Recall: Agent-Based Models

One or more populations composed of individual
agents, each associated with

Parameters - discrete (e.g., Gender, Ethnicity) or
continuous (e.g., birthweight, income)

State (continuous or discrete) e.g., age, smoking
status, networks, preferences

Rules for evolving state

Means of interaction with other agents via one or
more environments (e.g. spatial & topological
context)

Time horizon & characteristics
Initial state



Contrasting Organization in Aggregate
Stock-Flow & ABM

Aggregate Stock & flow models Agent-based modeling
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Contrasting Organization In Aggregate
Stock-Flow & ABM

Aggregate Stock & flow models Agent-based modeling

*Within unit (e.g. city) ‘Within unit (e.g. city)
Subdivided according to state and

U c Subdivided according to
characteristics (e.g. SES)

constitutive smaller actors (e.g.,

Each stock counts # people in individual people)

associated population group Each unit maintains its own state,
*State for different levels and attributes
other actors are found in stocks *The nested or networked
& flows at same “level” of the relations among actors mirror
model that in world

Summaries for entire pop. & If a city “contains” people, th




Emergent Behavior

“Whole is greater than the sum of the parts”,
“Surprise behavior”

Frequently observed in stock and flow models
as interaction between stocks & flows

In ABMs, we see this phenomena not only at
level of aggregate stocks & flows, but - most
notably — between agents

Patterns over time

Patterns over space

Patterns over networks



Emergent Behaviour & Modeling
Types

* Agent-based modeling particularly emphasizes multi-level
emergence — how distinctive patterns can emerge at different
levels of the system

— Ability to look at high-level emergence reflects the presence of
many individual agents within one model

* The emergent behaviours can change significantly with
changes Iin model structure&parameter values
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Emergent Aggregate & Spatial
Dynamics
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Early Origins of Modern ABM

 Modern Agent-Based Modeling reflects two
 Origins
* Theoretical bases

« Computer Science/Applied Mathematics/Physics: Von
Neumann's and Ulam's theory of automata (1940s)

* Interacting finite state automata

e Cellular automata

* Reproduction

* Theoretical&practical foundation in FSA/FSM formulaion
« Economics: Microsimulation

o Statistical formulation of transitions

 Sometimes framed as challenge to neoclassical
economics and rational actor theory

» Often less central focus on direct agent interactions

 These contributions are each associated with distinct
underlying theories, traditions



Additional Comments on ABM History

» Other notable influences:
» Axelrod's work on interacting prison's dilemma
* Los Alamos (CS/Physics)
» Schelling segregation model (1971)
 Conway's game of Life

 Computational Mathematical & Organization Theory
(OR/MS, SS, Mathematics)

e Lucas' Microfoundations
* Object-oriented programming



Agent-Based Models & Theory

* While ABM has roots in domains with deep theory (e.g.,
finite state automata, object orientation), it has hewed

pluralism and openness to evolving and diverse
formalisms

« Reflecting ABM's emphasis on decentralization&evolution,
It embraces community contributions of software & theory

- Open-source software has been fundamental to the
evolution of the field

« Particular ABMs may be associated with well-defined
theoretical underpinnings



Comments on Building Up an
Agent-Based Model



Model Specification

Stock & Flow Models

* Small modeling vocabulary

* Power lies in combination of a
few elements (stocks & flows)

* Analysis conducted
predominantly in terms of
elements of model vocabulary
(values of stocks & flows)

* Directly maps onto crisp
mathematical description
(Ordinary Differential
Equations)

Agent-Based Modeling

Large modeling vocabulary

Different subsets of
vocabulary used for different
models

Power In flexibility &
combination of elements &
algorithmic specification

Variety in analysis focus

Mathematical underpinnings
differ

In most cases, lacks
transparent mapping to
mathematical formulation



ABMs: Larger Model Vocabulary & Needs

Events
Multiple mechanisms for
describing dynamics

- State transition diagrams
Multiple types of transitions

- Stock and flow
- Custom update code

Inter-Agent communication
(sending & receiving)

