
Recall: Agent-Based Models
• One or more populations composed of individual 

agents, each associated with 
• Parameters – discrete (e.g., Gender, Ethnicity) or 

continuous (e.g., birthweight, income)
• State (continuous or discrete) e.g., age, smoking 

status, networks, preferences
• Rules for evolving state
• Means of interaction with other agents via one or 

more environments (e.g. spatial & topological 
context)

• Time horizon & characteristics
• Initial state



Contrasting Organization in Aggregate 
Stock-Flow & ABM

Aggregate Stock & flow modelsAggregate Stock & flow models
● Within unit (e.g. city)

– Subdivided according to state (eg # 
susceptible, # infective)

– Each  stock counts number associated 
with that state

● State for different units of analysis 
are found in stocks & flows at same 
“level” of the model
– Summaries for city & country are both 

stocks in model
● Relationships between units implicit 

in data (e.g. connectivity matrix)

Agent-based modeling
● Within unit (e.g. city)

– Subdivided according to 
constitutive smaller units (e.g. 
individual people)

– Each unit maintains its own state
● The nested or networked 

relations among units of 
analysis mimic that in world
– If a city “contains” people,  the 

(references to) people appear 
“inside” the citySusceptible Infectives Recovered

New Infections Recoveries
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Contrasting Organization in Aggregate 
Stock-Flow & ABM

Aggregate Stock & flow models

•Within unit (e.g. city)
Subdivided according to state and 
characteristics (e.g. SES)

Each stock counts # people in  
associated population group

•State for different  levels and 
other actors are found in stocks 
& flows at same “level” of the 
model

Summaries for entire pop. & 
subpops are stocks in model

•Relationships between units 
implicit in data (e.g. mixing 
matrix)

Agent-based modeling

•Within unit (e.g. city)
Subdivided according to 
constitutive smaller actors (e.g., 
individual people)

Each unit maintains its own state, 
attributes

•The nested or networked 
relations among actors mirror 
that in world

If a city “contains” people,  the 
(references to) people appear 
“inside” the city



Emergent Behavior
• “Whole is greater than the sum of the parts”, 

“Surprise behavior”
• Frequently observed in stock and flow models 

as interaction between stocks & flows
• In ABMs, we see this phenomena not only at 

level of aggregate stocks & flows, but – most 
notably – between agents
• Patterns over time
• Patterns over space
• Patterns over networks



Emergent Behaviour & Modeling 
Types

● Agent-based modeling particularly emphasizes multi-level Agent-based modeling particularly emphasizes multi-level 
emergence – how distinctive patterns can emerge at different emergence – how distinctive patterns can emerge at different 
levels of the systemlevels of the system
– Ability to look at high-level emergence reflects the presence of Ability to look at high-level emergence reflects the presence of 

many individual agents within one modelmany individual agents within one model
● The emergent behaviours can change significantly with The emergent behaviours can change significantly with 

changes in model structure&parameter valueschanges in model structure&parameter values



Aggregate & Spatial Emergence



Emergent Aggregate & Spatial 
Dynamics



Early Origins of Modern ABM
● Modern Agent-Based Modeling reflects two 

● Origins
● Theoretical bases

● Computer Science/Applied Mathematics/Physics: Von 
Neumann's and Ulam's theory of automata (1940s)
● Interacting finite state automata
● Cellular automata
● Reproduction
● Theoretical&practical foundation in FSA/FSM formulaion

● Economics:  Microsimulation
● Statistical formulation of transitions
● Sometimes framed as challenge to neoclassical 

economics and rational actor theory
● Often less central focus on direct agent interactions 

● These contributions are each associated with distinct 
underlying theories, traditions



Additional Comments on ABM History

● Other notable influences:
● Axelrod's work on interacting prison's dilemma
● Los Alamos (CS/Physics)
● Schelling segregation model (1971)
● Conway's game of Life
● Computational Mathematical & Organization Theory 

(OR/MS, SS, Mathematics)
● Lucas' Microfoundations 
● Object-oriented programming



Agent-Based Models & Theory

● While ABM has roots in domains with deep theory (e.g., 
finite state automata, object orientation), it has hewed 
pluralism and openness to evolving and diverse 
formalisms

● Reflecting ABM's emphasis on decentralization&evolution, 
it embraces community contributions of software & theory

