
Agent Spatial Embedding & Movement
in

2D Landscapes
(Bonus: Discrete Time & some UI

customization)

Nathaniel Osgood

MIT 15.879

March 23, 2012

Lecture Outline

• AnyLogic’s Spatial embedding types

– Overview

– Reminder of continuous space

– A glimpse of a discrete space & discrete time
model

• Agent Mobility

Agent Spatial Embedding

• Spatial embedding of agents is key to

– Expressing essential dynamics for problems
Locality of influence/Transmission

– Insight into certain phenomena (spatial
concentration, percolation, spatial reference
modes)

• Spatial embedding can permit GIS integration

2D Spatial Embedding: Two Options
• Continuous embedding (e.g. Wandering

elephants, our built-up model)

– No physical exclusion: Agents are assumed to be
small compared to landscape scale, and exhibit
arbitrary spatial density without interfering

– We have seen this much with distributing agents
initially around the space, adding agents in

• Discrete cells (e.g. The Game of Life, Agent-based
predator prey, Schelling Segregation)

– Divided into “Columns” and “Rows”

– Physical exclusion: Only one agent in a cell at a time

The Locus of Control: Environment

• The Anylogic Environment sets the parameters
for the nature of the 2D landscape

– Width

– Breadth

– Continuous vs. Discrete

– Character of discrete neighbourhoods (cardinal
directions vs. Euclidian { N,NE,E,SE,S,SW,W,NW}

Lecture Outline

• AnyLogic’s Spatial embedding types

 Overview

– Reminder of continuous space

– A glimpse of a discrete space & discrete time
model

• Agent Mobility

Continuous Environment

Continuous Environment: Your Model

• We’ve already seen the continuous
embedding in our built up model.

Lecture Outline

• AnyLogic’s Spatial embedding types

 Overview

 Reminder of continuous space

– A glimpse of a discrete space & discrete time
model

• Agent Mobility

By Comparison: Discrete Environment

Note extra presence of
“Columns” and “Rows”

Hands on Model Use Ahead

Load AnyLogic Sample Model: The Game

of Life

The “Game” of Life: Background
• Invented in 1970 by Mathematician Conway

(modifying ideas from Von Neumann)

• Inspiration: Lifecourse of cells

– Key dichotomy: A space contains a living element or not

– Stylized rules for birth, death

• Cellular automaton: Uses Discrete Time (Steps) &
Discrete Space (Cells) with evolving cell state

• Deterministic rules

• Illustrates the emergence of tremendous
complexity from very simple rules

– Computationally universal

The Behavioral Rules of the Game of Life
• Cells are viewed as surrounded by 4 neighbors (in

cardinal directions)

• Living cells require some neighboring empty space, but
also some proximity to nearby living cells

• Birth: An empty cell becomes occupied if it has an “ideal”
nurturing environment around it (3 surrounding cells)

• An existing cell dies if

– Too isolated: It has too few neighbors (1 or 0)

– Too crowded: It is surrounded by other cells (4 surrounding
cells)

• No mobility: Cells are born, live and die in same location

Open “Main” Class
Scroll Left to See Population & Environ.

Imposing the Regular 2D Structure

100x100
grid defined
here

Indicated that cells
should be laid out in
a regular grid in space

Environment: Enabling Discrete Space (Cells)

Discrete2D
selected

Defines logical neighborhood
(here, each cell has 4
neighbors)

Neigbourhood Models
• Moore: Cardinal directions

– NORTH,SOUTH,EAST, WEST

• Euclidean

– NORTH, SOUTH, EAST, WEST, NORTHEAST,
NORTHWEST, SOUTHEST,SOUTHWEST

 Set Neighbourhood Type
Of Environment here

Population: One Cell Agent per Grid Point

10,000 (= 100*100) agents

View the “Cell” Class

This class represents each cell
in the entire space – whether
it is alive or not

Cell Variables: “alive”

Boolean (true/false) variable

Name would be
clearer as “isAlive”

10% initial likelihood of being
occupied

Cell Variables: “neighbors”

This will reference a
Collection (“Array”) that
Contains references to
each neighbor of the
current cell

Reference to the collection has an
“Array” type

Cell Variables: “nAliveAround”

This will count the number
Of neighbors around this
cell that are alive at the
current time (i.e. during
the current step)