Diverse types of agents
Data output mechanisms
Statistics

Subtyping
Mobility & movement
Graphical interfaces

Stochastics complicated

— Scenario result interpretation
— Calibration

- Sensitivity analysis
Synchronous &

asynchronous distinction,
concurrency

Spatial & topological
connectivity & patterning



Agent-Based Models. Skill Sets

Construction of ABMs have traditionally required
significant software engineering

In recent years, ABM platforms have included
Increasing support for declarative specification

- Such features greatly lower the programming
requirements

- Maintaining on-call computational consults
remains important



Agent-Based Systems

* Agent-based model characteristics

- One or more populations composed of individual
agents

Each agent is associated with some of the following

State (continuous or discrete e.g. age, health, smoking status,
networks, beliefs)

Parameters (e.g., Gender, genetic composition, preference fn.)

Rules for interaction (traditionally specified in general purpose
programming language)

Embedded in an environment (typically with localized
perception)
Communicate via messaging and/or flows

- Environment
* Emergent aggregate behavior



Agent-Based Models

One or more populations composed of individual
agents, each associated with

Parameters - discrete (e.g., Gender, Ethnicity) or
continuous (e.g., birthweight, income)

State (continuous or discrete) e.g., age, smoking
status, networks, preferences

Rules for evolving state

Means of interaction with other agents via one or
more environments (e.g. spatial & topological
context)

Time horizon & characteristics
Initial state



Agent-Based Models. Skill Sets

Construction of ABMs have traditionally required
significant software engineering

In recent years, ABM platforms have included
Increasing support for declarative specification

- Such features greatly lower the programming
requirements

- Maintaining on-call computational consults
remains important
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Agent-Based Models

One or more populations composed of individual
agents, each associated with

Parameters - discrete (e.g., Gender, Ethnicity) or
continuous (e.g., birthweight, income)

State (continuous or discrete) e.g., age, smoking
status, networks, preferences

Rules for evolving state

Means of interaction with other agents via one or
more environments (e.g. spatial & topological
context)

Time horizon & characteristics
Initial state
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Agent-Based Models

One or more populations composed of individual
agents, each associated with

Parameters - discrete (e.g., Gender, Ethnicity) or
continuous (e.g., birthweight, income)

State (continuous or discrete) e.g., age, smoking
status, networks, preferences

Rules for evolving state

Means of interaction with other agents via one or
more environments (e.g. spatial & topological
context)

Time horizon & characteristics
Initial state
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Agent-Based Models

One or more populations composed of individual
agents, each associated with

Parameters - discrete (e.g., Gender, Ethnicity) or
continuous (e.g., birthweight, income)

State (continuous or discrete) e.g., age, smoking
status, networks, preferences

Rules for evolving state

Means of interaction with other agents via one or
more environments (e.g. spatial & topological
context)

Time horizon & characteristics
Initial state



¥accinationDisparitiesd : MediumPopulation - AnyLogic Professional




Stochastics

In contrast to most system dynamics models,
ABMs are typically stochastic

To ensure model results are not merely flukes, a
model must be run many times

This adds substantially to the cost associated with
such models

This Is easily parallelizable

Stochastics as assets: Observing variability can
lend insights into the variability seen in
real-world data
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Incremental Model Development

Great advantages are conferred by building a
simulation model in a step-by-step fashion

With each iteration, the model is modified in
some small fashion

A new version of the model is “docked”
against older versions of the model

— Confirming identical behavior when the changes
are disabled

— Understanding behavior with the new feature
enabled

Frequently these incremental versions
— Can be demonstrated to system stakeholders

— Produce insight that inform the next step
undertaken



Benefits of Incremental
Development
Greater understanding of where model patterns
emerge & interactions
Much faster defect identification & diagnosis
Flexibility to change direction based on learning

Capacity to secure feedback from stakeholders
(e.g. observations of unexpected emergent
model patterns, prioritization of issues)

Greater clarity in prioritization
More effective time-boxing
Enhanced stakeholder confidence
Improved morale



Hands-On Components



Notable Themes
* Agent interactions

* Heterogeneity —
continuous & discrete

e Events
* Non-linearity
« ABM Structure

* Network & spatial
context

* Agent parameters and
state

» Specification of agent
evolution

Maintaining
longitudinal
(“biographical”)
iInformation

Scenarios for
Intervention

Reporting processes
& granularity

Emerging declarative
ABM specification
mechanisms

Stochastics



Avoiding a Common Mistake

 AnyLogic projects typically contain a
variety of “classes”

