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Distinctions
• Inherent, e.g.

– Qualitative vs. Quantitative
– Static vs. Dynamic
– Stochastic vs. Deterministic
– Capacity to understand single scenario vs. range of 

scenarios
– Magnitude of computational resources required

• Interactive or not

– Under vs. over-determined calibration
– Ability to calibrate to/make behaviour depend on 

individual history

• Important software skills mediation
– Required level of software development 

sophistication



Dynamic Models for Health 

• Classic: Aggregate Models
– Differential equations
– Population classified into 2 or more state 

variables according to attributes
– |State Variables|,|Parameters| << 

|Population|

• Recent:  Individual-Based Models
– Governing equations approach varies
– Each individual evolves 
– |State Variables|,|Parameters| ∝ |Population|



Contrasting Model 
Granularity
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Granularity Selection: Problem 
Specific• Selection of granularity is a function of 

question that are asking – not of the “true 
nature of the system”
– Modeling for learning/qualitative insight (requires 

“caricature model”)  vs.
– Modeling to quantitatively predict (requires detailed 

characterization)

• Quanta of most obvious system components 
may not align with needs for insight
– May gain benefits from higher-level representation

• Many high-level qualitative behaviors of complex systems 
can be explained with very simple models

• Often gain greater insight from simpler model:  C.f. Gas 
laws vs. lattice gas model

– May wish to seek lower level model
• Small infection spread model :  Characterization at level of 

immune response rather than monolithic person



Myth of Individual-Based Models as 
“Modeling from the Bottom Up”

• A single person is a natural locus of 
description
– Presents for care
– Lives
– Dies
– Coupled internal systems

• But the world has no natural “bottom”
– It is frequently desirable to include within a person 

a great deal of “within the skin” detail

• The issues of model depth & breath are just as 
pressing in individual-based models as in 
aggregate modeling



Contrasting Benefits

• Frequently, easier
– Construction
– Calibration
– Parameterization
– Formal analysis (Control theoretic 

& Eigenspace techniques)
– Understanding

• Performance
– Lower baseline cost
– Population size invariance

• Less pronounced stochastics
– Less frequent need for Monte 

Carlo ensembles

• Quicker construction, 
runtime ⇒More time for 
understanding, refinement

• Better fidelity to many 
dynamics

• Stronger support for 
highly targeted policy 
planning

• Ability to calibrate to & 
validate off of longitudinal 
data

• Greater heterogeneity 
flexibility

• Better for examining 
finer-grained 
consequences
– e.g. transfer effects w/i pop.
– Network spread

• Simpler description of 
some causal mechanisms

Aggregate Models Individual-Based Models



Key Needs Motivating 
Individual-Based Modeling

• Need to calibrate against information on agent history
• Need to capture progression of agents along multiple pathways 

(e.g. co-morbidities)
• Wish to characterize learning by and/or memory of agents based 

on experience, or strong history dependence in agents
• Need to capture distinct localized perception among agents
• Seeking to intervene at points in, change behavior on, explain 

phenomena over or explain dynamics across networks
• Seek distinct interventions for many heterogenous categories
• Need to capture impact of intervention across many categories
• When it is much simpler to describe behavior at indiv. level
• Seek flexibility in exploring different heterogeneity dimensions
• Needs of stakeholders to engage with individual-based models
• Want to describe behaviour at multiple scales
• We care about stochastics/uncertainty caused by indiv variabilit



Key Needs Motivating 
Aggregate-Based Modeling

• Need to execute quickly (e.g. for user interaction)
• Understand/describe system behaviour across all 

possible values for parameters
– Seeking to mathematically analyze the model (e.g. to 

determine location or stability of equilibria) for insight
– To determine shape of all possible trajectories

• Want to use mathematical tools (e.g. control theory )
to identify high-leverage parameters, optimal policies

