Recall: ABMs: Larger Model Vocabulary & Needs

- Events
- Multiple mechanisms for describing dynamics
 - State diagrams
 - Stock and flow
 - Custom update code
- Inter-Agent communication (sending & receiving)
- Multiple types of transitions
- Diverse types of agents
- Spatial & topological connectivity & patterning
- Subtyping
- Mobility & movement
- Graphical interfaces
- Data output mechanisms
- Stochastics complicated
 - Scenario result interpretation
 - Calibration
 - Sensitivity analysis
- Synchronous & asynchronous distinction, concurrency
Recall: The Overview, Design concepts, and Details (ODD) Protocol for ABM Design

- Consensus protocol derived from panel for ABM modelers
- Primary focus: Specification protocol
 - To help understand, communicate & reproduce ABMs
- Secondary benefit: Process for ABM design
Recall: ODD: 3 Broad Components

- Overview: model goals & high level scope & design
- Design concepts: Different aspects of design being considered
- Remaining elements
ABM Modeling Process Overview

A Key Deliverable!

ODD: Overview & high-level design components

- Problem/research question articulation
- Patterns for explanation
- Model scope/boundary selection (endogenous, exogenous, ignored)
- Key entities & their relationships
 - Agents (&collectives)
 - Environment
 - Nesting hierarchy or network diagrams
- Output of interest

ODD: Design components & details

- State charts
- Parameter & state variables
- Qualitative State charts
- Influence & Causal loop diagrams
- Multi-agent interaction diagrams
- Process flow structure
- Key events
- Rough model time & spatial extent

- Specification of parameters
- Quantitative causal relations
- Decision/behavior rules
 - Transitions
 - Interactions
 - Messaging & handlers
 - Resources
 - Relationship dynamics
 - Mobility dynamics
 - Initial conditions

- Reference mode reproduction
- Matching of intermediate time series
- Matching of observed data points
- Constrain to sensible bounds
- Structural sensitivity analysis

- Parameter sensitivity analysis
- Cross-validation Formal w/Discovered Patterns
- Robustness tests
- Extreme value tests
- Unit checking
- Problem domain tests

- Specification & investigation of intervention scenarios
- Investigation of hypothetical external conditions
- Cross-scenario comparisons (e.g. CEA)

- Learning environments (e.g. DISimS)
- Visualizations
ABM Modeling Process Overview

ODD: Overview & high-level design components

Problem/research question articulation
Patterns for explanation
Model scope/boundary selection (endogenous, exogenous, ignored)
Key entities & their relationships
 Agents (&collectives)
 Environment
 Nesting hierarchy or network diagrams
Output of interest

ODD: Design components & details

State charts
Parameter & state variables
Qualitative State charts
Influence & Causal loop diagrams
Multi-agent interaction diagrams
Process flow structure
Key events
Rough model time & spatial extent

Specification of
 Parameters
 Quantitative causal relations
 Decision/behavior rules
 Transitions
 Interactions
 Messaging & handlers
 Resources

Reference mode reproduction
Matching of intermediate time series
Matching of observed data points
Constrain to sensible bounds
Structural sensitivity analysis

Parameter sensitivity analysis
Cross-validation Formal w/Discovered Patterns
Robustness tests
Extreme value tests
Unit checking

Specification & investigation of intervention scenarios
Investigation of hypothetical external conditions
Cross-scenario comparisons (e.g. CEA)

Problem domain tests

Knowledge Translation
Learning environments (e.g. DISimS)
Visualizations
ODD Overview: model goals & high level scope & design

• Purpose

• Definition of key elements during operation
 – Entities
 – States (identification of both parameters & formal state)
 – Scales

• Process overview and scheduling (behavior)
ABM Modeling Process Overview

ODD: Overview & high-level design components

- Problem/research question articulation
- Patterns for explanation
- Model scope/boundary selection (endogenous, exogenous, ignored)
- Key entities & their relationships
 - Agents (&collectives)
 - Environment
 - Nesting hierarchy
 - Network diagrams
- Output of interest

ODD: Design components & details

- State charts
- Parameter & state variables
- Qualitative State charts
- Influence & Causal loop diagrams
- Multi-agent interaction diagrams
- Process flow structure
- Key events
- Rough model time & spatial extent