* The AnyLogic interface for accessing
these classes is deceptively similar

 The semantics of the model will typically
be very different depending on whether

you add a component to one class or
another

* Reflect on be very clear as to which class
you wish to add an element



Creating an Agent
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Adding a Parameter for pop
Size & Enforcing it
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Parameters: Static Quantities

Parameters normally
— Define constants that represent assumptions

— Serve as mechanism to communicate such
assumptions

In Java, such parameters can have many types
— Integer, Double precision value, boolean, etc.

For parameters in the Main class, we can override
the value of the parameters in an experiment

Presentation elements associated with an Agent
have special “Presentation” tab for their
parameters



Model-Wide Parameters
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* We can also associate parameters with the
“Main” class

— These parameters can be model-wide quantities
(e.qg. the size of the population, or the duration of
Infectiousness to assume for all agents)

— Values for these parameters are specified by
Experiments



Parameters and
Communication

 Beyond defining assumptions, parameters in
AnylLogic serve as mechanism to communicate
such assumptions

 This communication takes place from an enclosing
object at the point of creation of an enclosed object

* From an Experiment (scenario) to the single instance of
the Main class (as it is being created)

* From the single instance of the Main class to a particular
agent (as it is being created)

 From a collective agent (e.qg. City, Farm) to a particular
enclosed agent (Person, Horse) as that enclosed agent is
being created



Specifying a (Temporary)
Layout for Agents
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Layout Type

« Random: Uniformly distribute X and Y
position of nodes

* Arranged: Set node locations in a regular
fashion (normally in a 2D grid)

* Ring: Set node locations in periodically
spaced intervals around a ring shape

 Spring Mass: Adjust node locations such
that node locations that are most tightly
connected tend to be closer together
— (Sets location based on network!)

 User-Defined User can set location (e.g. In
initialization code)



Adding an Experiment
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Adding a Parameter
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Run the Model &

Ohserve the Ponulation
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Drill Down to Population Members
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The Assoclated Code
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Hands-On Components:
Heterogeneity



Elements of Individual

- Characteristics
* Example Discrete
- Ethnicity
- Gender

— Categorical infection status

* Continuous
- Age
- Elements of body composition
- Metabolic rate
— Past exposure to environmental factors
- Glycemic Level



Importance of Heterogeneity

 Heterogeneity often significantly impacts policy
effectiveness

— Policies preferentially affect certain subgroups

* Infection may be maintained within certain subgroups even though would
tend to go extinct with random mixing in the entire population

— Policies alter balance of heterogeneity in population

* Shifts in the underlying heterogeneity can change aggregate
population statistics

— Given a non-linear relationship, inaccurate to use the
mean as a proxy for whole distribution

 Assessing policy effectiveness often requires
representing heterogeneity

* Flexibility in representing heterogeneity is

hard to achieve in aggregate (coarse-grained)
models



Impacts of Heterogeneity
on Policy Effectiveness

Value of breast cancer detection (Park & Lees)
Impact of airbags on deaths (Shepherd&Zeckhauser)
Value of hernia operations (Neuhauser)

Impact of cardiovascular disease interventions
(Chiang)

Controlling blood pressure (Shepherd&Zeckhauser)

Effectiveness of mobile cardiac care unit
(Shepherd&Zeckhauser)

Value of breast cancer treatment (Fox)
Taeuber paradox (Keyfitz)



Heterogeneity & Equity
Considerations

* Failure to disaggregate (to represent
heterogeneity) can impose implicit value
judgements! e.q.

