
Methods and Functional Abstraction

Nathaniel Osgood

MIT 15.879

May 2, 2012

Building the Model Right:
Some Principles of Software Engineering

Technical guidelines
• Try to avoid needless complexity

• Use abstraction & encapsulation to
simplify reasoning & development

• Name things carefully

• Design & code for transparency &
modifiability

• Document & create self-
documenting results where possible

• Consider designing for flexibility

• Use defensive programming

• Use type-checking to advantage
– Subtyping (and sometimes

subclassing) to capture commonality

– For unit checking (where possible)

Process guidelines
• Use peer reviews to review

– Code
– Design
– Tests

• Perform simple tests to verify
functionality

• Keep careful track of experiments
• Use tools for version control &

documentation & referent.integrity
• Do regular builds & system-wide

“smoke” tests
• Integrate with others’ work

frequently & in small steps
• Use discovery of bugs to find

weaknesses in the Q & A process

The Challenges of Complexity

• Complexity of software development is a major
barrier to effective delivery of model value

• Complexity leads to systems that are late, over
budget, and of substandard quality

• Complexity has extensive impact in both human &
technical spheres

• Achieving modularity in a model is key to reducing
complexity of model development

Why Modularity?
• As a way of managing complexity: Allows

decoupling of pieces of the system
– “Separation of Concerns” in comprehension &

reasoning

– Example areas of benefit
• Code creation

• Modification

• Testing

• Review

• Staff specialization

– Modularity allows ‘divide and conquer’ strategies to
work

• As a means to reuse

Abstraction: Key to Modularity
• Abstraction is the process of forgetting certain

details in order to treat many particular
circumstances as the same

• We can distinguish two key types of abstraction
– Abstraction by parameterization. We seek generality by

allowing the same mechanism to be adapted to many
different contexts by providing it with information on
that context

– Abstraction by specification. We ignore the
implementation details, and agree to treat as acceptable
any implementation that adheres to the specification

– [Liskov&Guttag 2001]

A Key Motivator for Abstraction:
Risk of Change

• Abstraction by specification helps lessen the
work required when we need to modify the
program

• By choosing our abstractions carefully, we can
gracefully handle anticipated changes

– e.g. Choose abstracts that will hide the details of
things that we anticipate changing frequently

– When the changes occur, we only need to modify
the implementations of those abstractions

Abstraction by Parameterization

• Major benefit: Reuse
– Common needs identified

– Elimination of need to separately
• Develop

• Test

• Review

• Debug

• Diverse forms
– Functions: Formal parameters

– Generics/Parameterized types

– Cross cutting: Aspects (parameterized by pointcuts)

Parameterization

• We can parameterize functions, so that the values
that they yield depends on the values passed to
them as “arguments” by callers

– This allows flexibly: A function can be used somewhat
differently in different contexts

– While parameters may differ, the behavior of the
function will typically be the same

Examples of Parameterization

• We may build a function that identifies all people
who have been smokers for more than n years

– n here is a parameter! Different contexts, we might be
interested in different n.

• We may wish to count the number of people of a
certain sex

– Rather than independently creating separate methods
for Males and Females, we may create a method that is
called CountPopulationOfSex that takes a parameter that
specifies the sex of interest

Types of Abstraction in Java
• Functional abstraction: Action performed on data

– We use functions (in OO, methods) to provide some
functionality while hiding the implementation details

 We are concentrating on this today

• Interface/Class-based abstraction: State & behaviour

– We create “interfaces”/“classes” to capture behavioural
similarity between sets of objects (e.g. agents)

– The class provides a contract regarding

• Nouns & adjectives: The characteristics (properties) of the
objects, including state that changes over time

• Verbs: How the objects do things (methods) or have things
done to them

Functional Abstraction

• Functional abstraction provides methods to do some
work (what) while hiding details of how this is done

• A method might

– Compute a value (hiding the algorithm)

– Test some condition (hiding all the details of exactly what
is considered and how): e.g. ask if a person is susceptible

– Perform some update on e.g. a person (e.g. infect a
person, simulate the change of state resulting from a
complex procedure, transmit infection to anther)

– Return some representation (e.g. a string) of or
information about a person in the model

Encapsulation: Accompanies Abstraction

• Separation of interface from implementation (allowing
multiple implementations to satisfy the interface)
facilitates modularity

• Specifications specify expected behavior of anything
providing the interface

• Types of benefits
– Locality: Separation of implementation: Ability to build one

piece without worrying about or modifying another
• See earlier examples

– Modifiability: Ability to change one piece of project without
breaking other code

– Some reuse opportunities: Abstract over mechanisms that
differ in their details to only use one mechanism: e.g. Shared
code using interface based polymorphism