Specification of:
- Parameters
- Quantitative causal relations
- Decision/behavior rules
 - Transitions
 - Interactions
 - Messaging & handlers

- Resources
- Relationship dynamics
- Mobility dynamics
- Initial conditions

Reference mode reproduction
- Matching of intermediate time series
- Matching of observed data points
- Constrain to sensible bounds
- Structural sensitivity analysis

Parameter sensitivity analysis
- Cross-validation Formal w/Discovered Patterns
- Robustness tests
- Extreme value tests
- Unit checking
- Problem domain tests

Specification & investigation of intervention scenarios
Investigation of hypothetical external conditions
Cross-scenario comparisons (e.g. CEA)

Learning environments (e.g. DISimS)
Visualizations
Overview: model goals & high level scope & design

• Purpose

• Definition of key operational elements
 – Entities
 – States
 – Parameters
 – Scales

• Process overview and scheduling
ABM Modeling Process Overview

ODD: Overview & high-level design components

Problem/research question articulation
Patterns for explanation
Model scope/boundary selection (endogeneous, exogenous, ignored)
Key entities & their relationships
 Agents (&collectives)
 Environment
 Nesting hierarchy or network diagrams
Output of interest

State charts
Parameter & state variables
Qualitative State charts
Influence & Causal loop diagrams
Multi-agent interaction diagrams
Process flow structure
Key events
Rough model time & spatial extent
Observers to measure outputs

Specification of
 Parameters
 Quantitative causal relations
 Decision/behavior rules
 Transitions
 Interactions
 Messaging & handlers
 Resources
 Relationship dynamics
 Mobility dynamics
 Initial conditions

Reference mode reproduction
Matching of intermediate time series
Matching of observed data points
Constrain to sensible bounds
Structural sensitivity analysis

Parameter sensitivity analysis
Cross-validation Formal w/Discovered Patterns
Robustness tests
Extreme value tests
Unit checking
Policy evaluation
Problem domain tests

Specification & investigation of intervention scenarios
Investigation of hypothetical external conditions
Cross-scenario comparisons (e.g. CEA)

Knowledge Translation
Learning environments (e.g. DISimS)
Visualizations
Model Formulation

• Model formulation elaborates on problem mapping to yield a fully specified, quantitative model

• Key missing ingredients: Specifying unambiguous specification for
 • Statechart transitions
 • Flows (in terms of other variables)
 • Observer processes
 • Intermediate variables
 – Parameter values
Process Interaction & Scheduling

• In addition to specifying the processes in isolation, try to describe process interaction e.g.
 – A transmission process is not triggered until a person is sexually active
 – All reporting takes place at the very end of the day, and is done before resetting reporting counters
 – All agents first note the status of the agents around them, and only then perform updates to location

• Ask yourself on what other processes a given process depends
Concurrency

• Two or more processes may be operating concurrently (“in parallel”)
 – e.g.: Operation of different agents, agents & reporting processes, graphical interface & model
Dependencies: Synchronous vs. Asynchronous

• Suppose process A depends on information produced by process B
 – e.g. depends on knowing something produced via B

• Synchronous processes: Applied sequentially, so that A must wait for B to proceed (e.g. A calls B)

• Asynchronous processes: No “blocking” (waiting) by A for B (e.g. B sends a message to A)
 – In agent-based modeling, most interactions between agents are considered asynchronous => inter-agent communication is accomplished via asynch. messaging
ODD: 3 Broad Components

• Overview: model goals & high level scope & design
• Design concepts: Different aspects of design being considered
• Remaining elements
ODD Design Concepts to Consciously Consider

- Origin & character of basic principles underlying model
- Emergence: To what degree are results pre-programmed vs. arising naturally out of a myriad of interactions
- Adaptation: How does system evolution lead to entity behavior change?
- Sensing: What information do entities retrieve from world?
- Objectives: Any goal seeking behavior? How interacts w/state?
- Learning: How does experience drive change in strategies?
- Prediction: How do entities anticipate the future?
- Interaction: How do entities interact directly & indirectly?
- Stochastics: Character of & motivation for stochastic effects
- Observation: What information & associated processes are required for operational use or for testing & confidence bldg
Sensing