• Need to extensively calibrate to much historic data
• Desire of stakeholders to work at higher level
• Behavior for different subgroups differs only in degree
• No recourse to software engineering knowledge
• Lack of detailed knowledge of network structure/

individual-level behaviour/Individual-level data



Individual Descriptions are Sometimes 
Simpler

• Understanding of individual behavior 
sometimes exceeds that of collective 
behavior
– Response to locally visible incentives
– Company’s response to competition
– Young person’s response to peer pressure
– Individual’s response to scarcity of good

• Sometimes it is very difficult to derive a 
priori the aggregate dynamics resulting 
from individual behavior

• Individual model can be simpler, more 
transparent



Aggregate Descriptions are Sometimes 
Simpler

• Aggregate descriptions frequently allow us to 
abstract away from myriad lower-level 
hypotheses
– May afford us an easier mode of description without 

the need to explicitly posit involved lower-level 
hypotheses

– Can be readily formulated from partial data & applied 
globally

• Consider
– Using a mixing matrix computed from partial mixing 

data
– Formulating population-wide 

• Hypothesized contact networks
• Mobility patterns driving contact



Some Uses of Formal Approaches

• Explaining observed behavior patterns
• Identifying possible behavior modes over a 

wide variety of possible scenarios (e.g. via 
eigenspace & phase plane analysis)

• Identifying how behavior depends on 
parameters (stability, location of equilibria)

• Creating “self-correcting” models (via 
control theory)
– Individual-based models are typically not 

identifiable

• Formal calibration methods



Example Aggregate Model 
Structure
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Mathematical Notation
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Model Mathematical 
Analysis

System Linearization (Jacobian)

Fixed-Point Criteria

Eigenvalues (e.g. for stability analysis around fixed-point)

State space diagram (reasoning about
many scenarios at once)

ˆ 0

ˆ 0

0

I
S c S R

N

I I
I c S

IN
h

I
R R

I
h

β δ

β
µ τ

δ
µ τ

 = − + = ÷ 
 = − = ÷  +

= − =
+

&

&

&



Feedbacks Driving Infectious Disease 
Dynamics
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Example Dynamics of SIR Model (No Births 
or Deaths)
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Shifting Feedback 
Dominance
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Fidelity to Dynamics

• Adequate characterization of system’s 
causal processes may require fine-grain 
representation
– Rich heterogeneity
– Learning and adaptation
– Response to local incentives
– Memoryful processes
– Behavior over persistent networks 

• Aggregate behavior is not necessarily the 
same as |Population|*(Behavior of 
“average” individual)

• May be able to calibrate an aggregate 
model to results of individual-level model 
post hoc



Example of Concern: History 
Information

• Heterogeneity with respect to individual 
history can be highly important for future 
health
– Whether vaccinated
– in utero exposure
– Degree of glycemic control over the past 

decade
– Exposure to adiposity
– Previous exposure to a pathogen

• In some areas of health, we have access 
to longitudinal data that provides 
information on individual historical 
trajectories.



Capturing History 
Information• Individual based model

– Both discrete & continuous history information can be 
readily captured

• Categorical/discrete:  State (in statechart) or variable
• Continuous: Variable

– Readily able to capture records of trajectories

• Aggregate model
– Categorical/discrete:  Limited discrete history 

information can be captured by disaggregating stocks 
• Curse of dimensionality provides tight limits on # of aspects 

of history can be recorded

–  Continuous:  Almost always infeasible
– Very complex to provide distributions of trajectories 

(via convolution of potentially changing PSFs of stocks)



Longitudinal Fidelity: Aggregate Models
• An aggregate model provides an ongoing 

series of cross-sectional descriptions of 
system state
– In Calibration & validation, we can do rich 

comparison of these cross-sectional 
descriptions against available point or 
time-series data

– Because the model does not track 
individuals, we generally cannot explicitly 
extract model longitudinal trajectories from 
the model for comparison with empirical 
giving longitudinal trajectories



