth
– Continuous vs. Discrete
– Character of discrete neighbourhoods

(cardinal directions vs. Euclidian
{ N,NE,E,SE,S,SW,W,NW}

Recording of Results
• A frequent modeler need is to record some

components of model state over time
– State variables (e.g. stocks)
– States of agents
– Summaries of model state
– We informally term this a “trajectory file”

• Trajectory recording is supported in higher
AnyLogic versions

• All versions of AnyLogic allow for
– Definition of DataSets that record recent values of

parameters
– Statistics summarizing model state
– Reporting on values of data sets as a graph or table

Hands-On Components:
Discrete Intra-Agent Interaction

Adding Statechart Elements
from the Palette

Starting the Statechart
Construction

Specifying the States

Specifying an Initial Transition

Running the Model

Drilling down to Population
Members

Setting up a Variable to Specify
Agent Color over Time

Putting in Place Logic to Make the
Oval Use the Specified Color

Result

Hands-On Components:
Declarative Specification of Appearance

Incorporating Logic to Update
Agent Colors as Agent Evolves

Result of Running the Model

Discrete Agent Dynamics

• Frequently we can represent agent behaviour
using as transitioning among a set of mutually
exclusive and collectively exhaustive states in
a “state chart”

• For a given simple statechart, the agent is in
exactly one state at a time

• Fixed transitions between states define
possible evolution

• The transitions between states occur
instantaneously, based on some condition

Comparison with Aggregate Stock &
Flows

• As for aggregate stocks & flow,
individuals’ states are discrete

• Unlike aggregate stocks & flows
– One state within a given statechart is active

at a time
– For parallel flows (e.g. comorbidities), there is

no need for considering all combinations of
the possible states

– We can keep track of how long an individual is
in a given state & adjust the transition rate
accordingly

Key result: Statecharts are modular: You can add a
new statechart without modify all the existing
statecharts

Modularity Disparities
• A consequence of the previous points is that there

are vastly different implications for representing new
taxonomies in ABM & aggregate models

• Aggregate model:
– Require representing all state combinations
– Adding a new division (e.g., to represent an

additional comorbidity) entails updating the
entire structure

• Individual based model

– Each statechart is largely orthogonal
– Statecharts are modular: You can add a new

statechart without modify all the existing
statecharts

Aggregate Non-Solution:
Maintain Marginals

• Maintain a total count of people with each condition
(the marginals)

• Maintain some prevalence information on occurrence
of co-morbidities

● Problem: This doesn't capture the dynamics of
co-morbidities

● Prevalence will change in
– Baseline
– Induced by interventions

● Because of differential mortality, intervention
and other effects, anticipating how the
prevalence of co-morbidities will change
requires simulating them explicitly

Modularity Disparities: Aggregate Model

Modularity Disparities: Aggregate Model
Adding a First Co-Morbid Condition

Modularity Disparities: Aggregate Model
Adding a Second Co-Morbid Condition

Each new co-morbidity
requires changes across
the entire existing
structure

Individual Level: Parallel State
Transition Diagrams

Department of Computer
Science

A person is in some particular
state with respect to each of
these (condition specific)
state transition diagrams

This requires representing
combinations of possibilities
in an aggregate model

Parallel
 Transitions

Discrete Agent Dynamics: Transitions

• Many transition conditions are possible
• Timeout: Spending some period of time in the state
• Fixed rate: Leave state with some fixed change per unit time

– This is similar to “first order interarrival time”, and is conceptually
linked to the operation of first-order delays in stock & flow diagrams

• Variable rate: If desired, we can change the rate over time –
but Anylogic only “notices” changes when eg agent re-enters
the state

• Message received: We can transition when a message (any
message or particular type of message) is received

• Predicate: Only transition when condition becomes true
• Arrival: Reach a location

– These transitions can be conditionally “routed” via
branches
• Conditions can determine to what destination state a

particular transition will travel

Fixed Rates: Transition Hazards
• With “fixed rates”, we are specifying rates of

transitions
• Because we are dealing with the chance that

each individual transitions, we don’t need to
multiply by the number of people at risk
– Here, there is just 1 person at risk!

