
Introduction to the Anylogic
Interface by Building Up a Simple

Networked Model

Nathaniel Osgood
MIT 15.879

March 2, 2012

Add a New Model Project

Filling in the Model Project Details

 Enter name
MinimalistNetworkABMModel

Project Window

Add an Active Object Class

Filling in the Agent Class Details

Updated Project Window

Recognizing “Person” as an “Agent”

Check this box
(in the “Properties” Window)

Note Resulting Difference in
Project Window

Person as a generic
“Active object”

Person as an agent

Resulting Project Window

The “*” means that the model has
Changed since the last time it was
saved. You should consider saving
the model when you see this!

AnyLogic Interface Elements

Problem
window
(indicates
problem
“Building”/
simulating
Model)

Palette window for adding items to
canvas

The Project window
(overview of projects & components)

Properties
window
(shows info on
selected element in
project or palette
window)

Note: Double-Clicking on a Tab opens view as Full-Screen

If Windows are Missing…

 Use the “View” menu to make sure
they are enabled (name should be checked)

Hover over “Minimized” Icons to See Name.
Click on to Restore to Full Size

Note name in “tab tip” pop up.
Click on this to restore window

The “Project” Window

“Agent” classes
(Define the actors)

“Main” class
(Defines the “Stage” on
which agents circulate)

“Experiment” classes
(Define the
Assumptions for
Simulation scenarios)

Key Customized “Classes”
• The structure of the model is composed of

certain key user-customized “classes”

• “Main” class
– Normally just one instance

– This will generally contain collections of the other
classes

• “Agent” classes
– Your agent classes

– There are typically many instances (objects) of these
classes at runtime

• “Experiment” classes
 These describe assumptions to use when running the

model

Varieties of “ActiveObject”

Creating a Visual Representation

• Agents and Main classes can be associated
with visual representations

• These representations can give us a clearer
sense of agent behavior

Open Up Canvas for “Person”
(In case it is not already open)

this is an Agent class, which defines
the Characteristics & Behaviour of

Agent Population Members

“Double Click Here

Agent “Class”
• A particular agent “class”

defines “what it means”
to be that particular type
of agent in our model with respect to characteristics
(static [“parameters”], dynamic [“state”]), behaviour &
appearance.
– e.g. a “Person” class defines “Personhood” (“Personness”)

• A given agent “class” will often have many particular
representatives (instances) during simulation
– e.g. While there may be just one “Person” class, there may

be many specific People circulating within a model

• Our model may have define types of agents (e.g.
Persons, Doctors; Hares & Lynxes), each with one or
more accompanying populations

What is a Class?
• A class is like a mold in which we can cast particular

objects
– From a single mold, we can create many “objects”
– These objects may have some variation, but all share certain

characteristics – such as their behaviour
• This is similar to how objects cast by a mold can differ in many

regards, but share the shape imposed by the mould

• In object oriented programming, we define a class at
“development time”, and then often create multiple
objects from it at “runtime”
– These objects will differ in lots of (parameterized) details, but

will share their fundamental behaviors
– Only the class exists at development time

• Classes define an interface, but also provide an
implementation of that interface (code and data fields
that allow them to realized the required behaviour)

A Critical Distinction:
Design (Specification) vs. Execution (Run) times

• The computational elements of Anylogic support
both design & execution time presence & behaviour

– Design time: Specifying the model

– Execution time (“Runtime”): Simulating the model

• It is important to be clear on what behavior &
information is associated with which times

• Generally speaking, design-time elements (e.g. in
the palettes) are created to support certain runtime
behaviors

A Familiar Analogy

• The distinction between model design time & model
execution time is like the distinction between

– Time of Recipe Design: Here, we’re

• Deciding what exact set of steps we’ll be following

• Picking our ingredients

• Deciding our preparation techniques

• Choosing/making our cooking utensils (e.g. a cookie cutter)

– Time of Cooking: When we actually are following the
recipe

• A given element of the recipe may be enacted many times
– One step may be repeated many times

– One cookie cutter may make many particular cookies

Cooking Analogy to an Agent Class:
A Cookie Cutter

• We only need one cookie cutter to bake many
cookies

• By carefully designing the cookie cutter, we can
shape the character of many particular cookies

• By describing an Agent class at model design time,
we are defining the cookie cutter we want to use
– Just like the shape of one cookie cutter gets reflected in

many particular cookies
• One agent class has many particular “instances” (Persons)

• The visual representation of that class gets spread around

• One visual element in the design of a class can become many
during simulation

Classes: Design & Run Time Elements

• The AnyLogic interface makes critical use of a
hierarchy of classes (e.g. Main, Agent classes,
Experiment classes)
– These classes each represent the properties &

behaviour of one or more particular objects at
runtime

– We will be discussing this hierarchy more in a later
session

• Each of these classes is associated with both
– Design time interface (appearance at design time)

– Run time elements (presence of the class object and
instances of the class when running the simulation)

Design Time Components
• Properties for entities

– Values to use at runtime/Bits of code/Data
types/Initial values of state variables/parameter
values

• Declaring & manipulating variables, parameters,
functions, etc.