– Open-source software has been fundamental to the 
evolution of the field 

● Particular ABMs may be associated with well-defined 
theoretical underpinnings



Comments on Building Up an 
Agent-Based Model



Model Specification

Stock & Flow Models

● Small modeling vocabulary
● Power lies in combination of a 

few elements (stocks & flows)
● Analysis conducted 

predominantly in terms of 
elements of model vocabulary 
(values of stocks & flows)

● Directly maps onto crisp 
mathematical description 
(Ordinary Differential 
Equations)

Agent-Based Modeling

● Large modeling vocabulary
● Different subsets of 

vocabulary used for different 
models

● Power in flexibility & 
combination of elements & 
algorithmic specification

● Variety in analysis focus
● Mathematical underpinnings 

differ
● In most cases, lacks 

transparent mapping to 
mathematical formulation



ABMs: Larger Model Vocabulary & Needs
● Events
● Multiple mechanisms for 

describing dynamics
– State transition diagrams

• Multiple types of transitions

– Stock and flow
– Custom update code

● Inter-Agent communication 
(sending & receiving)

● Diverse types of agents
● Data output mechanisms
● Statistics

● Subtyping
● Mobility & movement
● Graphical interfaces
● Stochastics complicated

– Scenario result interpretation
– Calibration
– Sensitivity analysis

● Synchronous & 
asynchronous  distinction, 
concurrency

● Spatial & topological 
connectivity & patterning



Agent-Based Models: Skill Sets
• Construction of ABMs have traditionally required 

significant software engineering
• In recent years, ABM platforms have included 

increasing support for declarative specification
– Such features greatly lower the programming 

requirements

– Maintaining on-call computational consults 
remains important



Agent-Based Systems
● Agent-based model characteristicsAgent-based model characteristics

– One or more populations composed of individual One or more populations composed of individual 
agents agents 
• Each agent is associated with some of the following

– State (continuous or discrete e.g. age, health, smoking status, 
networks, beliefs)

– Parameters (e.g., Gender, genetic composition, preference fn.)
– Rules for interaction (traditionally specified in general purpose 

programming language)
• Embedded in an environment (typically with localized 

perception)
• Communicate via messaging and/or flows

– EnvironmentEnvironment
● Emergent aggregate behaviorEmergent aggregate behavior



Agent-Based Models
• One or more populations composed of individual 

agents, each associated with 
• Parameters – discrete (e.g., Gender, Ethnicity) or 

continuous (e.g., birthweight, income)
• State (continuous or discrete) e.g., age, smoking 

status, networks, preferences
• Rules for evolving state
• Means of interaction with other agents via one or 

more environments (e.g. spatial & topological 
context)

• Time horizon & characteristics
• Initial state



Agent-Based Models: Skill Sets
• Construction of ABMs have traditionally required 

significant software engineering
• In recent years, ABM platforms have included 

increasing support for declarative specification
– Such features greatly lower the programming 

requirements

– Maintaining on-call computational consults 
remains important



In Simulation….

In Model….
Model Population



Agent-Based Models
• One or more populations composed of individual 

agents, each associated with 
• Parameters – discrete (e.g., Gender, Ethnicity) or 

continuous (e.g., birthweight, income)
• State (continuous or discrete) e.g., age, smoking 

status, networks, preferences
• Rules for evolving state
• Means of interaction with other agents via one or 

more environments (e.g. spatial & topological 
context)

• Time horizon & characteristics
• Initial state



In Simulation

Model



Properties of 
Individual Agents



Agent-Based Models
• One or more populations composed of individual 

agents, each associated with 
• Parameters – discrete (e.g., Gender, Ethnicity) or 

continuous (e.g., birthweight, income)
• State (continuous or discrete) e.g., age, smoking 

status, networks, preferences
• Rules for evolving state
• Means of interaction with other agents via one or 

more environments (e.g. spatial & topological 
context)

• Time horizon & characteristics
• Initial state



Example of Discrete States & 
Associated Transitions



Contrast to Agg. Stock & Flow Models: Adding 
Heterogeneity Yields No Combinatorial Explosion in 

Structure

History information is readily accumulated
(e.g., count of infections, dates & times & 
complaints associated with care seeking,
environmental exposures , etc.)