- Information sensed from other agents & environments is key to adaptation & decisions
- Need to consider what is sensed
- May want to capture fact that entity perception is
 - Localized (e.g. risk perception, cf decision making with driver’s view of road compared to with perfect knowledge of traffic flows across city)
 - Error prone
 - Delayed
 - This can fundamentally alter dynamics: e.g.
 - Instability: Fragility of “Tit for Tat” to misunderstandings
 - Negative feedback: Sensing to correct driving path
Emergence

• To what degree are the results directly captured by assumptions? (i.e. to what degree are we presupposing what we are trying to demonstrate?)

• One ABM viewpoint: Until we can robustly *generate* a phenomenon, we don’t really understand it

• To what degree do results emerge from complex interaction of other factors where the behavior of interest is never itself described in any way
 – This is ideally what is sought
 • it allows more of a real explanation
 • Permits greater generality (anticipating system behavior under unobserved situations)
 – e.g. waves of infection in spatial SIR model
 – In CWD Model: Clustering of prions along
 • the lakeshore margin
 • High traffic corridors
Emergent Behavior: Spatial/Geographic
A Multi-Level (Dynamic) Model
Adaptation

• How does agent behavior exhibited depend on the
 – Local or global environment
 – Surrounding agents

• To what degree is agent behavior fixed based on
 predefined rules (just playing out to understand
 collective effect of rules themselves) vs. potential for
 emergence associated with inter-agent or agent-
 environment behavioral interaction, which often leads
 to correspondingly richer emergent behavior
 – Note that can still have inter-agent emergence without
 adaptation -- e.g. in an infection spread model. But the
 presence of adaptation means that the feedbacks and
 emergent phenomena can be that much richer
How Does Behavior Depend on Context?

• We have great flexibility in representing agent rules
• Some agents may be consciously objective seeking
• Just reproducing statistical patterns (likelihood changes in tobacco use over time)
 – Limited generality under counter-factuals
• Examples of ways might depend on context
 – Behavior change due to risk perception
 – Moving to a new neighborhood or hunting/gathering ground
 – Remembering insults and changing strategies (e.g. to defect) with respect to a neighbor in a connection matrix
 – By acquiring new memes or information from a neighbor
Incorporating Observed Patterns: 3 Ways

• Building patterns directly into model (likelihood of state transitions, mixing matrix per observations)
 – e.g. Fraction of time spent in different states (foraging, new lake margin, near grain bins)
 – E.g. fraction of time spends with different groups

• Building functional dependence of actions on external conditions into the model
 – E.g. mixing matrix as a function of a preference matrix and current population demographics

• Calibrating or validating to patterns
 – Making patterns emerge from lower-level “mechanics”/ “physics” of model
 • e.g. Contacts (or contact networks) emerge from myriad close-proximity spatial interactions between mobile individuals
Observed Patterns as Emergent

• Ideally, we seek to make patterns emerge from lower-level “mechanics”/“physics” of model
 – e.g. seasonal herd size emerging naturally from grouping rules in CWD model

• With *adaptation*, particularly focusing on dependence of behavioral patterns of an individual on context
 – How do varying circumstances change agent behavior?
Example of Observed Patterns as Emerging from Low-Level Interactions

- Lower food availability => Higher amount of time spent searching for food
- Higher prevalence of Gonorrhea among acquaintances => greater adherence to safer sex practices
- Higher reports of H1N1 infection or vaccination among social contacts => higher chance of getting vaccinated
- Higher risks from diabetes over age as emerging naturally from cumulative damage by glycosylation, etc.
- Greater smoking-related health complaints & sickness in peers with age => Greater likelihood of quitting with age
- Progression of substance abuse caused by underlying organic processes
- Longer infectious period, greater infection severity (peak viremia level), greater transmissibility for individuals with impaired immune functioning emerging from immune repr.
- Higher temperature => greater water seeking
One Kind of Adaptation: Objective Seeking Behavior

• Here, an entity’s behavior will depend on trying to maximize some satisfaction criteria
 – Examples of measures: Profit, Utility
 – Example application: Vehicle simulators using where driving behavior depends on consideration of perceived tradeoffs ($, time, familiarity, etc.) of different routes