Why Use Functional Abstraction?
• Easier modifiability: Only one place to update

• Transparency : What the code does is clearer

– Can communicate intention from clear name

– Reduced clutter throughout code: Don’t have to look at
all the gory details of the how every time want to
undertake this task

• Easier later reuse

• Reduced complexity lowers risk of programming
error

Using Functional Abstraction in AnyLogic

Using Functional Abstraction in AnyLogic:
Example Functions

Hands on Model Use Ahead

Load Sample Model:
ABMModelWithBirthDeath

(Via “Sample Models” under “Help” Menu)

A Function’s Definition

Another Example

A Closer Look at the Code…

What is called a “function” in AnyLogic is
classically called a “Method” in Object

Oriented Programming

Methods
• Methods are “functions” you can call on an object

• Methods can do either or both of
– Computing values

– Performing actions
• Printing items

• Displaying things

• Changing the state of items

• Consist of two pieces
– Header: Says what “types” the method expects as

arguments and returns as values, and exceptions that
can be thrown

– Body: Describes the algorithm (code) to do the work (the
“implementation”)

Method Bodies
• Method bodies consist of

– Variable Declarations

– Statements

• Recall: Statements are “commands” that do
something (effect some change), for example
– Change the value of a variable or a field

– Return a value from the function

– Call a method

– Perform another set of statements a set of times

– Based on some condition, perform one or another
set of statements

Method “Parameters” or “Arguments”
• Parameters passed to the method are accessible

within the method body

• These parameters are only available inside the
method
– Once the method exits, these parameters are no

longer available

– The fact that we have a parameter named “a” does
not change any value of “a” outside the method
• If we refer to “a” within the method, we will be referring to

the value of the parameter

• After we leave the method, “a” will refer to whatever it did
before the method call

• In most (i.e. non-static) “Methods”, “this” is passed
implicitly as a parameter – to tell the method on what
object we have invoked this method

Pass by Value & Modifying Parameters
• In Java, changing the value of the parameters does not

modify the values of variables passed to this method

– Note, however, that if a parameter in the method is a
reference to the same object as something outside of method,
a change made within method will still be visible after return

• For example, if we had

 void MyMethod(double a) { a = 5.0; }

And we had this use of it

 double b;

 b = 2.0;

 MyMethod(b);

 // b would still be 2.0 here

Reminder

EstablishOffspringConnectionsBasedO
nMothersConnections

Consider How one Method Calls Another

Prior to the method call

After the
method call

The “Flow of Control”

PerformBirth

EstablishOffspringConnectionsBasedOnMothersConnections

PerformBirth

Method call

Return
(here, implicitly
at end of method)

“PerformBirth” resumes after the method call

The Call Stack
• Because one function can call another (and so

on), and then return, we need a way of keeping
track of “where we were” when we resume
execution after the return
– What the values of “local” variables are
– Where in the program

• The call stack is the structure that performs this
function
– Method variables live on the “call stack”
– When one method calls another, the new method’s

variables are placed in an “activation record” or “stack
frame” on the call stack

• You will sometimes encounter the call stack in
– Error messages
– The AnyLogic & Eclipse Debuggers

Recall: Code for “PerformBirth”

Prior to the method call

After the
method call

A call from
EstablishOffspringConnectionsBasedOnMothersConnections

Call to “connectTo” to add the mother as a
connection of the offspring

Call Graph (Static)

PerformBirth

EstablishOffspringConnectionsBasedOnMothersConnections

connectTo

Call Stack (Dynamic) for Our Example

Activation record for
(this call to)
PerformBirth

this:
offspring:
mother:

Activation record for
(this call to)
EstablishOffspring…

this
offspring:
mother:

this:
arg0:

Activation record for
(this call to)
connectTo

These variables happen
to be named the same,
but the this “offspring”
doesn’t in any way
“know about” or
interfere with
that “offspring”!

Reinforcing the Previous Points

• Note that because the names and existence of the
parameters inside the method doesn’t affect those outside,
the preceding would still be true if we had the following

 void MyMethod(double a) { a = 5.0; }

And we had this use of it

 double a;

 a = 2.0;

 MyMethod(a);

 traceln(a); // a would still be 2.0 here (it is unaffected
by the fact that we happened to temporarily have
something called by the same name within “MyMethod”

How is this Achieved?