Agent-Based Models
• One or more populations composed of individual 

agents, each associated with 
• Parameters – discrete (e.g., Gender, Ethnicity) or 

continuous (e.g., birthweight, income)
• State (continuous or discrete) e.g., age, smoking 

status, networks, preferences
• Rules for evolving state
• Means of interaction with other agents via one or 

more environments (e.g. spatial & topological 
context)

• Time horizon & characteristics
• Initial state



Adding Contact Network



Stochastics
• In contrast to most system dynamics models, 

ABMs are typically stochastic
• To ensure model results are not merely flukes, a 

model must be run many times
• This adds substantially to the cost associated with 

such models
• This is easily parallelizable

• Stochastics as assets: Observing variability can 
lend insights into the variability seen in 
real-world data



Monte Carlo Ensemble Output

Single Run



Incremental Model Development
• Great advantages are conferred by building a 

simulation model in a step-by-step fashion
• With each iteration, the model is modified in 

some small fashion
• A new version of the model is “docked” 

against older versions of the model
– Confirming identical behavior when the changes 

are disabled
– Understanding behavior with the new feature 

enabled

• Frequently these incremental versions 
– Can be demonstrated to system stakeholders
– Produce insight that inform the next step 

undertaken



Benefits of Incremental 
Development

• Greater understanding of where model patterns 
emerge & interactions

• Much faster defect identification & diagnosis
• Flexibility to change direction based on learning
• Capacity to secure feedback from stakeholders 

(e.g. observations of unexpected emergent 
model patterns, prioritization of issues)

• Greater clarity in prioritization
• More effective time-boxing
• Enhanced stakeholder confidence
• Improved morale



Hands-On Components



  

Notable Themes
● Heterogeneity – 

continuous & discrete
● Events
● Non-linearity
● ABM Structure
● Network & spatial 

context
● Agent parameters and 

state
● Specification of agent 

evolution

● Agent interactions
● Maintaining 

longitudinal 
(“biographical”) 
information

● Scenarios for 
intervention

● Reporting processes 
& granularity

● Emerging declarative 
ABM specification 
mechanisms

● Stochastics



Avoiding a Common Mistake

• AnyLogic projects typically contain a 
variety of “classes”

• The AnyLogic interface for accessing 
these classes is deceptively similar

• The semantics of the model will typically 
be very different depending on whether 
you add a component to one class or 
another

• Reflect on be very clear as to which class 
you wish to add an element



Creating an Agent



Adding a Parameter for pop 
Size & Enforcing it



Parameters: Static Quantities

• Parameters normally 
– Define constants that represent assumptions
– Serve as mechanism to communicate such 

assumptions

• In Java, such parameters can have many types
– Integer, Double precision value, boolean, etc.

• For parameters in the Main class, we can override 
the value of the parameters in an experiment

• Presentation elements associated with an Agent 
have special “Presentation” tab for their 
parameters



Model-Wide Parameters

• Values for agent 
parameters are specified 
by the associated 
Population

• We can also associate parameters with the 
“Main” class
– These parameters can be model-wide quantities 

(e.g. the size of the population, or the duration of 
infectiousness to assume for all agents)

– Values for these parameters are specified by 
Experiments



Parameters and 
Communication

• Beyond defining assumptions, parameters in 
AnyLogic serve as mechanism to communicate 
such assumptions

• This communication takes place from an enclosing 
object at the point of creation of an enclosed object
• From an Experiment (scenario) to the single instance of 

the Main class (as it is being created)
• From the single instance of the Main class to a particular 

agent (as it is being created)
• From a collective agent (e.g. City, Farm) to a particular 

enclosed agent (Person, Horse) as that enclosed agent is 
being created



Specifying a (Temporary) 
Layout for Agents



Layout Type
• Random:  Uniformly distribute X and Y 

position of nodes
• Arranged:  Set node locations in a regular 

fashion (normally in a 2D grid)
• Ring:  Set node locations in periodically 

spaced intervals around a ring shape
• Spring Mass:  Adjust node locations such 

that node locations that are most tightly 
connected tend to be closer together
– (Sets location based on network!)