• How does this vary based on agent’s state (e.g. access to resources) or environments

• Bounded rationality: For individuals, strong literature suggests that many decisions are based instead on heuristics
Learning: Changing Adaptive Behavioral Rules Based on Experience

• ABMs can support arbitrarily rich learning that may change adaptive behavior
 – Learning from experience in particular healthcare facilities
 – Trust of different parties based on
 • Direct: Treatment received
 • Indirect: Consistency of observations with claims of other party
• In some cases, this is performed using genetic programming (rules mutate and evolve)
• As a longitudinal phenomenon -- one that involves history -- support of learning & memory is a key advantage offered by ABM
Interaction

• Interaction among entities
 – Agent-agent
 – Agent-environment

• Forms
 – Direct: Agents directly interact with neighbors (e.g. via needle sharing or sexual contact)
 – Indirect: e.g. Via shared resource (depletion of vegetation for browsing by other deer, deposit of droplets with shedded pathogen on surface, or air), via risk perception

• How mediated by space & time? (e.g. transmission range of pathogen, seasonal contact dependence?)
Collectives

• Groupings are a common multi-scale feature
 – Herd, Family, Class, Office

• More than the sum of the parts:
 – Can have significant impact on agent perception or behavior
 – Agent may relocate to join new collective

• Common possibilities
 – Purely emergent phenomenon (e.g. herds in CWD example model): Not reified as agent
 • Sometimes epiphenomenal – no influence, but instead something that can be used for understanding & analysis
 • Sometimes has very material impact on system behavior
 – Reification as agent (e.g. hierarchical SIR model, gang)
 • Collective can then have own processes & state (e.g. history)
A Multi-Level (Dynamic) Model
Observer Processes

• With an agent-based model, it is often key to have access to many views of the model in operation
 – These can aid in validation (calibration, confidence building) and verification (testing), interpretation

• The data collected by such observers is typically epiphenomenal – it does not influence the model

• Often there is a significant amount of mechanism & computational effort involved in realizing these

• Detail complexity: significant investment is often further made in visualization interfaces
ODD: 3 Broad Components

• Overview: model goals & high level scope & design
• Design concepts: Different aspects of design being considered
• Details (Remaining elements)
ODD: Remaining Elements

• Initialization
 – Where does initial state come from? Are seeking to make independent of initial state? To test significance of initial state?

• Input data
 – Time series used for model (I think best put in entity specification)

• Submodels: Useful abstractions
 – Helpful to describe early on with broad abstractions (e.g. “partner change”, “go to drink”, “find food”, “stay near mother”
 • Full specification of these are delegated to submodels
 – Seeking low coupling, high cohesion
Sources for Parameter Estimates

- Surveillance data
- Controlled trials
- Outbreak data
- Clinical reports data
- Intervention outcomes studies
- Calibration to historic data
- Expert judgement
- Systematic reviews

<table>
<thead>
<tr>
<th>Parameter*</th>
<th>Description</th>
<th>Baseline value (units)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>μ</td>
<td>Entry/exit of sexual activity</td>
<td>0.0056 (years$^{-1}$)</td>
<td>Garnett and Bowden, 2000</td>
</tr>
<tr>
<td>c</td>
<td>Partner change rate per Susceptible</td>
<td>16.08 (years$^{-1}$)</td>
<td>Approximated from Garnett and Bowden, 2000</td>
</tr>
<tr>
<td>β</td>
<td>Probability of infection per sexual contact</td>
<td>0.70</td>
<td>Garnett and Bowden, 2000</td>
</tr>
<tr>
<td>φ</td>
<td>Fraction of Infectives who are symptomatic</td>
<td>0.20</td>
<td>Garnett and Bowden, 2000</td>
</tr>
<tr>
<td>$1/\gamma$</td>
<td>Latent period</td>
<td>0.038 (years)</td>
<td>Brunham et. al., 2005</td>
</tr>
<tr>
<td>$1/\sigma$</td>
<td>Duration of infection</td>
<td>0.25 (years)</td>
<td>Brunham et. al., 2005</td>
</tr>
<tr>
<td>θ</td>
<td>Asymptomatic recovery coefficient</td>
<td>1.5</td>
<td>Garnett and Bowden, 2000</td>
</tr>
<tr>
<td>$1/\pi$</td>
<td>Duration of naturally-acquired immunity</td>
<td>1 (year)</td>
<td>Approximated from Brunham et. al., 2005</td>
</tr>
</tbody>
</table>
These parameters must have constants specified.
ABM Modeling Process Overview

