Basics of Java:
Values & Expressions & Variables

Nathaniel Osgood
MIT 15.879

April 4, 2012

Recall: Method Bodies & “Statements”

Method bodies consist of

\ Comments (mostly ignored by “build”)
\ Variable Declarations
— Statements (most involving “Expressions”)

What is a Value?

* Avalue is a single quantity (that cannot be
further evaluated)

e Values can be of different “types” (where a
type describes the legal universe of possible
values)

— Integers (e.g. 2, -10)

— Floating point values (e.g. 2.5, 3.14159, 0.0, 1.0)
— Characters (e.g. ‘a’, ‘b’)

— Boolean (e.g. true/false)

— Reference to objects that are instances of classes
(e.g. Person, String, Main, Simulation, etc.)

Java “Expressions”

* A Java Expression computes (“evaluates to”) a
value, typically based on other values of the same
of different types

— This is like a “formula” to compute a value

— For years, you have likely been writing expressions in
algebra, using them in Excel, in calculators, etc.

 Examples: “2*5” “1.0/3” “(a+b)*c”, “a>b”,
“this.getConnectedAgent(i).name”

* In the process of computing the value, it may cause
some changes to “program state” (e.g. change the

value of a variable”
* Assighment expression

In most pqﬁy-ér}gA%W_%gw%ants a value, we can give it a Java Expression.

Common Java Expressions

Literal (3.5, 1, “my string”, { 1, 2.71, 3.14, 0}, null)
Comparison (a>b,a==b, a<=b)

Mathematical Operators (+,-,/,*) Can be “overloaded”
to mean other things (e.qg. + as concatenation)

“Dereferencing”: Looking up field or value b in a
reference to an object a: (a.b) (ais a reference to an
instance of a class; b is a name of a field or method
associated with the class of a, and thus with the object)

Ternary operator: (predicate ? a : b)

Potentially causes changes (Side effecting)

— Assignment (a=b) Left hand side is some location (variable,
field, etc.) and variants (a++, ++a, a+=2, a*=5)

— Method call (function call): this.get Main()

Additional Common Operators

Boolean expressions
— a&&b (logical and), a| | b (logical or), !a (logical not)

Indexing: a[20], a[getConnectionsNumber()-1]
— Must value preceding must denote an array

Method call: f(2,3)

For strings
strA+strB (concatenates strings)

Reading Java Expressions

* Generally, expressions are calculated from
“inside out”, and left-to-right

— e.g. a.getConnectedAgent(i).getName().length
* Expressions are routinely “strung together” in

this way (e.g. where the left components
return values used by the right components)

Variable Declarations
* Most java variable denotes location that contains a

value (exceptions: constant vars, type parameters)
* Variables are associated with “types”

— The types describe the sort of values that a variable can
contain (the set of possible values), e.g.

* double: Double precision floating point numbers

* int: (positive & negative): Integer values within some range
* boolean: A dichotomous value, holding “true”, or “false”
 String: A (reference to a) text sequence
e When we “declare” a variable, we indicate its name
& type — and possibly an initial value

* |InJava, the value associated with a variable can
change over time (as location holds different values)

Example Variable Declarations

" AnylLogic Advanced [EDUCATIONAL USE OMLY]

ile Edit Wiew Model ‘Window Help

F-2lE |2 D]

JICE CgIIDD% vIC'{| HE E| Tnoh O @y J?gGetSupport

==l x|

X

o (mo 3 "| &
%2 Project 22 l &5 Search| = O || & Main IE] Elephant 2 l = O & palette 22| T O
(5] Elephant ;I F [d ¥ Model oo
Parameters behavior
@ drinkingPeriod: 100 — - — @ Parameter
@ smokinglnitiationRateByAgesn @ drirkingperiod FregWandering (* smokingInitiationfateByAgeasndsmokingstatus (0 Flow dux Variable
‘-:b Flain Yariables || [Stock variable
(5~]
o Iggatsc:arFs) thirsty - & Event
L"/e .;wsr . MewDir @ Dyvnamic Ewvent
@, behavior
' GotThirst 9 Plain Yariable
E:] Zr;?\'::‘?s::erlng {3 headingRandom il ok Drrinkivater 5 Collection varisble
O GoTowater (7 headingTawater [GoToWater @ Function
. Drinkister <1l @ Table Function
. initialstate i | _’lJ B Pot
O state "B, Connectar
§ tlenor R © oo | M
% Functions /&, Entry Point
@ Presentation € Elephant - Active Object Class (O state
¥ Main pm— on Step: ;I (‘ Transition
Fxp F - - - . I e s .)
S Advaness sl 1 asmoving(]) Declares a variable “m” that initially contgitygs« e
% Plain variables I Agent errar("Hot moving'" 3; “ ” <> Branch
% Functions ||| Paremeters _ _ a reference to the “Main” object ® ristory state
J 5 — Main m = get Main(): (®) Final State
Drescription « .)
£ rotkens 22 =~ =0 enere o 10 Declares double-precision || ® emwiomen
— : double x = getX(): ‘r .
I Ciz=ailalian I lLeiz=ten ‘ double v = get¥(]: Va rla bleS X & y
F- d- I t- int ¢ = min{ max{ 0, {(int) (x/5) 1, 99)1:
'n 'ng Oca |On int ¥ = min{ wax{ 0, (int) (v/5)), 99 }:

in continuous space
(x,y) & in terms of

Discrete vegetation
§pace (c,r).