• User-Defined  User can set location (e.g. in 
initialization code)



Adding an Experiment



Adding a Parameter

Name this parameter “income”



Run the Model & 
Observe the Population 



Drill Down to Population Members

Erratum:  Should say “income”



The Associated Code



Hands-On Components:
Heterogeneity



Elements of Individual 
Characteristics

● Example Discrete
– Ethnicity
– Gender
– Categorical infection status

● Continuous
– Age
– Elements of body composition
– Metabolic rate
– Past exposure to environmental factors
– Glycemic Level



Importance of Heterogeneity

• Heterogeneity often significantly impacts policy 
effectiveness
– Policies preferentially affect certain subgroups

• Infection may be maintained within certain subgroups even though would 
tend to go extinct with random mixing in the entire population

– Policies alter balance of heterogeneity in population
• Shifts in the underlying heterogeneity can change aggregate 

population statistics

– Given a non-linear relationship, inaccurate to use the 
mean as a proxy for whole distribution

• Assessing policy effectiveness often requires 
representing heterogeneity

• Flexibility in representing heterogeneity is 
hard to achieve in aggregate (coarse-grained) 
models



Impacts of Heterogeneity 
on Policy Effectiveness

• Value of breast cancer detection (Park & Lees)
• Impact of airbags on deaths (Shepherd&Zeckhauser)
• Value of hernia operations (Neuhauser)
• Impact of cardiovascular disease interventions 

(Chiang)
• Controlling blood pressure (Shepherd&Zeckhauser)
• Effectiveness of mobile cardiac care unit 

(Shepherd&Zeckhauser)
• Value of breast cancer treatment (Fox)
• Taeuber paradox (Keyfitz)



Heterogeneity & Equity 
Considerations

• Failure to disaggregate (to represent 
heterogeneity) can impose implicit value 
judgements! e.g. 
– Treating situation as net zero cost if 

favouring group A while disadvantaging 
group B



Challenges for Aggregate Model 
Formulation: Heterogeneity

• Two aggregate means for representing 
heterogeneity are limited:
–Attribute-based disaggregation (e.g. via 

subscripts)
• Need n dimensions to capture individual state with 

respect to n factors of heterogeneity

• Poor (geometric) scaling to large # 
dimensions

• Global structural, equation changes required to 
incorporate new heterogeneity dimensions

• Awkwardness in stratifying

–Co-flows
• Efficient and precise but highly specialized



Fragility of Multi-Dimensional 
Subscripting



Combinatorial Subscripting: 
Multi-Dimensional Progression



Parallel
 Transitions



Parallel State Transition 
Diagrams

Department of Computer 
Science

A person is in some particular 
state with respect to each of 
these (condition specific) 
state transition diagrams

This requires representing 
combinations of possibilities 
in an aggregate model 



Capturing Heterogeneity in 
Individual-Based vs. Aggregate Models

• Consider the need to keeping track a new 
piece of information for each person (with d 
possible values) 
– E.g. age, sex, ethnicity, education level, strain 

type, city of residence, etc.

• Aggregate Model: Add a subscript
– This multiplies the model size (number of state 

variables into which we divide individuals) by d!

• Individual based model: Add field 
(variable/param)
– If model already has c fields, this will increase 

model size by a fraction 1/c.



Desired: Flexibility in Representing 
Heterogeneity 

• It is desirable to capture heterogeneity in a 
flexible fashion.

• More judicious exploration of whether to 
represent heterogeneity
– Examine whether some observed covariation 

might simply be due to colinearity 
• Represent added heterogenity dimensions with no 

causal interaction, see if model covariations matches 
what is seen in external world

– e.g. represent age in a TB model, see if rates of LTBI by age  in 
the model match age-specific infection rate observations 

– Try adding in new dimension of heterogeneity & 
effects, and see if has impact that is both 
substantive & plausible



Hands-On Components:
Spatial Embedding



Linking Location for each Agent 
to their Income



Income Segregation



A Larger Population



2D Spatial Embedding: Two Options
• Continuous embedding (e.g. Wandering 

elephants, our built-up model)
– No physical exclusion:  Agents are assumed to 

be small compared to landscape scale, and 
exhibit arbitrary spatial density  without 
interfering

– We have seen this much with distributing agents 
initially around the space, adding agents in

• Discrete cells (e.g. The Game of Life, 
Agent-based predator prey, Schelling 
Segregation)
– Divided into “Columns” and “Rows”
– Physical exclusion: Only one agent in a cell at a 

time



Hands-On Components:
Network Context



Networks & Spatial Layouts

• Distinct node attributes: Location & 
connections
– Spatial layouts determine where nodes appear in 

space (and on the screen!)
– Network type determines who is connected to 

whom
– For the most part, these characteristics are 

determined independently

• Network topologies (connectedness) can be 
defined either alternative to or in addition to 
spatial layouts
– Agents will have spatial locations in either case