The “type” of this variable is an
“integer”

Visual Representation of Cell
(Click on Cell Icon at Origin)

Select this item

Selects appearance
depending on
whether alive or not

Cell Update Logic
(“Agent” Properties of “Cell”)

Two Key Models of Time in Anylogic:
Continuous (Asynchronous) Time

• This is what we have dealt with to this point

• Here, every agent is updated at a different
time, according to events

• No two agents are typically likely to be
updated at exactly the same time during most
of model execution, so when considering the
state of other agents they “see” the last
situation where the other agent has been
updated

Two Key Models of Time in Anylogic:
Discrete (Synchronous) Time

• Here, agents all change in lockstep, separated by fixed
“time steps”

• When computing agent behavior (to determine agent
state in the next timestep), our enquiries about agent
state (e.g. using getAgentAtCell or getAgentNextToMe)
need to ask about the situation in the current timestep
– We gather needed information regarding current state in “On

Before Step”, and changes are performed in “On Step”.

• This is similar to what we saw in System Dynamics – the
changes over the next small interval of time (Δt)
depend on the current value of the stocks
– These changes are then applied at once, and all stocks are

updated

Enabling Discrete (Synchronous) Time

• When enable the steps, the various handlers for
synchronized time (e.g. “On before step”, “On
step”, “On after step”) etc.) are executed
– Both environment and agents have “On before step”

and “On after step” handlers

– “On before step” for environments is executed
before the corresponding method for agents

– “On after step” for environments is executed after
the corresponding method for agents

• Synchronous time can be enabled via the
environment “General” page
– Click checkbox “Enable steps”

Environment: Enabling Discrete Time

Notice checkmark to enable
discrete time (steps)

Cell Update Logic
(“Agent” Properties of “Cell”)

2) On Step (Acts on
Collected Information)

1) On Before Step
(collects information)

On Before Step: Collecting the
Information

2) Loops through each of the neighbors. Every time we see a
live neighbor, increment the count of alive neighbors

This records a running
count of # seen so far
(initially 0)

On Step: Performing the Update based
on Observed Information

Reminder: This is the information collected in “On
Before Step”

Here, we are updating our aliveness status (represented by
the “alive” variable) based on our current status &
characteristics of the local environment.

Obtaining the List of Neighboring Cells
at Startup

For performance reasons, this
obtains a reference to a set of
neighboring cells, and stores it in
the variable “neighbors”

Running the Model

Lecture Outline

• AnyLogic’s Spatial embedding types

 Overview

 Reminder of continuous space

 A glimpse of a discrete space & discrete time
model

• Agent Mobility

Agent Mobility

• Thus far, we have looked at spatial dynamics
where each agent remains stationary

– Continuous space (static & dynamic populations)

– Discrete space (cellular automata)

2D Spatial Embedding: Mobility Implications
• Continuous embedding (e.g. Wandering elephants)

– No physical exclusion: Agents are assumed to be small
compared to landscape scale, and exhibit arbitrary spatial
density without interfering

– Agents move

• In a direction

• With some speed

• Discrete cells (e.g. Agent-based predator prey,
Schelling Segregation)

– Divided into “Columns” and “Rows”

– Physical exclusion: Only one agent in a cell at a time

– Agents move continuously or discontinuously from cell to
cell

Hands on Model Use Ahead

Load model: Wandering Elephants.alp

Environment

Landscape Information

Agent Movement: Periodic Movement
Changes

New Direction Change Function Info

New Direction Change: Function “Body”

Setting Agent Speed (set so as to reach target in
 fixed time until next target shift)

Initiates movement towards (randomly chosen)
destination

(Main) Defining a Custom Angle Distribution

Data for Custom Distribution

Heading Towards Resource

Determining current position &
Searching for quickest way to find
water from that position.
(should be in separate function!)

Initiates movement
towards chosen destination

Looking at body of this function
(method)

Handling Agent Arrival at Destination
(Not Currently Used in this Model)

“Handler”: Code fires when the specified
event (here, arrival at a destination) occurs.