— Treating situation as net zero cost if

favouring group A while disadvantaging
group B



Challenges for Aggregate Model

Formulation: Heterogeneity
* Two aggregate means for representing

heterogeneity are limited:

—Attribute-based disaggregation (e.qg. via

subscripts)

* Need n dimensions to capture individual state with
respect to n factors of heterogeneity

* Poor (geometric) scaling to large #
dimensions

e Global structural, equation changes required to
iIncorporate new heterogeneity dimensions

* Awkwardness in stratifying

—Co-flows
* Efficient and precise but highly specialized



Fragility of Multi-Dimensional
Subscripting
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Combinatorial Subscripting
Multi-Dimensional Progression
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Parallel
Transitions




I Nephrnpath}'ngr&csiT CoronaryHeartDisease I RetinopathyProgression

Parallel State Transition
Nianrams

“® Diabetes Progression
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ANEEy
DiabetesWithTre
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tmentByDietAndBerdse

tmentBy OralMedication

tmentBylnsulin

A person is in some particular
state with respect to each of
these (condition specific)
state transition diagrams

This requires representing
combinations of possibilities
in an aggregate model



Capturing Heterogeneity in
Individual-Based vs. Aggregate Models

 Consider the need to keeping track a new
piece of information for each person (with d
possible values)
— E.qg. age, sex, ethnicity, education level, strain
type, city of residence, etc.
 Aggregate Model: Add a subscript

— This multiplies the model size (hnumber of state
variables into which we divide individuals) by d!

* Individual based model: Add field
(variable/param)

— If model already has c fields, this will increase
model size by a fraction 1/c.



Desired: Flexibility in Representing
Heterogeneity

* |t is desirable to capture heterogeneity in a
flexible fashion.

* More judicious exploration of whether to
represent heterogeneity

— Examine whether some observed covariation
might simply be due to colinearity

* Represent added heterogenity dimensions with no
causal interaction, see If model covariations matches
what is seen in external world

— e.q. represent age in a TB model, see if rates of LTBI by age in
the model match age-specific infection rate observations

—Try adding in new dimension of heterogeneity &
effects, and see if has impact that is both
substantive & plausible



Hands-On Components:
Spatial Embedding



Linking Location for each Agent

to their Income
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Income Segregation

Income and Crowding Based Communicable Disease Disparities : Simulation - AnyLogic Professional [EVALUATION USE ONLY]
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A Larger Population

Income and Crowding Based Communicable Disease Disparities_YT : Baseline - AnyLogic Professional [EVALUATION USE ONLY]
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2D Spatial Embeddlng Two Options

e Continuous embedding (e.g. Wandering
elephants, our built-up model)

— No physical exclusion: Agents are assumed to
be small compared to landscape scale, and
exhibit arbitrary spatial density without
interfering

— We have seen this much with distributing agents
Initially around the space, adding agents in
e Discrete cells (e.g. The Game of Life,
Agent-based predator prey, Schelling
Segregation)
— Divided into “Columns” and “Rows”

— Physical exclusion: Only one agent in a cell at a
time



Hands-On Components:
Network Context



Networks & Spatial Layouts

 Distinct node attributes: Location &
connections

— Spatial layouts determine where nodes appear in
space (and on the screen!)

— Network type determines who is connected to
whom
— For the most part, these characteristics are
determined independently
* Network topologies (connectedness) can be
defined either alternative to or in addition to

spatial layouts
— Agents will have spatial locations in either case



Common Supported Networks

Highly localized
- Distance based (spatial locality)

- Ring lattice (network locality)
Poisson Random

- Disordered
- Global connections - no sense of locality

Small world : Mix of global (poisson random)
and ring lattice

Scale free: Power-law distribution for # of
connections (“long tail” to the right)
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Setting each Person to be
Visually Connected to Network
Neighbors

@l Person 2 | @&l Main @l Baseline = O || E properties &2 YT

«* connections - Link to agents
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Examining the Neighbour of a
Particular Person

Income and Crowding Based Communicable Disease Disparities_YT : Baseline - AnyLogic Professional [EVALUATION USE ONLY]

|

Q,E'Q;in

B ox1 ||(W

.‘;a. connections ) T
N3 1: [root.population[2 4], root.population[50], ...]