Common Supported Networks
• Highly localized

– Distance based (spatial locality)
– Ring lattice (network locality)

• Poisson Random

– Disordered
– Global connections – no sense of locality

• Small world : Mix of global (poisson random) 
and ring lattice

• Scale free:  Power-law distribution for # of 
connections (“long tail” to the right)



Defining a Network



Setting each Person to be 
Visually Connected to Network 

Neighbors



Examining the Neighbour of a 
Particular Person



Displaying the Network Structure



Slide Template



The Locus of Control: 
Environment

• The Anylogic Environment sets the 
parameters for the nature of the 2D 
landscape
– Width
– Breadth
– Continuous vs. Discrete
– Character of discrete neighbourhoods 

(cardinal directions vs. Euclidian 
{ N,NE,E,SE,S,SW,W,NW}



Recording of Results
• A frequent modeler need is to record some 

components of model state over time
– State variables (e.g. stocks)
– States of agents
– Summaries of model state
– We informally term this a “trajectory file”

• Trajectory recording is supported in higher 
AnyLogic versions

• All versions of AnyLogic allow for 
– Definition of DataSets that record recent values of 

parameters
– Statistics summarizing model state
– Reporting on values of data sets as a graph or table



Hands-On Components:
Discrete Intra-Agent Interaction



Adding Statechart Elements 
from the Palette



Starting the Statechart 
Construction 



Specifying the States



Specifying an Initial Transition



Running the Model



Drilling down to Population 
Members



Setting up a Variable to Specify 
Agent Color over Time



Putting in Place Logic to Make the 
Oval Use the Specified Color



Result



Hands-On Components:
Declarative Specification of Appearance



Incorporating Logic to Update 
Agent Colors as Agent Evolves



Result of Running the Model



Discrete Agent Dynamics

• Frequently we can represent agent behaviour 
using as transitioning among a set of mutually 
exclusive and collectively exhaustive states in 
a “state chart”

• For a given simple statechart, the agent is in 
exactly one state at a time

• Fixed transitions between states define 
possible evolution

• The transitions between states occur 
instantaneously, based on some condition



Comparison with Aggregate Stock & 
Flows

• As for aggregate stocks & flow, 
individuals’ states are discrete

• Unlike aggregate stocks & flows
– One state within a given statechart is active 

at a time
– For parallel flows (e.g. comorbidities), there is 

no need for considering all combinations of 
the possible states

– We can keep track of how long an individual is 
in a given state & adjust the transition rate 
accordingly

Key result: Statecharts are modular: You can add a 
new statechart without modify all the existing 
statecharts 



Modularity Disparities
• A consequence of the previous points is that there 

are vastly different implications for representing new 
taxonomies in ABM & aggregate models

• Aggregate model:
– Require representing all state combinations
– Adding a new division (e.g., to represent an 

additional comorbidity) entails updating the 
entire structure

• Individual based model

– Each statechart is largely orthogonal
– Statecharts are modular: You can add a new 

statechart without modify all the existing 
statecharts 



Aggregate Non-Solution: 
Maintain Marginals

• Maintain a total count of people with each condition 
(the marginals)

• Maintain some prevalence information on occurrence 
of co-morbidities

● Problem: This doesn't capture the dynamics of 
co-morbidities  

● Prevalence will change in 
– Baseline
– Induced by interventions

● Because of differential mortality, intervention 
and other effects, anticipating how the 
prevalence of co-morbidities will change 
requires simulating them explicitly



Modularity Disparities: Aggregate Model



Modularity Disparities: Aggregate Model
Adding a First Co-Morbid Condition



Modularity Disparities: Aggregate Model
Adding a Second Co-Morbid Condition

Each new co-morbidity
requires changes across
the entire existing 
structure



Individual Level: Parallel State 
Transition Diagrams

Department of Computer 
Science

A person is in some particular 
state with respect to each of 
these (condition specific) 
state transition diagrams

This requires representing 
combinations of possibilities 
in an aggregate model 



Parallel
 Transitions



Discrete Agent Dynamics: Transitions

• Many transition conditions are possible
• Timeout: Spending some period of time in the state
• Fixed rate:  Leave state with some fixed change per unit time

– This is similar to “first order interarrival time”, and is conceptually 
linked to the operation of first-order delays in stock & flow diagrams

• Variable rate: If desired, we can change the rate over time – 
but Anylogic only “notices” changes when eg agent re-enters 
the state

• Message received:  We can transition when a message (any 
message or particular type of message) is received

• Predicate:  Only transition when condition becomes true
• Arrival: Reach a location

– These transitions can be conditionally “routed” via 
branches
• Conditions can determine to what destination state a 

particular transition will travel



Fixed Rates: Transition Hazards
• With “fixed rates”, we are specifying rates of 

transitions
• Because we are dealing with the chance that 

each individual transitions, we don’t need to 
multiply by the number of people at risk
– Here, there is just 1 person at risk!