Longitudinal Fidelity:
 Individual-Based Models

• An individual-based model provides easily accessible 
cross-sectional and longitudinal descrip. of system 
state
– The system state at a particular moment in time is 

cross-sectional
– By following & recording the trajectories of particular 

individuals, we can obtain longitudinal description

• In Calibration & validation, we can do rich 
comparison of both longitudinal and cross-sectional 
descriptions against available point or time-series 
data
– It is in principle possible to have a model that accords with 

cross-sectional data, but which is at odds longitudinally



Comparisons of Model & History that are 
Difficult in an Aggregate Model

• Proportions of people with certain history 
characteristics (e.g. fraction of women who 
develop T2DM who have had 2 or more bouts 
of gestational diabetes, those with a certain 
duration of time separating TB infection sand 
active TB)
– Can be very valuable for calibration
– This is critical for assessing model accord with 

observed effect size (Relative Risk/Odds ratio) 

• Model vs. historic trajectories (e.g. for timing of 
some transitions) for people with certain 
history characteristics



Example of Additional Information 
from Longitudinal Data

• Consider trying to distinguish pairs of situations
• e.g.: Smoking 

– Situation 1: One set of people quit & stay quit as 
former smokers, another set remain as current smokers

– Situation 2: The entire set of people cycle through 
situations where they quit, relapse & repeat

• These two situations have very different health 
consequences

• We’d probably choose vary different sets of 
interventions for these two situations

• Similar examples are easy to imagine for obesity, 
STIs, TB, glycemic control & diabetes, etc.



Trajectories Summary
• If any of the following are true….

– You have significant longitudinal information you’d strongly 
like the model to match

– You have good reason to think that trajectory history has 
important consequences for health

– You seek to examine the effect of policies that make use of 
information on individual history (e.g. # previous treatments)

• Then you should strongly consider building a model that 
captures this history information
– By disaggregating stocks, you can capture limited discrete 

history information in an aggregate model (e.g. whether a 
person was exposed in utero, Time Since Quit for FS, whether 
a woman has had a history of gestational diabetes) 

– There is significantly greater flexibility for collecting 
continuous or discrete history information for guiding 
individual dynamics & for calibration/validation comparison to 
historic longitudinal data



Importance of Heterogeneity

• Heterogeneity often significantly impacts 
policy effectiveness
– Policies preferentially affect certain subgroups

• Infection may be maintained within certain subgroups even 
though would tend to go extinct with random mixing in the entire 
population

– Policies alter balance of heterogeneity in population
• Shifts in the underlying heterogeneity can change 

aggregate population statistics

– Given a non-linear relationship, inaccurate to use 
the mean as a proxy for whole distribution

• Assessing policy effectiveness often 
requires representing heterogeneity

• Flexibility in representing heterogeneity 
is hard to achieve in aggregate 
(coarse-grained) models



Impacts of Heterogeneity 
on Policy Effectiveness

• Value of breast cancer detection (Park & Lees)
• Impact of airbags on deaths 

(Shepherd&Zeckhauser)
• Value of hernia operations (Neuhauser)
• Impact of cardiovascular disease interventions 

(Chiang)
• Controlling blood pressure 

(Shepherd&Zeckhauser)
• Effectiveness of mobile cardiac care unit 

(Shepherd&Zeckhauser)
• Value of breast cancer treatment (Fox)
• Taeuber paradox (Keyfitz)



Heterogeneity & Equity 
Considerations

• Failure to disaggregate (to represent 
heterogeneity) can impose implicit 
value judgements! e.g. 
– Treating situation as net zero cost if 

favouring group A while disadvantaging 
group B



Slides With Elements Adapted from External 
Source 

Redacted from Public PDF for Copyright Reasons



Importance of Core Groups
• Someone with high # of partners is both

– More likely to be infected by one of the partners
• Connect to lots of partners
• More likely than the average individual to be connected with 

another high-contact person (in turn more likely to be connected)

– Likely to pass on the infection more susceptible persons

• Often high-contact individuals connect in networks
• We may see very different infection rates in high 

contact-rate individuals 
– Core groups may be the key factor sustaining the infection

• Via targeted interventions on high contact people, 
may be able to achieve great “bang for the buck”

• Because of all of these considerations, we often 
seek to explicitly represent & reason about 
interventions targeting these individuals & their 
networks



Example of Network Clustering



Frequent Heterogeneity 
Concerns

• No clear boundaries at which to 
divide people up into discrete 
categories

• Many dimensions of heterogeneity 
simultaneously
• Capturing state with respect n factors requires 

n dimensions of heterogeneity!