• There is a “call stack”

– Everytime we make a call to
a method, the new parameters get

 placed “on the stack”

• Suppose we had

 this.foo(1,2)

 and suppose we had

 void foo(int a, int b) { this.bar((a+b)*2, b-a); }

a:1
b:2

this:ref to obj
Call to foo

a:6
c:1

this:ref to obj
Call to bar

Methods

• A method can do either or both of

– Compute & return a value

– Perform some action

• Methods come in 2 types

– By far most common: Methods associated with objects
(i.e. with instances of classes)

– Less common: Static methods

Methods Associated with Objects

• These are by far the most common class of
methods

• When we have a method of this sort, it always
takes an implicit parameter called “this”

– This method is always called on an object

• “this” is a reference to the object on which it is called

– This parameter is not stated explicitly, but is
always passed to the method – even if the method
appears to take no “arguments” (parameters)

Examples

p.getConnectionsNumber()

Within the call to the “getConnectionsNumber()” method, “this”
will refer to the same object as does “p” outside

p.getConnectedAgent(0).getName()

Within the call to the “getConnectedAgent” method, “this” will
refer to the same object as does “p” outside

Within the call to the “getName” method, “this” will refer to the
same object as does p.getConnectedAgent(0) outside

Static Methods
• Static methods are associated with a class, and not a

particular object

– Syntactically, these look like Person.nextId()

• Because they are not associated with a specific
object, static methods have no implicit “this”
parameter

• These are much closer to our classic notion of a
“function” (e.g. sin(x), sqrt(x),square(x))

– Like static methods, such classic functions have no object
associated with them

Determining if a Method Needs to be Static

• Does the method need to depend of the value
of some object, or of some information
available through “this”

– This may not be obvious – e.g. to call
“get_Main()”, one needs to have a refrence to the
current Agent

• Given the same values of the arguments,
would the value of the function be identical in
any context?

Example “Static” (Non-Object-Specific) Method

A Hierarchy of Functional Abstractions
• We build up higher-level functional abstractions

out of lower level ones, e.g.
• Implementation of PerformBirth calls

EstablishOffspringConnectionsBasedOnMothersConnections,
which calls connectTo

• The implementation of FractionOfContactsThatSmoke() might
make use of CountSmokingContacts() and CountContacts()

• We might define CountMen() and CountWomen() with
implementation of both just calling CountPopulationOfSex()

• Particularly powerful functional abstractions are
those which are parameterized by functions
– In object-oriented programming, we generally do this

by using polymorphism – passing objects that match
some interface, but whose implementation of that
interface can differ

Methods & Exceptions
• Recall: A functions header can be viewed as defining

part of a contract that says “if you give me these
parameters, I’ll do X for you, and return Y”

– Normally, extra specifications (via comments or formal
guarantees) are needed to make this contract precise

• Because things can go wrong within a method,
exceptions may be thrown within it. To be consistent
with its stated behavior, the method must either

– Handle these exceptions itself

– State explicitly that this sort of exception can be thrown
by it (thus delegating handling of it to calling methods)

Recall: Exceptions
• Not uncommonly, things may “go wrong” during

execution of code

• We frequently want a way to signal that something has
gone wrong
– Stop normal processing of the code

– Go “up” to a context where we know how to deal with
(handle) the error
• Up is defined in terms of the “call stack” – we wish to return to

successive callers until one handles this condition

• To signal such exceptional conditions, java uses
Exceptions

• Exceptions in Java are thrown where they occur &
caught in “handlers” where we wish to handle them

Recall: Try-Catch Statements

try

 { try-block }

catch (ExceptionType1 e)

 { catch-block1 }

catch (ExceptionType2 e)

 { catch-block2 }

…

catch (ExceptionTypen e)

 { catch-blockn }

Exceptions thrown in this block (a
compound statement)
that are (most particularly) of this
exception type are then handled
by running this block

Exceptions thrown in the “try-block”
that are of this exception type are then
handled by running this block

Recall: Output to a File

try
{
 FileOutputStream fos = new FileOutputStream(“file.tab");
 PrintStream p = new PrintStream(fos);
 p.println(datasetName.toString()); //output tab delim vals
}
catch (Exception e)
{
 traceln("Could not write to file.");
}

This cleans up after itself in a generic way, but misses the
opportunity to elicit much greater information using either
the Type of the exception or from the exception object e

Declaration that a Method Can Throw
Exceptions: “Throws” Clauses in Signature

This method “delegates” handling of
the exception to its callers, rather
than handling them itself

This method
“cleans up after
itself” if something
goes wrong, and
thus doesn’t need
a “throws” clause
for these exceptions

Where to Handle Exceptions?

• Often the context of an exception is most
clear closer to its source

– The further one goes up the “call chain” (set of
methods calling methods)

• The less detail one has about where exactly things went
wrong

• The less detail one has for error messages

• Further up, one can more easily abort the
overall computation

Shortcomings of AnyLogic Functions
(vs. explicitly declared Methods)

• Both primary functions and supporting functions
are all visible to others

• They cannot declare that they throw exceptions