• As in Compartment models, these rates can
change over time, but the statechart needs to
be “made aware” of these changes (see later)
– Leave & go back into current state (circular

transition)
– Trigger “change” event in Agent

Transition Type: Fixed Residence
Time (Timeout)

Example of Processes
Associated with Fixed Timeouts

• Aging
• Tightly defined time constants associated

with natural history
– While these may be described as associated

with a broad distribution (e.g. with a 1st or
2nd order delay), much of that variability
may be due to heterogeneity

– For a given person, these may be quite
specific in duration ⇒ Can capture through a
timeout

Example Conditional
Transition

The incoming
 transition into
“WhetherPrimaryProg
ression” will be
routed to
thisoutgoing
transitionif this
condition is true

Special Elements: Self-Transition
(Use if Wish To Trigger an Action w/o Leaving State)

The self-transition
 will invoke this
action when it occurs

Special Elements: Self-Transition
(Use if Wish To Have State Register Changing Out-transition

rates)

The self-transition
 will “make the state
realize” that the rate
associated with any
out transition (e.g.
this one) has
changed

Hands-On Components:
Discrete Inter-Agent Interaction

Adding a “Self Transition” to
Periodically Undertake an Action

The Associated Code

Setting up an Event to Infect
the Initial Person

Consequence

Discrete Agent Coupling via Messages

• Within AnyLogic, agents can be coupled by
either discrete (instantaneous and
individuated) or continuous (ongoing and
gradual) coupling

• The preferred mechanism for discrete
coupling is messages sent between agents
– Many types of messages payloads are possible
– An agent can send a given message to one or

more agents
– Frequently messages are sent locally to neighbors

within the environment
• Neighboring nodes on the network
• Nearby neighbors in space

Messages & Statecharts

• Messages may be handled in many ways
• One of the most common ways in which

messages are handled is by statecharts
– A transition can be triggered (“guarded” or gated)

by a message
– A transition may be associated with an action that

fires off a message to other agents (or to other
statecharts within the agent)

Message Sending

• Messages may be sent to either
– A particular, explicitly specified agent
– An implicitly specified class of agents

• Neighboring agents in the environment topology
• Random agents
• All agents
• Any connected agents
• All connected agents

• Mechanism:
– send(Message, DestinationObject)
– send(Message, AgentClassId)

Synchronous vs. Asynchronous
Delivery

• Messages may be sent in two ways
– Via send: Asynchronous (scheduled)

• Delivery occurs sometime after call to send
• This is like sending a text message – it can be

read later

– Via deliver: Synchronous (immediately
called)

• Risks infinite loops in delivery (if destination also
calls deliver in the reverse direction)

• This is like calling the other person’s phone – you
demand their attention immediately

Message Payloads
• Sometimes just the fact that a message has

been sent provides us with all of the
information we need

• Sometimes just distinguishing different
message types is sufficient

• We will sometimes send messages with
payloads of data that provide extra
information, e.g.
– The agent that sent the message (eg that is

infecting us)
– Particular parameters

• Can send messages different payload types
– Boolean/int/double/String/Other (can specify class

type)

Hands-On Components:
Events

Events & Scheduling in
AnyLogic

• Reminder: In simulating stock & flow models,
time advances in steps
– Euler integration: Fixed-sized Steps
– Runga-Kutta: Fixed or variable sized steps
– For each timestep, we compute the flows & update

the stocks

• AnyLogic jumps from “event” to “event”
– The data structure that keeps track of such events

is called the “schedule”
– The associated process is called the “scheduler”

Implicit Events we’ve Seen
• Transitions

– Fixed rate (Poisson arrival)
– Timeout
– Condition
– Message transmission (schedules event for the

receiver)

• Starting a model
• Stopping a model
• In this course, we term these implicit

events because they are not reified as
objects in the model

• To handle these events, code is inserted
into certain handler areas for each of
different sorts of classes

The Schedule

• At a given time, the schedule keeps track
of a number of queued events

• Events may get added to the schedule
(e.g. when we enter a new state)

• Events get deleted from the schedule
– When they fire off and are complete
– When another mutually exclusive event

preempts them (e.g. a person dies before
they recover from an infection)

History Information in Modeling
• Heterogeneity wrt individual history can be

highly important for future health
– Whether vaccinated
– in utero exposure
– Degree of glycemic control over the past decade
– Exposure to adiposity
– Previous exposure to a pathogen

• Such information can provide the basis for
delivering interventions and treatments

• Inability to match such info can greatly
undercut model value

• In some areas of health, we have access to
longitudinal data that provides information on
individual historical trajectories.

Example of Additional Information
from Longitudinal Data

• Consider trying to distinguish pairs of situations
• e.g.: Smoking

– Situation 1: One set of people quit & stay quit as
former smokers, another set remain as current smokers

– Situation 2: The entire set of people cycle through
situations where they quit, relapse & repeat

• These two situations have very different health
consequences

• We’d probably choose vary different sets of
interventions for these two situations

• Similar examples are easy to imagine for obesity,
STIs, TB, glycemic control & diabetes, etc.