• Need to consider progression along 
many dimensions simultaneously



Challenges for Aggregate Model 
Formulation: Heterogeneity
• Two aggregate means for 

representing heterogeneity are 
limited:
–Attribute-based disaggregation (e.g. 

via subscripts)
• Need n dimensions to capture individual state 

with respect to n factors of heterogeneity

• Poor (geometric) scaling to large # 
dimensions

• Global structural, equation changes 
required to incorporate new 
heterogeneity dimensions

• Awkwardness in stratifying

–Co-flows
• Efficient and precise but highly 

specialized



Fragility of Multi-Dimensional 
Subscripting



Combinatorial Subscripting: 
Multi-Dimensional Progression



Parallel
 Transitions



Parallel State Transition 
Diagrams

Department of Computer 
Science

A person is in some 
particular state with 
respect to each of these 
(condition specific) state 
transition diagrams

This requires representing 
combinations of 
possibilities in an 
aggregate model 



Capturing Heterogeneity in 
Individual-Based vs. Aggregate Models

• Consider the need to keeping track a new 
piece of information for each person (with 
d possible values) 
– E.g. age, sex, ethnicity, education level, 

strain type, city of residence, etc.

• Aggregate Model: Add a subscript
– This multiplies the model size (number of 

state variables into which we divide 
individuals) by d!

• Individual based model: Add field 
(variable/param)
– If model already has c fields, this will increase 

model size by a fraction 1/c.



Desired: Flexibility in Representing 
Heterogeneity 

• It is desirable to capture heterogeneity in a 
flexible fashion.

• More judicious exploration of whether to 
represent heterogeneity
– Examine whether some observed covariation 

might simply be due to colinearity 
• Represent added heterogenity dimensions with no 

causal interaction, see if model covariations matches 
what is seen in external world

– e.g. represent age in a TB model, see if rates of LTBI by age  in 
the model match age-specific infection rate observations 

– Try adding in new dimension of heterogeneity & 
effects, and see if has impact that is both 
substantive & plausible



Challenges for Model Formulation: 
Persistent Interaction

• Network topologies can affect 
qualitative behavior

• Aggregate representations of network 
structure are expensive and awkward

• IBM permit expressive, efficient 
characterization of both dense & 
sparse networks

• While percolation over many topologies 
can be simulated in aggregate models, 
parameter calibration often requires 
finer-grained simulation



Identifying Bridging 
Individuals

• Preliminary 
case contact 
network

• Restricted to 

nodes of 
degree 2+

• Data 
analysis & 
image: A. 
Al-Azem



Network Spread of Obesity

Department of Computer 
Science (Christakis & Fowler, NEJM)



TB Infection and Contact 
Network



Multi-scale Phenomena

• Frequently we are concerned about 
phenomena on a variety of scales
– Aggregate societal & policy level
– Institutional level
– Individual level
– Intra-institutional level





Network Medicine — 
From Obesity to the 
“Diseasome”
Albert-László Barabási, Ph.D.



Department of Computer 
Science Homer et al 2006 



Finer Grained Policy 
Planning
• In the presence of networks or 

non-well-mixed populations, big 
difference in effects of targeted 
interventions 

• e.g.
– Targeted intervention within scale-free 

network
– Impact of incentives on competition and 

cooperation
– Impact of road structure on traffic jams



Stochastics

• Aggregate models are most 
commonly deterministic
– There are important exceptions – models 

with stochastic flows

• Frequently, capturing the stochastics 
is advantageous
– Compare degree of variability to that 

seen in historic empirical observations
– See degree of spread in policy results



Parameterization & 
Calibration

• Individual-based models have many 
parameters
– Estimating all of the parameters can require 

much effort
– Calibration generally underdetermined (large 

# of possible sets of parameter values that 
could calibrate well)

– May need to make simplifying assumptions

• Pronounced individual-level stochastics 
frequently require Monte-Carlo calibration