Handling Arrival Events in Statecharts

Transition contingent on agent arrival

Resumption of Wandering After Slaking Thirst

Handling of Movement Logic

Handling the case of reaching water
 when thirsty

Finding location
in continuous space
(x,y) & in terms of
Discrete vegetation
Space (c,r).
Poor style -- Should be In
separate function

Rerouting Around Barriers (Boundaries & Water)
Poor Style – entire logic, conditions (checks on boundaries, whether water) & rerouting
Logic should all be in separate functions from this & from each other). Remove constants

Environment: Updating Vegetation

Continuous Space: Relevant Methods
(To call on Agent)

• Already covered
– moveTo(x,y) : initiates agent movement to location

– setVelocity(v)

• Basic info
– getX()/getY()

– setXY(x,y): initial location

– jumpTo(x,y): moves agent to location

– isMoving()

– getTargetX()/getTargetY()
• Where heading to?

– setRotation()/ getRotation()

Environment Happens to Handle Process of
Maintaining Environmental Dynamics

Hands on Model Use Ahead

Load model: Schelling Segregation.alp

A Model to Examine the Emergence of
Segregation

A Discrete Spatial Environment with
Random Agent Positioning

Spatial Width & Height

Width & Height in
 Discrete Cells

Population Dependence on the
Population

Slider Input Sets Parameter Value

Sets Threshold Parameter Value

Default value is that of Threshold
parameter

“Threshold” parameter

Person is Assigned a Randomly Picked
Color

Color is set to either red or black with
equal likelihood

Person’s Visual Representation

Core Segregation (Movement) Logic

Person’s Initial Location

Count neighbors
Sharing same colour
(should be in diff.
Function).

Only satisfied if fraction of
surrounding individuals
Sharing color exceeds
threshold

if dissatisfied,
30% chance of moving

Experiment: Simulation Sets
Parameter Assumptions

Add a Parameter to Main

Experiment: Add a Slider!

Setting the Slider Properties

Setting Value for Parameter from Slider

Modify Person’s Behavior to Depend
on New Parameter

Updated Code (“get_Main()” required
Because new parameter is global
And lives in Main class rather than in
Person class.)

Movement in Discrete Space
• jumpToCell(int row, int column)

– Jumps to a particular unoccupied cell
• Precondition: destination cell is unoccupied

• moveToNextCell(int direction)
– Moves agent into a neighbouring cell in a given

direction

– Directions: NORTH, SOUTH, EAST, WEST, NORTHEAST,
NORTHWEST, SOUTHEST,SOUTHWEST

• Precondition: destination cell is unoccupied

• jumpToRandomEmptyCell()
– Jumps to randomly selected empty cell (returning

true), returns false if no empty cell can be located

Discovery in Discrete Space

• int []findRandomEmptyCell

– Returns row & column of an unoccupied cell

• Getting agents in cell or direction

– getAgentAtCell(int row, int column)

– getAgentNextToMe(int direction)

– getNeighbors()

Important Distinction

• Suppose an agent is moving in discrete 2D
space and need to be concerned about
moving into the same cell as another agent

• We can readily prevent this agent from
moving into another cell currently occupied

• But can we prevent this agent from colliding
with another agent that wishes to move into
the same cell?

– To answer this, we need to be clear about the
model of time used by agents

Synchronization & Discrete Agent
Movement

• In Synchronous mode, it is difficult to know if two
agents will collide using data on the current timestep
– Even if we know where the other object was during the

current timestep, it’s possible it will move into the cell we
wish to occupy in the next timestep

• It is simpler to handle this asynchronously
– Here, we can have each agent update at slightly different

times, and observe the location of the other agents at the
current time – without any significant chance that they will
move to the same place at the same time.

• Issue only arises for discrete agent movement, as this is
the only case where cells are limited to contain 1 agent

Irregular Spatial Embedding

Realizing Irregular Spatial Embedding in AnyLogic

• Basic idea: people moving around follow networks of paths

• Irregular spatial embedding is supported directly by
“Network Based Modeling” (Discrete Event
Simulation)
– This approach is individual-based, but treats agents

either as flowing through and being operated on by a
process or as (often interchangeable) process resources

– We will have a brief introduction to this approach later
in the week, showing how it can be combined with ABM

• With a modest amount of custom coding, irregular
spatial embedding can be achieved within ABM
– A guest lecture with an Alzheimer’s application will give

a glimpse as to how this can be achieved