• As in Compartment models, these rates can 
change over time, but the statechart needs to 
be “made aware” of these changes (see later)
– Leave & go back into current state (circular 

transition)
– Trigger “change” event in Agent



Transition Type: Fixed Residence 
Time (Timeout)



Example of Processes 
Associated with Fixed Timeouts

• Aging
• Tightly defined time constants associated 

with natural history 
– While these may be described as associated 

with a broad distribution (e.g. with a 1st or 
2nd order delay), much of that variability 
may be due to heterogeneity

– For a given person, these may be quite 
specific in duration ⇒ Can capture through a 
timeout



Example Conditional 
Transition

The incoming
 transition into 
“WhetherPrimaryProg
ression” will be 
routed to 
thisoutgoing 
transitionif this 
condition is true



Special Elements: Self-Transition
(Use if Wish To Trigger an Action w/o Leaving State)

The self-transition 
 will invoke this 
action when it occurs  



Special Elements: Self-Transition
(Use if Wish To Have State Register Changing Out-transition 

rates)

The self-transition 
 will “make the state 
realize” that the rate 
associated with any 
out transition (e.g. 
this one) has 
changed



Hands-On Components:
Discrete Inter-Agent Interaction



Adding a “Self Transition” to 
Periodically Undertake an Action



The Associated Code



Setting up an Event to Infect 
the Initial Person



Consequence



Discrete Agent Coupling via Messages

• Within AnyLogic, agents can be coupled by 
either discrete (instantaneous and 
individuated) or continuous (ongoing and 
gradual) coupling

• The preferred mechanism for discrete 
coupling is messages sent between agents
– Many types of messages payloads are possible
– An agent can send a given message to one or 

more agents
– Frequently messages are sent locally to neighbors 

within the environment
• Neighboring nodes on the network
• Nearby neighbors in space



Messages & Statecharts

• Messages may be handled in many ways
• One of the most common ways in which 

messages are handled is by statecharts
– A transition can be triggered (“guarded” or gated) 

by a message
– A transition may be associated with an action that 

fires off a message to other agents (or to other 
statecharts within the agent)



Message Sending

• Messages may be sent to either
– A particular, explicitly specified agent
– An implicitly specified class of agents 

• Neighboring agents in the environment topology
• Random agents
• All agents
• Any connected agents
• All connected agents

• Mechanism: 
– send(Message, DestinationObject)
– send(Message, AgentClassId)



Synchronous vs. Asynchronous 
Delivery

• Messages may be sent in two ways
– Via send:  Asynchronous (scheduled)

• Delivery occurs sometime after call to send
• This is like sending a text message – it can be 

read later

– Via deliver: Synchronous (immediately 
called)

• Risks infinite loops in delivery (if destination also 
calls deliver in the reverse direction)

• This is like calling the other person’s phone – you 
demand their attention immediately



Message Payloads
• Sometimes just the fact that a message has 

been sent provides us with all of the 
information we need

• Sometimes just distinguishing different 
message types is sufficient

• We will sometimes send messages with 
payloads of data that provide extra 
information, e.g.
– The agent that sent the message (eg that is 

infecting us)
– Particular parameters

• Can send messages different payload types
– Boolean/int/double/String/Other (can specify class 

type)



Hands-On Components:
Events



Events & Scheduling in 
AnyLogic

• Reminder: In simulating stock & flow models, 
time advances in steps
– Euler integration: Fixed-sized Steps
– Runga-Kutta: Fixed or variable sized steps
– For each timestep, we compute the flows & update 

the stocks

• AnyLogic jumps from “event” to “event”
– The data structure that keeps track of such events 

is called the “schedule”
– The associated process is called the “scheduler”