• Defining the visual elements to use for each
agent

• In an agent-based model, we have only one
“class” for each type of object (e.g. “Person”,
“Doctor”)
• The populations of agents are just “instances” of this class

Agent Class Defines the Characteristics &
Behaviour of Agent Population Members

Scroll up and left a bit, until see
a Crossing of two (slightly)
thicker lines

Adding an Oval to Represent Agent

Click on the “Presentation” tab
in the “Palette” window

Click here, and then drag it to the
“origin”.
Then use the “handles” around the
Oval to adjust its size to roughly the
size seen here (radius 1; diameter 2)

Open Up Canvas for “Main”
(In case it is not already open)

Double Click Here

“Main” Class: The “Stage” for Agents
• Defines the environment

where agents interact

• Defines interface &
cross-model mechanisms

• The Main object normally contains one or more
“populations” of “replicated” agents
– Each population consists of agents of a certain class (or a

subclass therefore), e.g.
• “Hares”

• “Lynxes”

– The agent classes are defined separately from the Main
class We will now add an Agent (Person) population to the

“Main” Class

Agent Populations in the Main Class

• Through the “Replication” property, the number of
these agents can be set

• The “Environment” property can be used to
associated the agents with some surrounding
context (e.g. Network, embedding in some
continuous space, with a neighborhood)

• Statistics can be computed on these agents

• Within the Main class, you can create
representations of subpopulations by dragging from
an Agent class into the Main class area

To Add an Agent (Person) Population:
Drag From “Person” into the Canvas for “Main”

Specifying the Population Name & Size

Name: Enter “population” (without quotes!)

Replication (population size): Enter
“100” (without quotes!)

A (default) Experiment
Specifies assumptions
for a particular scenario
(e.g. population size,
pathogen contagiousness,
etc.)

Experiment Classes
• Experiment classes allow

you to define & run
scenarios in which global
“parameters” (i.e. assumption
quantities defined in Main) may hold either default or
alternative values

• Experiment classes are also used to set
– The time horizon for a simulation

– Memory limits (important for large models)

– Details of simulation run

– Details on random number generation

– Virtual machine arguments

• “Properties” allow one to set the values for each parameter

• Right click on these & choose “Run” to run such a scenario

Let’s Simulate the Model!

Right click on Experiment named
“Simulation” , and select “Run”

Initial Simulation Screen

Press this button to switch to the model
presentation display

An Uninspiring Display

All agents (Persons) in population are identical
– and are clustered up here!

Our population has size 100

A Magnified View

“Right Click” & Drag to “Pan” (“Pull”) viewer

Stop Simulation

Press this button to stop the
simulation

Agent Populations Live in Main Class
• Through the “Replication” property, the number of

these agents can be set

• The “Environment” property can be used to
associated the agents with some surrounding
context (e.g. Network, embedding in some
continuous space, with a neighborhood)

• Statistics can be computed on these agents

• Within the Main class, you can create
representations of subpopulations by dragging from
an Agent class into the Main class area

From “Model” Area of “Palette” Window
Add an “Environment” to the Model

Click on the “Model” label
in the “Palette” window

1) Click here (“Environment”)
2) Click somewhere on the
canvas

Tell the Population to let the
Environment Control its Location

Run the Model: Environment
Distributes Agents Around Space

Run the Model: Environment
Distributes Agents Around Space

Recall: A Familiar Analogy

• The distinction between model design time & model
execution time is like the distinction between

– Time of Recipe Design: Here, we’re

– Time of Cooking: When we actually are following the
recipe

The Notion of a “Build”

• We prepare a fully specified model to run a
simulation using a “build”
– If all goes well, this translates project to executable Java

– This may alert you to errors in the project

• A “compiler” is a tool to convert from a
program’s specification (e.g. state charts,
Action diagrams, etc.) to a representation that
can be executed
– Normally a compiler is applied to each of several

components of a program (e.g. classes)

– AnyLogic’s “build” process applies a compiler to the
components of the AnyLogic model

Cooking Analogy to “Build”ing:
Obtaining & Preparing the Ingredients

• Before we can actually realize the recipe, we
need to go collect & prepare all ingredients

• We’re not yet cooking, but what we are doing
makes the cooking possible

• The “cooking” here is running the model

Open Up Canvas for “Person”
(In case it is not already open)

“Double Click Here

Let’s Place the Agents in a Network

• Steps

– Tell the Environment that we want to situate the
agents in a (here, distance-based) network

– Specify the attributes of the network (here, the
distance threshold up to which agents are
considered connected)

– Give agents a way of appearing visually connected

Setting Network Type in the Environment
Open “Main”, Click on “environment”, and go to the

“Advanced” tab in “Properties” window

Set “Network type” to “Distance based”
Set “Connection range” to 50

Let’s Place the Agents in a Network

• Steps

 Tell the Environment that we want to situate the
agents in a (here, distance-based) network

 Specify the attributes of the network (here, the
distance threshold up to which agents are
considered connected)

– Give agents a way of appearing visually connected

Adding a Line to Represent Connections

Click on the “Presentation” label
in the “Palette” window

 Click here, and drag
to the center of the “oval”

Adding a Line to Represent Connections

NB: The “+” on the end of
the line should be at the
centre of the oval
(The lines are directional)

Close-Up

If you are Initially Unsuccessful in
Placing the Line in the Circle …

• Place the line on the canvas

• A line looks like this:

– Pull the end with a small “+”
into the very center of the circle

– The “dotted” end can dangle

Run the Model: An Uninspiring Sight

We Need to Multiply & Adjust the Lines

• Right now, there is only 1 line per agent

• We need

– One line per connection between one person and
another

– The lines to connect the two persons

Duplicating the Lines for Each
Connection

Make sure the line
remains selected
(Click on it if not!)