' connections

31
0:
1Lg
ir:
Cj{fs:
4:
5
6:
7/
8:
9:

connections:

root.population[24
root.population[50
root.population[10
root.population[13
root.population[20
root.population[21
root.population[24
root.population[33
root.population[ 38
root.population[42

O

L

X

= |population[1]

v

1

A 1

v

v

¢ AnyLogi



Displaying the Network Structure

Income and Crowding Based Communicable Disease Disparities_YT : Baseline — AnyLogic Professional [EVALUATION USE ONLY]
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Slide Template



The Locus of Control:
Environment

 The Anylogic Environment sets the
parameters for the nature of the 2D
landscape
— Width
— Breadth
— Continuous vs. Discrete

— Character of discrete neighbourhoods
(cardinal directions vs. Euclidian
{ N,NE,E,SE,S5,SW,W,NW}



Recording of Results

* A frequent modeler need is to record some
components of model state over time
— State variables (e.g. stocks)
— States of agents
— Summaries of model state
— We informally term this a “trajectory file”

e Trajectory recording is supported in higher
AnylLogic versions

* All versions of AnyLogic allow for

— Definition of DataSets that record recent values of
Darameters

— Statistics summarizing model state
— Reporting on values of data sets as a graph or table




Hands-On Components:
Discrete Intra-Agent Interaction



Adding Statechart Elements
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Starting the Statechart
Construction

AnylLogic Professional [EVALUATION USE ONLY]
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Specifying the States
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Specifying an Initial Transition
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Running the Model
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Drilling down to Population
Members
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Setting up a Variable to Specify
Agent Color over Time

AnylLogic Professional [EVALUATION USE ONLY]
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Putting in Place Logic to Make the
Oval Use the Specified Color
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Hands-On Components:
Declarative Specification of Appearance



Incorporating Logic to Update
Agent Colors as Agent Evolves

EIEaselme = 0O || B pro = Y 5L

- Susceptible - State

Mame: Susceptible v Show name
Ign
= Fill col Default
Entry act 1 g
“® infectionStatechart
Exit act
{} b Descri ption
E Susceptible E
infecton




Result of Running the Model
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Discrete Agent Dynamics

Frequently we can represent agent behaviour

using as transitioning among a set of mutually
exclusive and collectively exhaustive states in
a “state chart”

For a given simple statechart, the agent is in
exactly one state at a time

Fixed transitions between states define
possible evolution

The transitions between states occur
iInstantaneously, based on some condition



Comparison with Aggregate Stock &
Flows

* As for aggregate stocks & flow,
Individuals’ states are discrete

* Unlike aggregate stocks & flows

— One state within a given statechart is active
at a time

— For parallel flows (e.g. comorbidities), there is
no need for considering all combinations of
the possible states

— We can keep track of how long an individual is
In a given state & adjust the transition rate
accordingly
Key result: Statecharts are modular: You can add a
new statechart without modifv all the existinag



Modularity Disparities

* A consequence of the previous points is that there
are vastly different implications for representing new
taxonomies in ABM & aggregate models

* Aggregate model:

- Require representing all state combinations

- Adding a new division (e.g., to represent an
additional comorbidity) entails updating the
entire structure

 Individual based model

- Each statechart is largely orthogonal

- Statecharts are modular: You can add a new
statechart without modify all the existing
statecharts



Aggregate Non-Solution:
_ Maintain Marginals 5
 Maintain a total count of peopl& with each condition
(the marginals)
* Maintain some prevalence information on occurrence
of co-morbidities

* Problem: This doesn't capture the dynamics of
co-morbidities

* Prevalence will change in

-Baseline
-Induced by interventions

* Because of differential mortality, intervention
and other effects, anticipating how the
prevalence of co-morbidities will change
requires simulating them explicitly



Modularity Disparities: Aggregate Model
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Modularity Disparities: Aggregate Model
Adding a First Co-Morbid Condition
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Modularity Disparities: Aggregate Model
Adding a Second Co-Morbid Condition

Each new co-morbidity

requires changes acrgss v -
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Individual Level: Parallel State
Trancitinn ﬁiagrams
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Parallel
Transitions




Discrete Agent Dynamics: Transitions

 Many transition conditions are possible

Timeout: Spending some period of time in the state

Fixed rate: Leave state with some fixed change per unit time

— This is similar to “first order interarrival time”, and is conceptually
linked to the operation of first-order delays in stock & flow diagrams

Variable rate: If desired, we can change the rate over time -

but Anylogic only “notices” changes when eg agent re-enters
the state

Message received: We can transition when a message (any
message or particular type of message) is received
Predicate: Only transition when condition becomes true
Arrival: Reach a location

— These transitions can be conditionally “routed” via
branches

Conditions can determine to what destination state a
particular transition will travel



Fixed Rates: Transition Hazards

 With “fixed rates”, we are specifying rates of
transitions

« Because we are dealing with the chance that
each individual transitions, we don’t need to
multiply by the number of people at risk
— Here, there is just 1 person at risk!