Implicit Events we’ve Seen
• Transitions

– Fixed rate (Poisson arrival)
– Timeout
– Condition
– Message transmission (schedules event for the 

receiver)

• Starting a model
• Stopping a model
• In this course, we term these implicit 

events because they are not reified as 
objects in the model

• To handle these events, code is inserted 
into certain handler areas for each of 
different sorts of classes



The Schedule

• At a given time, the schedule keeps track 
of a number of queued events

• Events may get added to the schedule 
(e.g. when we enter a new state)

• Events get deleted from the schedule
– When they fire off and are complete
– When another mutually exclusive event 

preempts them (e.g. a person dies before 
they recover from an infection)



History Information in Modeling
• Heterogeneity wrt individual history can be 

highly important for future health
– Whether vaccinated
– in utero exposure
– Degree of glycemic control over the past decade
– Exposure to adiposity
– Previous exposure to a pathogen

• Such information can provide the basis for 
delivering interventions and treatments

• Inability to match such info can greatly 
undercut model value

• In some areas of health, we have access to 
longitudinal data that provides information on 
individual historical trajectories.



Example of Additional Information 
from Longitudinal Data

• Consider trying to distinguish pairs of situations
• e.g.: Smoking 

– Situation 1: One set of people quit & stay quit as 
former smokers, another set remain as current smokers

– Situation 2: The entire set of people cycle through 
situations where they quit, relapse & repeat

• These two situations have very different health 
consequences

• We’d probably choose vary different sets of 
interventions for these two situations

• Similar examples are easy to imagine for obesity, 
STIs, TB, glycemic control & diabetes, etc.



Capturing History Information
• Individual based model

– Both discrete & continuous history information can be 
readily captured

• Categorical/discrete:  State (in statechart) or variable
• Continuous: Variable

– Readily able to capture records of trajectories

• Aggregate model
– Categorical/discrete:  Limited discrete history 

information can be captured by disaggregating stocks 
• Curse of dimensionality provides tight limits on # of aspects 

of history can be recorded

–  Continuous:  Almost always infeasible
– Very complex to provide distributions of trajectories 

(via convolution of potentially changing PSFs of stocks)



Longitudinal Fidelity: Aggregate Models
• An aggregate model provides an ongoing 

series of cross-sectional descriptions of 
system state
– In Calibration & validation, we can do rich 

comparison of these cross-sectional descriptions 
against available point or time-series data

– Because the model does not track individuals, we 
generally cannot explicitly extract model 
longitudinal trajectories from the model for 
comparison with empirical giving longitudinal 
trajectories



Longitudinal Fidelity:
 Individual-Based Models

• An individual-based model provides easily accessible 
cross-sectional and longitudinal descrip. of system 
state
– The system state at a particular moment in time is 

cross-sectional
– By following & recording the trajectories of particular 

individuals, we can obtain longitudinal description

• In Calibration & validation, we can do rich 
comparison of both longitudinal and cross-sectional 
descriptions against available point or time-series 
data
– It is in principle possible to have a model that accords with 

cross-sectional data, but which is at odds longitudinally



Stochastic Processes in 
AnyLogic

• In AnyLogic, ABM and Discrete Event Models 
(“Network-Based Modeling”) are typically 
stochastic
– Transitions between states
– Event firing
– Messages

• (Frequent) timing of message send
• Target of messages

– Duration of a procedure

• As a result, there will be variation in the 
results from simulation to simulation



Summarizing Variability
• To gain confidence in model results, 

typically need to run a “Monte Carlo” 
ensemble of realizations
– Deal with means, standard deviations, and 

empirical fractiles
– As is seen here, there are typically still broad 

regularities between most runs (e.g. rise & fall)

• Need to reason over a population of 
realizations ⇒ statistics are very valuable
– Fractile within which historic value falls
– Mean difference in results between 

interventions



Monte Carlo Methods in AnyLogic
• Monte Carlo methods draw repeated samples 

from distributions & stochastic processes of 
interest

• When running Monte Carlo method, we’d like 
to summarize the results of multiple runs

• One option would be to display each trajectory 
over time; downside: quickly gets messy

• AnyLogic’s solution
– Accumulate data regarding how many trajectories 

fall within given areas of value for a given interval 
of time using a “Histogram2D Data”

– Display the Histogram2D Chart



Results of Monte Carlo 
Simulation

Even without parameter variation, Substantial variability 
                      is still present!
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