Select
the
“Dynamic”
tab!

“Replication” should read
“this.getConnectionsNumber()”
(i.e. we seek 1 line per connection)

Example of Where to Insert Code
Presentations Properties

• “Dynamic”
properties of
presentation
elements
(especially
of Agents)

Tips to Bear in Mind While Writing Code
• Click on the “light bulb” next to fields to get

contextual advice (e.g. on the variables that are
available from context

• While typing code, can hold down the Control key
and press the “Space” key to request
autocompletion
– This can help know what parameters are required for a

method, etc.

• Java is case sensitive!

• Can press “Control-J” to go to the point in Java
code associated with the current code snippet

• Can press “build” button after writing snippet to
increase confidence that code is understood

Example of Contextual Information

Autocompletion Info (via Control-Space)

Known AnyLogic Bug –
Save, Quit & Restart AnyLogic

We need to Multiply & Adjust the Lines

• Right now, there is only 1 line per agent

• We need

√ One line per connection between one person and another

– The lines to connect the two persons

• This requires each line (i.e. the line associated with each
connection) to be adjusted so that it goes between the position
of the current agent (Person) and the position of the other
person to whom the connection relates

Scroll Down to “dX” Property

Clicking on “Lightbulb” gives
hint, noting that the “index” is
variable is defined as the
connection number for this
Person.

Geometry to Connect Agents
Index Agent A

Position: (Xa,Ya)

Position: (Xb,Yb)

Xb-Xa

Yb-Ysa

A Few Useful Points
• Agents are “objects” in Java (self-contained

structures with state & behavior)

• The reference to the current agent is called “this”

• If we have a reference, we can request information
from it by “calling” a method on it

• To get a reference to the ith person connected to
“this”, we call “this.getConnectedAgent(i)”

• To get the X or Y position of “this”, we “call”

 “this.getX()” or “this.getY() ”, respectively

Geometry to Connect Agents

this

Position: (this.getX(), this.getY())

Xb-Xa

Yb-Ya

Position:
(this.getConnectedAgent(index).getX(),
this.getConnectedAgent(index).getY())

Setting Per-Instance
Additional Properties

Formula for “dX “ should be
this.getConnectedAgent(index).getX() - this.getX()

Formula for “dY “ should be
this.getConnectedAgent(index).getY() - this.getY()

Result of Running the Model

AnyLogic: Above & Below the “Hood”

• One of AnyLogic’s greatest strengths is the presence of
diverse & powerful declarative mechanisms for building
models
– These let you focus on the “what” you are modeling, rather than

“how” it will be implemented
– AnyLogic will take care of figuring out the “how”
– This is in contrast to writing code in a general purpose computer

language, which generally requires specifying more of the how

• For Anylogic, declarative mechanisms include statecharts,
stock & flow diagrams, “action” flow charts & process maps

• Other familiar declarative mechanisms include spreadsheet
formulas and stock & flow diagrams.

• For most interactions with AnyLogic, you will be able to
specify your intentions using these declarative mechanisms

• On occasion, you will need to write & look at Java code

A Bit on “Java”…
• “Java” is a popular cross-platform “object oriented”

programming language introduced by Sun
Microsystems

• Anylogic is written in Java and turns models into Java

• AnyLogic offers lots of ways to insert snippets (“hooks”)
of Java code

• You will need these if you want to e.g.
– Push AnyLogic outside the envelop of its typical support

• e.g. Enabling a network with diverse Agent types

– Exchange messages between Agents

– Put into place particular initialization mechanisms

– Collect custom statistics over the population

Stages of the Anylogic Build

Person.class

Java Code
JVM
Byte
Code

Modification Not Possible Modification
Possible

“Build” Buttons
(One just for this project, one for all projects)

Build all projects

Build just this
project

Alternative: Building via Context Menu

Builds Gone Bad: The “Problems View”

Builds Gone Good: Model Execution

• The simulation is running

• Time is advancing in steps or as necessary to
handle events

• Each agent class will typically have many
particular agents in existence
– Each agent will have a particular state

– This population may fluctuate

• Variables will be changing value

• Presentation elements will be knit together into
a dynamic presentation

Save Away Your Model

• Multiple ways

– Right click on project name in “Project”
window, and choose “Save”

– If you are currently working on your
project, either

• Press “disk” icon

• Use “Save” item on
“File” menu