 As in Compartment models, these rates can
change over time, but the statechart needs to
be “made aware” of these changes (see later)

— Leave & go back into current state (circular
transition)

—Trigger “change” event in Agent



Transition Type: Fixed Residence
Time (Timeout)
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Example of Processes
Associated with Fixed Timeouts

* Aging
* Tightly defined time constants associated
with natural history

— While these may be described as associated
with a broad distribution (e.g. with a 1st or
2nd order delay), much of that variability
may be due to heterogeneity

— For a given person, these may be quite
specific in duration [J Can capture through a
timeout



Example Conditional
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Special Elements: Self-Transition
(Use if Wish To Trigger an Action w/o Leaving State)
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Special Elements: Self-Transition
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rates)
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Hands-On Components:
Discrete Inter-Agent Interaction



Adding a “Self Transition” to
Periodically Undertake an Action
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Discrete Agent Coupling via Messages

« Within AnyLogic, agents can be coupled by
either discrete (instantaneous and
individuated) or continuous (ongoing and
gradual) coupling

 The preferred mechanism for discrete
coupling Is messages sent between agents

— Many types of messages payloads are possible

— An agent can send a given message to one or
more agents

— Frequently messages are sent locally to neighbors
within the environment

 Neighboring nodes on the network
 Nearby neighbors in space



Messages & Statecharts

« Messages may be handled in many ways

* One of the most common ways in which
messages are handled is by statecharts

— A transition can be triggered (“guarded” or gated)
by a message

— A transition may be associated with an action that
fires off a message to other agents (or to other
statecharts within the agent)



Message Sending

* Messages may be sent to either
— A particular, explicitly specified agent
— An implicitly specified class of agents
* Neighboring agents in the environment topology
« Random agents
* All agents

 Any connected agents
e All connected agents

* Mechanism:
—send(Message, DestinationObject)
—send(Message, AgentClassid)



Synchronous vs. Asynchronous
Delivery

* Messages may be sent in two ways

—Via send: Asynchronous (scheduled)
* Delivery occurs sometime after call to send
* This is like sending a text message - it can be
read later
—Via deliver: Synchronous (immediately
called)

* Risks infinite loops in delivery (if destination also
calls deliver in the reverse direction)

* This is like calling the other person’s phone - you
demand their attention immediately



Message Payloads
Sometimes just the fact that a message has

been sent provides us with all of the
information we need

Sometimes just distinguishing different
message types is sufficient

We will sometimes send messages with
payloads of data that provide extra
information, e.q.

—The agent that sent the message (eg that is
infecting us)

— Particular parameters

Can send messages different payload types

— Boolean/int/double/String/Other (can specify class
type)



Hands-On Components:
Events



Events & Scheduling In
AnyLoqgic

« Reminder: In simulating stock & flow models,
time advances in steps
— Euler integration: Fixed-sized Steps
— Runga-Kutta: Fixed or variable sized steps
— For each timestep, we compute the flows & update
the stocks
 AnyLogic jumps from “event” to “event”

— The data structure that keeps track of such events
Is called the “schedule”

— The associated process is called the “scheduler”



Implicit Events we’'ve Seen

Transitions

— Fixed rate (Poisson arrival)
— Timeout

— Condition

— Message transmission (schedules event for the
receiver)

Starting a model
Stopping a model

In this course, we term these implicit
events because they are not reified as
objects in the model

To handle these events, code is inserted
INto certain handler areas for each of
different sorts of classes



The Schedule

* At a given time, the schedule keeps track
of a number of queued events

 Events may get added to the schedule
(e.g. when we enter a new state)

* Events get deleted from the schedule
— When they fire off and are complete

— When another mutually exclusive event
preempts them (e.qg. a person dies before
they recover from an infection)



Historxelnformgi’\c/ilgt%li Modelipeg

Heterogeneity wrt In Istory can
highly important for future health

— Whether vaccinated

—In utero exposure

— Degree of glycemic control over the past decade
— Exposure to adiposity

— Previous exposure to a pathogen

Such information can provide the basis for
delivering interventions and treatments

Inability to match such info can greatly
undercut model value

In some areas of health, we have access to
longitudinal data that provides information on
iIndividual historical trajectories.