Capturing History Information
• Individual based model

– Both discrete & continuous history information can be
readily captured

• Categorical/discrete: State (in statechart) or variable
• Continuous: Variable

– Readily able to capture records of trajectories

• Aggregate model
– Categorical/discrete: Limited discrete history

information can be captured by disaggregating stocks
• Curse of dimensionality provides tight limits on # of aspects

of history can be recorded

– Continuous: Almost always infeasible
– Very complex to provide distributions of trajectories

(via convolution of potentially changing PSFs of stocks)

Longitudinal Fidelity: Aggregate Models
• An aggregate model provides an ongoing

series of cross-sectional descriptions of
system state
– In Calibration & validation, we can do rich

comparison of these cross-sectional descriptions
against available point or time-series data

– Because the model does not track individuals, we
generally cannot explicitly extract model
longitudinal trajectories from the model for
comparison with empirical giving longitudinal
trajectories

Longitudinal Fidelity:
 Individual-Based Models

• An individual-based model provides easily accessible
cross-sectional and longitudinal descrip. of system
state
– The system state at a particular moment in time is

cross-sectional
– By following & recording the trajectories of particular

individuals, we can obtain longitudinal description

• In Calibration & validation, we can do rich
comparison of both longitudinal and cross-sectional
descriptions against available point or time-series
data
– It is in principle possible to have a model that accords with

cross-sectional data, but which is at odds longitudinally

Stochastic Processes in
AnyLogic

• In AnyLogic, ABM and Discrete Event Models
(“Network-Based Modeling”) are typically
stochastic
– Transitions between states
– Event firing
– Messages

• (Frequent) timing of message send
• Target of messages

– Duration of a procedure

• As a result, there will be variation in the
results from simulation to simulation

Summarizing Variability
• To gain confidence in model results,

typically need to run a “Monte Carlo”
ensemble of realizations
– Deal with means, standard deviations, and

empirical fractiles
– As is seen here, there are typically still broad

regularities between most runs (e.g. rise & fall)

• Need to reason over a population of
realizations ⇒ statistics are very valuable
– Fractile within which historic value falls
– Mean difference in results between

interventions

Monte Carlo Methods in AnyLogic
• Monte Carlo methods draw repeated samples

from distributions & stochastic processes of
interest

• When running Monte Carlo method, we’d like
to summarize the results of multiple runs

• One option would be to display each trajectory
over time; downside: quickly gets messy

• AnyLogic’s solution
– Accumulate data regarding how many trajectories

fall within given areas of value for a given interval
of time using a “Histogram2D Data”

– Display the Histogram2D Chart

Results of Monte Carlo
Simulation

Even without parameter variation, Substantial variability
 is still present!

Agent-Based Modeling Workshop:
Themes for Weaving into the Interactive Example

Nathaniel Osgood

Using Modeling to Prepare for
Changing Healthcare Needs

April 16, 2014

	Agent-Based Models
	Slide 3
	Slide 4
	Recall: Emergent Behavior
	Slide 9
	Aggregate & Spatial Emergence
	Emergent Aggregate Dynamics
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Reminder: Model Specification Mechanisms
	ABMs: Larger Model Vocabulary & Needs
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	In Simulation….
	Slide 23
	Slide 24
	Properties of Individual Agents
	Slide 26
	Example of Discrete States & Associated Transitions
	Slide 28
	Slide 29
	Adding Contact Network
	Stochastics
	Monte Carlo Ensemble Output
	Incremental Model Development
	Benefits of Incremental Development
	Slide 35
	Slide 36
	Avoiding a Common Mistake
	Slide 38
	Slide 39
	Parameters: Static Quantities
	Model-Wide Parameters
	Parameters and Communication
	Slide 43
	Layout Type
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Importance of Heterogeneity
	Impacts of Heterogeneity on Policy Effectiveness
	Heterogeneity & Equity Considerations
	Challenges for Aggregate Model Formulation: Heterogeneity
	Fragility of Multi-Dimensional Subscripting
	Combinatorial Subscripting: Multi-Dimensional Progression
	Parallel Transitions
	Parallel State Transition Diagrams
	Slide 60
	Desired: Flexibility in Representing Heterogeneity
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	2D Spatial Embedding: Two Options
	Slide 67
	Networks & Spatial Layouts
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	The Locus of Control: Environment
	Recording of Results
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Discrete Agent Dynamics
	Comparison with Aggregate Stock & Flows
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Discrete Agent Dynamics: Transitions
	Fixed Rates: Transition “Hazards”
	Transition Type: Fixed Residence Time (Timeout)
	Example of Processes Associated with Fixed Timeouts
	Example Conditional Transition
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Discrete Agent Coupling via Messages
	Messages & Statecharts
	Message Sending
	Synchronous vs. Asynchronous Delivery
	Message Payloads
	Slide 116
	Events & Scheduling in AnyLogic
	Implicit Events we’ve Seen
	The Schedule
	Example of Concern: History Information
	Example of Additional Information from Longitudinal Data
	Capturing History Information
	Longitudinal Fidelity: Aggregate Models
	Longitudinal Fidelity: Individual-Based Models
	Stochastic Processes in AnyLogic
	Summarizing Variability
	Monte Carlo Methods in AnyLogic
	Results of Monte Carlo Simulation