ODD: Overview & high-level design components

- Problem/research question articulation
- Patterns for explanation
- Model scope/boundary selection (endogenous, exogenous, ignored)
- Key entities & their relationships
 - Agents (&collectives)
 - Environment
 - Nesting hierarchy or network diagrams
- Output of interest

ODD: Design components & details

- State charts
- Parameter & state variables
- Qualitative State charts
- Influence & Causal loop diagrams
- Multi-agent interaction diagrams
- Process flow structure
- Key events

- Specification of:
 - Parameters
 - Quantitative causal relations
 - Decision/behavior rules
 - Transitions
 - Interactions
 - Messaging & handlers
 - Resources
 - Relationship dynamics
 - Mobility dynamics
 - Initial conditions

- Reference mode reproduction
- Matching of intermediate time series
- Matching of observed data points
- Constrain to sensible bounds
- Structural sensitivity analysis

- Parameter sensitivity analysis
- Cross-validation Formal w/Discovered Patterns
- Robustness tests
- Extreme value tests
- Unit checking
- Problem domain tests

- Specification & investigation of intervention scenarios
- Investigation of hypothetical external conditions
- Cross-scenario comparisons (e.g. CEA)
- Learning environments (e.g. DISimS)
- Visualizations
Calibration

• Often we don’t have reliable information on *some* parameters
 – Some parameters may not even be observable!
• Some parameters may implicitly capture a large set of factors not explicitly represented in model
• Often we will calibrate less well known parameters to match observed data
 – “Analytic triangulation”: Often try to match against *many* time series or pieces of data at once
• Sometimes we learn from this that our model structure just can’t produce the patterns!
Calibration: “Triangulating” from Diverse Data Sources

• Calibration involves “tuning” values of less well known parameters to best match observed data
 – Often try to match against many time series or pieces of data at once
 – Idea is trying to get the software to answer the question: “What must these (less known) parameters be in order to explain all these different sources of data I see”

• Observed data can correspond to complex combination of model variables, and exhibit “emergence”

• Frequently we learn from this that our model structure just can’t produce the patterns!
Calibration

• Calibration helps us find a reasonable (specifics for) “dynamic hypothesis” that explains the observed data
 – Not necessarily the truth, but probably a reasonably good guess – at the least, a consistent guess

• Calibration helps us leverage the large amounts of diffuse information we may have at our disposal, but which cannot be used to directly parameterize the model

• Calibration helps us falsify models
Single Model Matches Many Data Sources
Here, we are totalling up across the population
Required Information for Calibration

• Specification of what to match (and how much to care about each attempted match)
 – Involves an “error function” (“penalty function”, “energy function”) that specifies “how far off we are” for a given run (how good the fit is)
 – Alternative: specify “payoff function” (“objective function”)

• A statement of what parameters to vary, and over what range to vary them (the “parameter space”)

• Characteristics of desired tuning algorithm
 – Single starting point of search?
Envisioning “Parameter Space”

For each point in this space, there will be a certain “goodness of fit” of the model to the collective data.
Stochastics in Agent-Based Models

• Recall that ABMs typically exhibit significant stochastics
 – Event timing within & outside of agents
 – Inter-agent interactions

• Can have a pronounced impact on system evolution

• Such stochastics can account for observed patterns that are otherwise hard to explain

• When calibrating an ABM, we wish to avoid attributing a good match to a particular set of parameter values simply due to chance