Example of Additional Information
from Longitudinal Data

Consider trying to distinguish pairs of situations

e.g.: Smoking

— Situation 1: One set of people quit & stay quit as
former smokers, another set remain as current smokers

— Situation 2: The entire set of people cycle through
situations where they quit, relapse & repeat

These two situations have very different health
consequences

We’'d probably choose vary different sets of
Interventions for these two situations

Similar examples are easy to imagine for obesity,
STls, TB, glycemic control & diabetes, etc.



Capturing History Information

 Individual based model

— Both discrete & continuous history information can be
readily captured
» Categorical/discrete: State (in statechart) or variable
* Continuous: Variable

— Readily able to capture records of trajectories

 Aggregate model

— Categorical/discrete: Limited discrete history
Information can be captured by disaggregating stocks

e Curse of dimensionality provides tight limits on # of aspects
of history can be recorded

— Continuous: Almost always infeasible

—Very complex to provide distributions of trajectories
(via convolution of potentially changing PSFs of stocks)



Longitudinal Fidelity: Aggregate Models

An aggregate model provides an ongoing
series of cross-sectional descriptions of
system state

—In Calibration & validation, we can do rich

comparison of these cross-sectional descriptions
against available point or time-series data

— Because the model does not track individuals, we
generally cannot explicitly extract model
longitudinal trajectories from the model for
comparison with empirical giving longitudinal
trajectories



Longitudinal Fidelity:
Individual-Based Models

* An individual-based model provides easily accessible
cross-sectional and longitudinal descrip. of system
state

— The system state at a particular moment in time is
cross-sectional

— By following & recording the trajectories of particular
individuals, we can obtain longitudinal description
* In Calibration & validation, we can do rich
comparison of both longitudinal and cross-sectional
descriptions against available point or time-series
data

— It is in principle possible to have a model that accords with
cross-sectional data, but which is at odds longitudinally



Stochastic Processes In
AnyLoqgic

* In AnyLogic, ABM and Discrete Event Models
(“Network-Based Modeling”) are typically
stochastic
— Transitions between states
— Event firing
— Messages

* (Frequent) timing of message send
* Target of messages

— Duration of a procedure

e As a result, there will be variation in the
results from simulation to simulation



Summarizing Variability

* To gain confidence in model results,
typically need to run a “Monte Carlo”
ensemble of realizations

— Deal with means, standard deviations, and
empirical fractiles

— As Is seen here, there are typically still broad
regularities between most runs (e.q. rise & fall)

 Need to reason over a population of
realizations OO statistics are very valuable
— Fractile within which historic value falls

— Mean difference in results between
Interventions



Monte Carlo Methods in AnyLogic

* Monte Carlo methods draw repeated samples
from distributions & stochastic processes of
interest

* When running Monte Carlo method, we’d like
to summarize the results of multiple runs

* One option would be to display each trajectory
over time; downside: quickly gets messy
 AnyLogic’s solution
— Accumulate data regarding how many trajectories

fall within given areas of value for a given interval
of time using a “Histogram2D Data”

— Display the Histogram2D Chart



Results of Monte Carlo
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This experiment perfarms multiple (100) runs ofthe Agent Based SIR Model with SAME (default) parameter values.

As the model is essentially stochastic, each run resulls in a different output. In the chart above we display the summary of
simulation runs (namely, the dynamics ofthe Infectious population size) in the farm of the 2D histogram. The colar intensity
of a chart spot corresponds to the size of the corresponding 20 histogram bin.
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Agent-Based Modeling Workshop:

Themes for Weaving into the Interactive Example

Nathaniel Osgood

Using Modeling to Prepare for
Changing Healthcare Needs
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