Individual-Based Model Performance 
Scaling
• Performance varies with population size

– Large populations impose high 
computational resource demands

– Scaling can be superlinear (e.g. O(n2) 
connections to consider)

– This can frequently lead to simulations 
taking minutes at the least, commonly 
hours or even days

• Desire to characterize stochastic nature 
of individual-level behavior typically 
requires Monte Carlo approaches
– This can lead to days or weeks to complete



Memoryless vs. Memoryful 
Processes
• ODE models can adequately capture 

only memoryless transition processes 
out of a stock
– Stocks treated as “well-mixed”: Transition 

probability does not depend on residence 
time

– Memoryful processes can be 
approximated, but requires changing 
model structure to reflect a simple 
functional relationship (e.g. nth order 
delays)

• IBM can record residence time in state 
& allow probability of transitions to 
depend on this



Individual vs. Aggregate Models: 
Necessary Tradeoffs
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The (Current) Package Deal
• ABM (AnyLogic)

– Supports 
individual-based or 
aggregate

– Trajectory files have  
limited support

– Both discrete & 
continuous rules & 
states

– Primarily imperative 
specification

– Algorithmic 
(imperative)

– Little/No explicit 
mathematical  
semantics

– Modularity mechanisms
– No metadata

• Traditional system 
dynamics packages
– Supports individual-based 

or aggregate 
– Trajectory files well 

supported
– Poor discrete rule support
– Declarative specification
– Equational notation & 

reasoning
– Explicit mathematical 

semantics
– Monolithic
– Limited metadata (unit 

checks)



Specifications: How vs. 
What
• Post-dynamo system dynamics 

package uniformly support declarative 
specifications
– User is shielded from many “how” 

mechanisms
• Ordering of equation calculation
• Temporary storage
• Timestep-to-timestep iteration

• Agent-based packages traditionally 
focused on “how”
– Exceptions: AnyLogic (substantial 

declarative mechanisms), SDML 
(rule-based reasoning)

– Imperative code dominates



Implications
Specifications: How vs. What

• Declarative model specifications 
generally facilitate
– Initial specification
– Transparency
– Communication
– Easier modification
– Reasoning about
– Machine performance optimization

• Cost:  Less flexible if outside of 
normally supported features



Equational vs. 
Imperative Specification

• This issue is related to – but distinct from – 
the “what vs. how” issue
– Somewhat less fundamental in implications
– Equation-based specifications will generally be 

declarative
– Algorithmic specifications can be either 

declarative or non-declarative
• Functional languages overlap the “what” and “how” 

– More transparent: Supporting equational reasoning

• Computationally equivalent
• Algorithmic expressiveness higher for some 

complex rules



Explicit vs. 
Implicit Mathematical Semantics

• All specifications can be formalized mathematically 
(e.g. language semantics)

• Only some frameworks are explicitly specified in 
mathematical terms
– Traditional system dynamics is explicit
– Agent-based packages typically have incomplete (or no) 

explicit math. formulation
• Imperative code (e.g. Java, Objective C, C++, stateful LISP etc.) 

rule out equational reasoning

• Equational algorithmic mathematical frameworks 
possible

• Subissue:  Choice of mathematical framework (ODE, 
PDE, etc.)
– NB:  individual-level semantics will generally include discrete 

components that are represented continuously in agg. models



Implications
Explicit Mathematical Specification

• Explicit mathematical formulation 
helps
– Transparency & understandability
– Formal analyses (e.g. linearization)

• Aids in formal analysis of behavior, policy 
effectiveness

– Equilibration (and sometimes calibration)
– Building confidence in model realization
– Generalize results
– By Permitting translation to closed-form 

analysis



Means of 
Abstraction/Decomposition
• Modeling frameworks use different 

means of abstraction
– Most: Object-oriented class hierarchies
– Matlab:  Procedural function hierarchies
– Most SD packages do not support model 

modularity



Implications
Support for Abstraction and Modularity

– Simplify reasoning during model 
formulation

– Foster reuse
– Simplify model modification



Support for Data Semantics

• Data used in models is not merely numbers – it 
has meaning that reflects its context e.g.
– Source 
– Age
– Degree of uncertainty
– Measurement protocol

