Orientation & Selected Guest Lecture Models

Nathaniel Osgood MIT 15.879

February 8, 2012

15.879 Focus this Term: Agent-Based

Models for Public Health

- Purpose of models
- Model strength & limitations
- Diversity of classes of models available
- How models are built, refined & analyzed
- Model tradeoffs & complementarity with classic stock & flow models

- Software & analytic tools for working with models
- How models mesh with traditional techniques
 - Linkage databases
 - Real-time data collection (EMA)
 - Biostatistics

Goals of Class

- To expose participants to basics of building agentbased models (ABMs) in AnyLogic
- To convey a sense as to the capabilities, strengths and weaknesses of agent-based modeling
- To train AnyLogic users so that they are comfortable running, understanding many elements of, and performing small modifications on ABMs
- To provide aspiring modelers with hands-on familiarity with the capabilities & functions of AnyLogic and sufficient exposure to Java programming to navigate within models
- To help create informed consumers of Agent-based models

Non-Goals of the Class

- To serve as a comprehensive survey of Agent-Based modeling
- To give a thorough conceptual or theoretic framework for understanding and analyzing Agent-Based Models
- To review the tradeoffs between AnyLogic & other ABM platforms
- To create a set of fully proficient Agent-Based modelers
- To render participants into Java programmers
- To sell participants on the superiority of AnyLogic, or the desirability of buying AnyLogic licenses

Anticipated Class Coverage

- Motivations
- System science concepts
- Qualitative sketching of ABM
- Agent dynamics
- Inter-agent interaction
- Hybrid modeling

- Agent environments
 - Irregular topologies (networks)
 - Regular (e.g. CA)
 - Irregular geometries
- Debugging
- Best practices in model building
- Understanding Individual-based & aggregate differences

Department of Computer Science

Class Coverage Cont'd

- Modeling process
 - Scoping
 - Formulation
 - Parameterization
 - Calibration
 - Validation & Confidence building
 - Model analysis tools & techniques

Class will Be ...

- Interactive & Informal
- Adapted to student interests
- Project based
- Demanding
- Highly interdisciplinary
 - Aimed for accessibility to diverse audience
 - Some material presented in additional sessions for certain backgrounds
 - Required: Patience in dealing with diverse peers

This Class is Not for Everyone

- The class will be demanding in different ways from different people
 - Health Sciences: A willingness to take on quantitative & computer challenges, and to acquire new skills and approaches
 - Computer Science: Patience with challenges of modeling real-world phenomena, and understanding textured health science concepts, terminology & aspects of public health practice.
- The skills learned in the class have broad applicability, but here have a domain focus
- We encourage students not convinced of their desire to confront challenges to look elsewhere

Class Diversity

- Our class is expected to be diverse in many ways
 - Students/Faculty observers
 - Student backgrounds in Health Science & STEM
 - Participant interests
- The instructor will make efforts to address diverse backgrounds & interests
- Please
 - Be respectful of those from all backgrounds
 - Recognize need to re-hear things you know

Extra Resources for Students

- Office hours
- Focused tutorials (upon student agreement)
 - Extra background & context
 - More advanced material (upon student interest)

What is Expected of Students

- Attendance & Participation
- Modeling exercises
- Project
 - With instructor guidance
 - Interdisciplinary teams required
- End-of-Term Presentation

Administrative Info

- Office Hours: Wed 10-11am (E62-436) & by appointment
 - Especially important b/c of diversity of backgrounds & limited time
- Course website in STELLAR at either <u>https://stellar.mit.edu/S/course/15/sp12/15.879/</u>

<u>or</u>

http://tinyurl.com/MIT15879

Project Information

- Project can be
 - Modeling application (in area for which data is readily available)
 - Methodological study
- Instructor can help facilitate
- Meet early with the instructor (after return) to discuss progress
- Staged deliverables
- Where possible, we suggest interdisciplinary, multi-person projects

