Discrete Intra-Agent Dynamics: Statecharts

Nathaniel Osgood
MIT 15.879

March 7, 2012
Hands on Model Use Ahead

Load Previous Built [& Provided] Model: MinimalistNetworkABMModel
Adding “Color” Variable

This is the name of a Java class!

Make sure this is in lower case!

Fill in the type and Initial Value (watch for correct case!!)
Make Oval “Color” property Use Variable

Make sure you have selected the Oval by clicking on it!

Make sure you have selected the “Dynamic” tab!
Discrete Agent Dynamics

- Frequently we can represent agent behaviour using as transitioning among a set of mutually exclusive and collectively exhaustive states in a “state chart”
- For a given simple statechart, the agent is in exactly one state at a time
- Fixed transitions between states define possible evolution
- The transitions between states occur instantaneously, based on some condition
Add Entry Point of State chart

The associated text is the name of the statechart!
Add in “Susceptible” State
Connect with Entry Point

When this really connects, The circle should be green. (see tip at end of presentation)
Fill In Code to Color Green when Enter State

```java
fillColor = Default
entryAction =
color = GREEN
```
Adding in “Infective” State
Set to Color Red when Enter State
Discrete Agent Dynamics: Transitions

- Many transition conditions are possible
 - Timeout: Spending some period of time in the state
 - Fixed rate: Leave state with some fixed change per unit time
 - This is similar to “first order interarrival time”, and is conceptually linked to the operation of first-order delays in stock & flow diagrams
 - Variable rate: If desired, we can change the rate over time – *but Anylogic only “notices” changes when eg agent re-enters the state*
 - Message received: We can transition when a message (any message or particular type of message) is received
 - Predicate: Only transition when condition becomes true
- These transitions can be conditionally “routed” via branches
 - Conditions can determine to what destination state a particular transition will travel
Adding Fixed Rate Transition

When this really connects on both sides, circles should be green.

This implies mean time

Susceptible = 100
Tip: Beware Loose Connections
Tip: Confirming Transition Connectivity

• Ensure that both sides of the transition show green circles when connected
 – Otherwise, may appear connected but will actually be disconnected!
Rates & Flows

• Some may have seen fixed rates before – in the form of “transition rates” in Compartment models

• Within a Compartment/SD model, a flow out of a stock was commonly set by the multiplication of the
 – State variable (Stock)
 – Some rate of transition

• We use different names for these rates
 – “Transition rates”
 – “Likelihood of transition per Unit Time”
 – Transition (e.g. “infection”, “mortality”) “hazard”
The rates (hazards) for these flows are just the reciprocal of the corresponding mean time in stock (delay).
Example Fixed Transition Rate/Hazard

- Immigration Rate
- Annual Risk of Death (alpha)
- Immigration
- People (x)
- Deaths
Example Fixed Transition Rate/Hazard

The transition rate is the reciprocal of this number i.e.

\[
\frac{1}{\text{Mean time until Death}}
\]

People with Virulent Infection/Mean time until Death =

People with Virulent Infection*(1/Mean time until Death)

i.e. People with Virulent Infection*Rate
Fixed Rates: Transition “Hazards”

• With “fixed rates”, we are specifying rates of transitions

• Because we are dealing with the chance that each individual transitions, we don’t need to multiply by the number of people at risk
 – Here, there is just 1 person at risk!

• As in Compartment models, these rates can change over time, but the statechart needs to be “made aware” of these changes (see later)
 – Leave & go back into current state (circular transition)
 – Trigger “change” event in Agent
Adding Infection Clearance Transition
Run the Model!
Completing Set-Up

Press this button to start model execution

Run the model and switch to Main view
Model Presentation
Transition Type: Fixed Residence Time (Timeout)
Example of Processes Associated with Fixed Timeouts

• Aging

• Tightly defined time constants associated with natural history
 – While these may be described as associated with a broad distribution (e.g. with a 1st or 2nd order delay), much of that variability may be due to heterogeneity
 – \textit{For a given person, these may be quite specific in duration} \implies \textit{Can capture through a timeout}
What Happens if this Depends on a Timeout?

- Set the “Infection” transition to Trigger based on a “Timeout”

- Make the “Timeout” 100

Now run the model, and observe the difference
Hands on Model Use Ahead

Load model: TBv1.alp
Transition Type: Variable Rate
Example Transition Rate/Hazard

- Mean Contacts Per Susceptible per Year
- Mean Infectious Contacts Per Susceptible per Year
- Total Population

Force of Infection (Likelihood Density of Infection per Susceptible)

- Probability of Transmission between Infective and Susceptible
- Initial Population

Susceptible
- New infections

Infectious
- New Recovery
- Recovery Delay
- Prevalence of Infection

Temporarily Immune
- Loss of Immunity Delay

Cumulative Illnesses
- New Illnesses
- Newly Susceptible
The self-transition will “make the state realize” that the rate associated with any out transition (e.g. this one) has changed.
Example Conditional Transition

The incoming transition into “WhetherPrimaryProgression” will be routed to this outgoing transition if this condition is true.
Special Elements: Exit Point

TBProgressionStatechart

TBSusceptible

WhetherInfected

WhetherPrimaryProgression

LTBI

UnDiagnosedActiveTB

DiagnosedActiveTB

Death
Special Elements: Self-Transition
(Use if Wish To Trigger an Action w/o Leaving State)

The self-transition will invoke this action when it occurs
Parallel Statecharts

- By default, each statechart evolves independently.
- If coupling is desired, can make transitions/actions dependent on state of other statecharts.
Comparison with Aggregate Stock & Flows

• As for aggregate stocks & flow, individuals’ states are discrete

• Unlike aggregate stocks & flows
 – One state within a given statechart is active at a time
 – For parallel flows (e.g. comorbidities), there is no need for considering all combinations of the possible states
 – We can keep track of how long an individual is in a given state & adjust the transition rate accordingly
Parallel Transitions

- Example recording the residence time in a state (via a stock with unit inflow -- i.e. just accumulates the time present in that state)
• The **residence time** in the state determines the **transition rate** out of that state.

• Transition rates depending on residence time are generally not possible with aggregate models.
Hands on Model Use Ahead

Load Sample Model:
Predator-Prey Agent Based
(Via “Sample Models” under “Help” Menu)
Advanced Element: Hierarchical States

- The **outermost state** captures time since born (for natural deaths)
- The **middle-state captures** time since last ate (for deaths by hunger). [Eating reenters]
- The **inner state transition** captures hunting frequency & success
Natural Death Transition
Death By Hunger
(Note that Depends on Time in State – i.e. time Since last ate)
Eating Transition Leaves & Reenters
Middle State
Tips on Statechart Code

• Each State & Transition has an integer index
 – This is accessed via a (static) constant holding the name of state within the statechart class (`statechart.StateName`)

• To determine length of time spent in state
 – `StateName.getLocalTime(StateIndex)`

• To determine current state
 – `statechart.getActiveSimpleState()`

• To find out if a state (either simple or composite) is currently active
 – `statechart.isStateActive(StateIndex)`