• Meta-data specific algebras can aid in model 
building, validation by capturing aspects of 
domain not expressed in data 

• Traditional system dynamics packages support 
basic unit metadata



Implications
Support for Data Semantics

• Often useful in formal reasoning 
– Unit & dimension information

• Unit & dimensional checks
• Design of scale models
• Cross-checking analytic results

– Uncertainty
– Sampling information

• Valuable for the modeler
– Understanding varying data pedigrees
– Bookkeeping 



Support for Continuous and Discrete 
Dynamics & State

• Continuous dynamics express flow
• Discrete dynamics can express 

sudden (non-analytic) changes in 
behavior

• Continuous&discrete dynamics 
required for description of many 
dynamic systems
– Physical constraints: Exhaustion of a 

stock, boundary conditions
– Human rules (do x if reservoir level 

below y)



Implications
Support for Continuous and Discrete Dynamics & State

• Support for hybrid modeling helps 
– Avoid simulation artifacts
– Simplify model expression

• NB:  In an aggregate model, many 
discrete states may be aggregated 
into corresponding continuous state 
variables



Methodological Implications of Choices
(From my experience)



Current Package Deal: 
Modeling Implications (From my Perspective)

Current ABM and TSD packages both have 
important advantages



Central Points: Present

• There are currently many differences between 
agent-based and traditional SD (TSD) 
approaches

• The differences have significant impact on 
model results & the modeling process

• Both traditions have strong advantages when 
addressing different types of problems (see 
diagrams)

• Painting broad-brushed dichotomies between 
traditional system dynamics and agent-based 
modeling obscures the fundamental 
commonalities 

• The communities have much to learn from the 
other



Suggestions: Making Modeling 
Choices in the Present

• Individual-level modeling a good option if it 
matches problem characteristics: e.g.
– Understanding complex dynamic implications of 

networks, heterogeneity
– Flexibility in desired model heterogeneity 
– Clear description of causal mechanisms, memoryful 

processes
– Characterizing fine-grained interventions
– Understanding heterogeneity in intervention effects
– Need to match/explain longitudinal data

• Be aware that these advantages presently do 
come with additional tradeoffs



Agenda

Motivations & Context
Comparing Aggregate & Individual 

Based Models
Granularity Tradeoffs
Tools for individual-based modeling

– Individual-Based Modelers in SD
– Individual-based models in Agent-Based 

tools

Other tradeoffs
• Looking forward



Central Points:  Looking 
Forward

• Most current differences reflect important but 
non-essential methodological choices / tool 
characteristics

• In the long run, these differences will likely 
lessen and the choice that will remain is that 
of model granularity

• Both individual-based models and aggregate 
models will play important roles in system 
dynamics 

• There are good reasons to use all of 
individual-based models, aggregate models, 
and hybrid systems



Hybrid Modeling

• Single model with multiple levels
– Aggregate environment 
– Disaggregate population(s)

• Calibration of aggregate model from 
disaggregate

• Framework flexibility is key 
advantage



Iterative Mutual Modeling: 
What• Overlapping modeling domains permits 

cross-validation
– e.g. Ki allow simulation of well-mixed 

population
– Agent-based transitions can be simulated with 

e.g. binomial transitions

• Refine models based on cross-framework 
observations

• Create high-level models for qualitative 
insight from lower-level detailed models
– This allows developing confidence that are 

capturing important features in high-level 
models



Iterative Mutual Modeling: 
Why
• Cross-validation

– Formulation errors
– Implementation errors

• Model simplification
• Use of tools with relative strengths
• Cross-calibration



Suggestions: Research

• Diversification of model space
– Newer systems (e.g. AnyLogic) are big steps in 

the right direction
• Hybrid modeling
• Semantic enrichments of fine-grained 

models
• Metadata and semantic algebras
• Improved languages for algorithmic 

specifications
• Model reuse mechanisms
• Open systems for extensibility
• Metalinguistic mechanisms for 

customization
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