• To reliably assess fit of a given set of parameters, we need to repeatedly run model realizations
 – We can take the mean fit of these realizations
Examples of Stochastics (Compared to Mean Field Deterministic Model)
Example

\[
\begin{align*}
\bar{x}_5 &= \left(1 + \frac{e}{100}\right) \\
\bar{x}_5 &= \sum_{r=1}^{5} \text{payoff}, \\
\bar{x}_3 &= \left(1 - \frac{e}{100}\right) \\
\end{align*}
\]

\[
\begin{align*}
\bar{x}_{10} &= \left(1 + \frac{e}{100}\right) \\
\bar{x}_{10} &= \sum_{r=1}^{10} \text{payoff}, \\
\bar{x}_{10} &= \left(1 - \frac{e}{100}\right) \\
\end{align*}
\]

\[
\begin{align*}
\bar{x}_{40} &= \left(1 + \frac{e}{100}\right) \\
\bar{x}_{40} &= \sum_{r=1}^{40} \text{payoff}, \\
\bar{x}_{40} &= \left(1 - \frac{e}{100}\right) \\
\end{align*}
\]

After 5 replications

After 10 replications

After 40 replications

Terminates

x % (e.g. 80%) confidence Interval for sample mean (average) of replications to this point

Minimum and maximum Observed values from replications

x % (e.g. 80%) confidence Interval for sample mean (average) of replications to this point

Minimum and maximum Observed values from replications

x % (e.g. 80%) confidence Interval for sample mean (average) of replications to this point

Minimum and maximum Observed values from replications
ABM Modeling Process Overview

ODD: Overview & high-level design components
- Problem/research question articulation
- Patterns for explanation
- Model scope/boundary selection (endogenous, exogenous, ignored)
- Key entities & their relationships
 - Agents (&collectives)
 - Environment
 - Nesting hierarchy
 - Observers to measure outputs
- Output of interest

ODD: Design components & details
- State charts
- Parameter & state variables
- Qualitative State charts
- Influence & Causal loop diagrams
- Multi-agent interaction diagrams
- Process flow structure
- Key events
- Rough model time & spatial extent

- Specification of
 - Parameters
 - Quantitative causal relations
 - Decision/behavior rules
 - Transitions
 - Interactions
 - Messaging & handlers
 - Resources
 - Relationship dynamics
 - Mobility dynamics
 - Initial conditions

- Reference mode reproduction
- Matching of intermediate time series
- Matching of observed data points
- Constrain to sensible bounds
- Structural sensitivity analysis

- Parameter sensitivity analysis
- Cross-validation Formal w/Discovered Patterns
- Robustness tests
- Extreme value tests
- Unit checking
- Problem domain tests

Model Testing
- Specification & investigation of intervention scenarios
- Investigation of hypothetical external conditions
- Cross-scenario comparisons (e.g. CEA)

Policy Evaluation
- Knowledge Translation
- Learning environments (e.g. DISimS)
- Visualizations
Units & Dimensions

• Distance
 – Dimension: Length
 – Units: Meters/Fathoms/Li/Parsecs

• Frequency (Growth Rate, etc.)
 – Dimension: 1/Time
 – Units: 1/Year, 1/sec, etc.

• Fractions
 – Dimension: “Dimensionless” ("Unit", 1)
 – Units: 1
Dimensional Analysis

- DA exploits structure of dimensional quantities to facilitate insight into the external world
- Uses
 - Cross-checking dimensional homogeneity of model
 - Deducing form of conjectured relationship (including showing independence of particular factors)
 - Sanity check on validation of closed-form model analysis
 - Checks on simulation results
 - Derivation of scaling laws
- Construction of scale models
- Reducing dimensionality of model calibration, parameter estimation
Uncertainty Analyses

• Same relative or absolute uncertainty in different parameters may have hugely different effect on outcomes or decisions

• Help identify parameters that strongly affect
 – Key model results
 – Choice between policies

• We place more emphasis in parameter estimation into parameters exhibiting high sensitivity
Uncertainty Analysis: Initial Value

• Frequently we don’t know the exact state of the system at a certain point in time
• A very useful type of sensitivity analysis is to vary the initial value of model stocks
• In Vensim, this can be accomplished by
 – Indicating a parameter name within the “initial value” area for a stock
 – Varying the parameter value
Robustness Analysis

• To what degree are model conclusions robust under changing model structural and other large assumptions?
 – Distinguish cases where
 • Results depends on something essential about the model
 • Results depend on happenstance of simplifying assumptions
 – e.g. spatial neighborhood assumption, size or granularity of space, convenient assumptions regarding rules or what is known

• We want to rule out cases where getting “right result for wrong reasons”!