Department of Computer Science

Project Phases

Phase	Description	Date
1	Informal description of area in which you'd like to work for your model, resources you may use.	Mar 9
2	Informal estimate of scope of model to be implemented. Further details on any data sources planned for use. Identification of major properties/attributes for agents and major modes of agent interaction	Mar 22
3	Discussion of agent interaction. Preliminary descriptions of scenarios & sensitivity analyses that you plan to investigate.	Apr 12
4	Final report	May 17

Possible Proiect Ideas

Area	Description	Contact/Stakeholder
Chronic Disease	Osteoarthritis through the continuum of care, drawing from existing populated aggregate stock & flow model. Agent based and possible discrete event extensions	Deborah Marshall, University of Calgary <u>damarsha@ucalgary.ca</u>
	Interaction of Gestational & Type 2 Diabetes	See instructor
Zoonoses	Stray Dogs (Rabies as important illness of concern) Leptospirosis	Gustavo Monti Universidad de Chile gustavomonti@uach.cl
	Bovine Tuberculosis	
	Chronic Wasting Disease (Mule Deer focus, extension to exiting model)	Cheryl Waldner University of Sask. <u>cheryl.waldner@usask.ca</u>
	Animal Human Interface	Iqbal Jamal
	Animal Health/Supply Chain	AMC Consulting iqbaljamal@aqlmc.com
Transporta tion	Patterns of Home-To-Work Travel behavior: Reproducing observed US patterns	Asim Zia, Univ. of Vermont Asim.Zia@uvm.edu

Course Schedule

- Due to instructor time travel constraints, the course schedule will have some gaps
 - Despite gaps, 3-hour Wednesday & Friday class times will provide a full-length course
 - Biggest gaps in schedule
 - February 9-28 (starting tomorrow!)
 - April 16-20
- Not all weeks will contain both Wednesday & Friday sessions
- Please check your schedule before coming to class

Tasks for the Next 2-3 Weeks

- AnyLogic
 - Download
 - Install
 - Request permanent key
 - Active using permanent key
- Investigate projects of interest (awaiting my return for finalization, if required)
- Complete Problem Set 1
 - A First Encounter With Anylogic: Modifying A Simple Sample Model
 - Building a Minimalist Network-Based Model Framework

Exercises: Available Now

Some Featured "Real-World" Models

- TB
- CWD
- ESRD
- Treatment Prioritization
- ABMs for Evaluating Reliability of Statistical Inference
- HPV & Smoking

- Immuno-Epidemiology of H1N1 influenza
- Influenza-like illness & smartphone-based microcontact locationdata

Tuberculosis Spread, Prevention & Control (Earlier Version)

		💥 AnyLog
Contact T We can make it be	racing Simulation	Run Model
We can make it be Network type	Network Settings	run_multiple
 Random Small world Scale free 	Connect Per Agent 29 Notes: Connects Per Agent is for Random and Small World Networks Neighbourhood Link Prob 0.95 Notes: Link Prob is for Small World Networks ScaleFreeM 3 Note: ScaleFreeM is for Scale Free Networks	** ** * *
ontact Tracing Policy S		
Contact Tracing With Pri		
AgeWeight GenderWeight J	EthnicityWeight ContactsWithTB	
Tracing Infectious Active Tracing All Active TB Cas Cenario Information	0	1
		S

Chronic Wasting Disease

Health & Cost Implications of Diabetic ESRD

HPV & Smoking

Video: Aggregated Hourly Contact Data

Synthetic Population Studies

- Establish a "synthetic population" for a "virtual study"
- Perform simulation, simulating study design of interest
 - Actual underlying situation is blinded from researcher
 - Collect data from the synthetic population similar to what would collect in the external world
 - Optionally, may actually simulate roll out and dynamic decision protocols
- Analysis procedures being evaluated are applied to the data from the synthetic population
- We compare the findings from those analysis procedures to the underlying "ground truth" in the simulation model

Use of Simulation in Evaluation of Statistical Models & Study Design

Performing the Filtering

Network Embedded Individuals