Jfdrink if thirsty if in water

if(chirsty es m.alticude[e][r] < O deares integer values

hehavior.receivelMezsage | "Drink"):

Jidemolish trees at current cell,
if [w.wvegetation[c] [r] > 10000)
w.vegetation[c] [r] —-= 10000;

c & r, and sets equal to the

if any

column & row for this elephant

1 Action

ila Analysis

B Presentation
[Connectivity

Enterprise Library

&2 More Libraries. ..

sE

In the vegetation array

ﬂ-‘OﬁfstyreTSHﬁtré"rbe In

|

“separate runction

Location (L-Values) and Assighment
 Some expressions (“L-values”) denote locations

)«

— A variable name (“this”, “mother”, etc.)

— A field name off of some reference (e.g. this.color,
p.ethnicity, this.get_Main().populationSize)

— Array references (a[20], b[i])

* The assignment operator (and its variants) puts a
new value into the specified location
— age=0
— this.color=Color.red
— p.ethnicity=randomEthnicity()
— this.get_Main().populationSize=100

Varieties of Variables

e Java variables can be found in many different
contents.

* These variables exhibit a uniformity of general
use, but differ in terms of their

— Lifetimes (scope)
— Accessibility

Some Common Varieties of Variables

e Variables associated with a method
— (Java) Formal parameters

— Local variables (associated with statement blocks)

* Fields (“Instance variables”): Variables
associated with objects

e Class variables: Variables associated with the
class rather than objects of that class

* NB: There are other types of variables not
covered here (e.g. type parameters for generics)

Variable Scope

The location associated with a variable only exists
for a certain length of time

In many — but not — all cases, the lifetime of the
variable’s location can be considered the same as
the time over which we can access this location

We term the “scope” of the variable the region of a
Java program that can “see” the variable

If we have a variable that refers to an object (i.e.
that holds a reference to an object), and the
variable disappears, the object need not disappear!

— There may also be many other references to this object !

Variable Lifetimes/Scopes

Parameter Method
Local variable Enclosing statement
Field As long as object exists (until last

reference is eliminated)

Static (“class”) variable As long as class is loaded (most
commonly, entire duration of execution)

Variables and Assignment Expressions

* Because (most) variables denote locations,
such variables can be assigned to

— Exceptions: Const variables, type parameters
e As an inheritance from the “C” language, Java

supports a rich repertoire of assighment
expressions

a=b, a+=b, a*=b, a/=b, a-=b, a++, ++a, a--, --a

Variables and Assignment Expressions
Assignment Variants

* These variants provide useful shorthand to
— Get a value just before/after modifying it (danger!)

— Update a value based on its previous value &
return the resulting value

Post- and Pre- Increment / Decrement

Suppose before any of the below, we have a=3

a++ (post-increment: returns current value of a, but
increments a by 1 immediately thereafter). This will evaluate
to 3, but a will be 4)

++a (pre-increment: increments a by 1 and returns resulting
value of a). This will return 4, and a will be 4)

a-- (post-decrement: returns current value of a, but
decrements a by 1 immediately after). This will evaluate to
3, but a will be 2)

--a (pre-decrement: decrements a by 1 and returns resulting
value of a). This will return 2, and a will be 2)

Operate & Assign

* These operators perform some calculation based on the
existing value in a location, update the value in that
location with the resulting value, and return that result

* Here, the location is always updated with the value that
results from the calculation

* Suppose before any of the below, we have a=3
e a*=2 (will evaluateto 6; a willbe6) a=(a* 2)
 a/=3 (willevaluateto1;awillbel) a=(a /3)

e a+=2 (will evaluateto5;a willbe5) a=(a+2)
e a-=2 (will evaluateto 1; awillbe 1) a=(a—-2)

NB: Generalizability of the Preceding

* Because all of the preceding operate on I-
values (names for locations), they can be
applied to other |-values, e.g.

al[20]++
p.getConnectedNeighbor(2).income *= 2

Assignments and References

* When we have a location whose associated
value is a reference to an object, and assign
another reference (possibly null) to that
location, the stored reference (not the object)
that is changed

e Suppose we have
— a.mother=m

— a.mother=this.get_Main().population[2] // This
assinment changes the references value stored in
a.mother — but doesn’t affect the reference of m

At Start

m agelint]: 40
mother [Person]:
isMale
[boolean]:False

age[int]: 4
mother [Person]: null
isMale [boolean]:True

ocoe
" @ eeeeee

After a.mother=m

m agelint]: 40
mother [Person]:
isMale
[boolean]:False

age[int]: 4
mother [Person]:
isMale [boolean]:True

ocoe
" @ eeeeee

After
a.mother=this.get Main().population[2]

agelint]: 40
mother [Person]:
isMale
[boolean]:False
age[int]: 4
mother [Person]:
isMale [boolean]:True