• Seek to find whether conclusions change radically when just a few assumptions are changed?

• Process is similar to what used for submodel testing, but done for entire model
Imposing a Probability Distribution
Monte Carlo Analysis

• We feed in probability distributions to reflect our uncertainty about one or more parameters
• The model is run many, many times (realizations)
 – For each realization, the model uses a different draw from those probability distribution
• What emerges is resulting probability distribution for model outputs
Example Resulting Distribution

Empirical Fractiles
Impact on cost of uncertainty regarding mortality and medical costs

Incremental Costs

Static Uncertainty
Dynamic Uncertainty: Stochastic Processes

This is a form of sensitivity analysis, but because we are capturing effects of model stochastics – rather than our lack of knowledge, we don’t term “uncertainty analysis”
Dynamic Uncertainty:
Stochastic Processes
ABM Modeling Process Overview

ODD: Overview & high-level design components

- Problem/research question articulation
- Patterns for explanation
- Model scope/boundary selection (endogeneous, exogenous, ignored)
- Key entities & their relationships
 - Agents (collectives)
 - Environment
 - Nesting hierarchy
- Output of interest

ODD: Design components & details

- State charts
- Parameter & state variables
- Qualitative State charts
- Influence & Causal loop diagrams
- Multi-agent interaction diagrams
- Process flow structure
- Key events

- Specification of:
 - Parameters
 - Quantitative causal relations
 - Decision/behavior rules
 - Transitions
 - Interactions
 - Messaging & handlers
 - Resources
 - Relationship dynamics
 - Mobility dynamics
 - Initial conditions

- Matching of observed data points
- Constrain to sensible bounds
- Structural sensitivity analysis

- Matching of intermediate time series
- Reference mode reproduction

- Cross-validation w/Discovered Patterns
- Parameter sensitivity analysis
- Robustness tests

- Specification & investigation of intervention scenarios
- Investigation of hypothetical external conditions
- Cross-scenario comparisons (e.g. CEA)
- Extreme value tests
- Unit checking
- Problem domain tests

Knowledge Translation
Learning environments (e.g. DISimS)
Visualizations

ODD: Overview & high-level design components

- Problem Conceptualization
- Qualitative Problem Mapping
- Model Formulation
- Model Calibration
- Model Testing
- Policy Evaluation
Contact Tracing Simulation

We can make it better!

Network type
- ☐ Random
- ☐ Small world
- ☐ Scale free

Network Settings

- **Connect Per Agent**
 - Notes: Connects Per Agent is for Random and Small World Networks

- **Neighbourhood Link Prob**
 - Notes: Link Prob is for Small World Networks

- **ScaleFreeM**
 - Note: ScaleFreeM is for Scale Free Networks

Parameter Settings

- Simulation Fraction of RI
- Simulation Fraction of NonRI
- ✓ Enable Database

Contact Tracing Policy Selection

- ☐ No Contact Tracing Program
- ☐ Contact Tracing With Priority

Contact Tracing Priority Settings (Weight)

- ✓ Age Priority
- ✓ Ethnicity Priority
- ✓ RR of Count Priority

Contact Tracing Targets

- ☐ Tracing Infectious Active TB Cases ONLY
- ☐ Tracing All Active TB Cases
- ☐ Tracing Infectious Active TB Cases and Primary TB

Contact Tracing Percentage on Average

Average Percentage of Contacts to Investigate:

Scenario Information

Description
Scenario Results (Means)

The graph shows the prevalence of TB infection over time (years) for different scenarios. The x-axis represents time in years, ranging from 0 to 20, and the y-axis represents the prevalence of TB infection, ranging from 0.2 to 0.45.

- **S0** (baseline = No Contact Tracing)
- **S1** (Target = Infectious & Primary TB Lost = 30 to 40%, No Priority Tracing Fraction = 90%)
- **S2** (Target = Infectious & Primary TB Lost = 10%, No Priority Tracing Fraction = 90%)
- **S9** (Target = Infectious TB Lost = 30 to 40%, No Priority Tracing Fraction = 90%)
- **S10** (Target = Infectious TB Lost = 10%, No Priority Tracing Fraction = 90%)

The graph indicates an increasing trend in the prevalence of TB infection over time for all scenarios, with **S0** showing the highest prevalence and **S2** showing the lowest.
Variability in Results

<table>
<thead>
<tr>
<th>Scenario Id</th>
<th>Cumulative Incident Cases (Active TB)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>Max</td>
</tr>
<tr>
<td>S_0</td>
<td>425.633</td>
<td>614</td>
</tr>
<tr>
<td>S_1</td>
<td>311.767</td>
<td>429</td>
</tr>
<tr>
<td>S_2</td>
<td>279.1</td>
<td>392</td>
</tr>
<tr>
<td>S_3</td>
<td>318.667</td>
<td>403</td>
</tr>
<tr>
<td>S_4</td>
<td>283</td>
<td>364</td>
</tr>
<tr>
<td>S_5</td>
<td>302.233</td>
<td>486</td>
</tr>
<tr>
<td>S_6</td>
<td>363.2</td>
<td>508</td>
</tr>
<tr>
<td>S_7</td>
<td>291</td>
<td>383</td>
</tr>
<tr>
<td>S_8</td>
<td>265.5</td>
<td>400</td>
</tr>
<tr>
<td>S_9</td>
<td>315</td>
<td>438</td>
</tr>
<tr>
<td>S_{10}</td>
<td>271.6</td>
<td>387</td>
</tr>
</tbody>
</table>
ABM Modeling Process Overview

ODD: Overview & high-level design components

- Problem/research question articulation
- Patterns for explanation
- Model scope/boundary selection (endogenous, exogenous, ignored)
- Key entities & their relationships
 - Agents (&collectives)
 - Environment
 - Nesting hierarchy
- Output of interest

ODD: Design components & details

- State charts
- Parameter & state variables
- Qualitative State charts
- Influence & Causal loop diagrams
- Multi-agent interaction diagrams
- Process flow structure
- Key events

- Specification of:
 - Parameters
 - Quantitative causal relations
 - Decision/behavior rules
 - Transitions
 - Interactions
 - Messaging & handlers
 - Resources
 - Relationship dynamics
 - Mobility dynamics
 - Initial conditions

- Reference mode reproduction
- Matching of intermediate time series
- Matching of observed data points
- Constrain to sensible bounds
- Structural sensitivity analysis

- Model Calibration
- Model Testing
- Policy Evaluation

- Parameter sensitivity analysis
- Cross-validation Formal w/Discovered Patterns
- Robustness tests
- Extreme value tests
- Unit checking
- Problem domain tests

- Specification & investigation of intervention scenarios
- Investigation of hypothetical external conditions
- Cross-scenario comparisons (e.g. CEA)

- Knowledge Translation
- Learning environments (e.g. DISimS)
- Visualizations
Contact Tracing Simulation

We can make it better!

Network type
- Random
- Small world
- Scale free

Network Settings
- Connect Per Agent
 Notes: Connects Per Agent is for Random and Small World Networks
- Neighbourhood Link Prob
 Notes: Link Prob is for Small World Networks
- ScaleFreeM
 Note: ScaleFreeM is for Scale Free Networks

Parameter Settings
- Simulation Fraction of RI
- Simulation Fraction of NonRI
- **Enable Database**

Contact Tracing Policy Selection
- No Contact Tracing Program
- Contact Tracing With Priority

Contact Tracing Priority Settings (Weight)
- **Age Priority**
- **Ethnicity Priority**
- **RR of Count Priority**

Contact Tracing Targets
- Tracing Infectious Active TB Cases ONLY
- Tracing All Active TB Cases
- Tracing Infectious Active TB Cases and Primary TB

Contact Tracing Percentage on Average

Average Percentage of Contacts to Investigate:

Scenario Information

Description
Key Take-Home Messages from this Lecture

• Models express dynamic hypotheses about processes underlying observed behavior

• Frequently observed behavior is “emergent” – it is qualitatively different than the behavior of any one piece of the system, or a simple combination of behavior of those pieces

• Models help understanding how diverse pieces of system work together

• ABM focus on agent interactions as the fundamental shapers of dynamics

• Models are specific to purpose