Obesity prevention in Australia

Modelling cost-effectiveness of interventions: the Assessing Cost Effectiveness (ACE) approach

First Annual Workshop on Dynamic Modelling for Health Policy
Saskatoon, July 2009

Gary Sacks, Marj Moodie, Boyd Swinburn

Deakin University

WHO Collaborating Centre for Obesity Prevention
Presentation outline

– Obesity in Australia
– ACE-Obesity study
– Logic pathway for modelling interventions
– Future directions for ACE modelling
Presentation outline

- Obesity in Australia
- ACE-Obesity study
- Logic pathway for modelling interventions
- Future directions for ACE modelling
Obesity prevalence – comparison

Source: International Obesity Taskforce (IOTF) database
Obesity trends in Australia – ADULTS

Source: Australian Social Trends (ABS 2005)
Prevalence of overweight and obesity in the Pacific – ADOLESCENTS

Source: OPIC Study 2005-06
Presentation outline

– Obesity in Australia

– ACE-Obesity study

– Logic pathway for modelling interventions

– Future directions for ACE modelling
Project background

– Investment in obesity prevention increasing
– Funding decisions often not underpinned by evidence – limited information on what works and offers value-for-money
– How do you set priorities for obesity prevention?

ACE-Obesity Project
(Assessing Cost Effectiveness in Obesity)
Project overview

– Two year project in Victoria, Australia

– Evidence-based approach to evaluate the cost-effectiveness of interventions for the prevention of unhealthy weight gain in Australian children and adolescents

– Used a standardized methodology to evaluate and prioritize multiple interventions
Key features of ACE approach

- Clear rationale and process for selection of interventions
- Evidence-based (best available evidence)
- Independent research team
- Measurement of benefit based on technical cost-effectiveness results and qualitative analysis with stakeholders
Overview of ACE approach

1. RESEARCH QUESTION
2. Create WORKING GROUP of stakeholders
3. SELECT INTERVENTIONS
4. CONFIRM EVALUATION METHODS
 • Technical analysis ($ cost per DALY)
 • 2nd stage filters (Equity, Acceptability, Feasibility, Sustainability, etc.)
5. UNDERTAKE ANALYSIS
6. AGREE FINDINGS AND DISSEMINATE

Stakeholders involved at all stages of the ACE process
ACE-Obesity – Selected interventions

<table>
<thead>
<tr>
<th>Category</th>
<th>Interventions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Child care</td>
<td>1. Active After-School Communities</td>
</tr>
<tr>
<td>Schools</td>
<td>2. Multi-faceted school-based program (- PE)</td>
</tr>
<tr>
<td></td>
<td>3. Multi-faceted school-based program (+ PE)</td>
</tr>
<tr>
<td></td>
<td>4. Targeted school-based program</td>
</tr>
<tr>
<td></td>
<td>5. Education program to reduce fizzy drinks</td>
</tr>
<tr>
<td></td>
<td>6. Education program to reduce TV viewing</td>
</tr>
<tr>
<td>Primary care</td>
<td>7. Family-based GP program for overweight</td>
</tr>
<tr>
<td></td>
<td>8. Family-based targeted program for obese</td>
</tr>
<tr>
<td></td>
<td>9. Orlistat therapy for adolescents</td>
</tr>
<tr>
<td>Hospital</td>
<td>10. Gastric banding for morbidly obese</td>
</tr>
<tr>
<td>Neighbourhoods & communities</td>
<td>11. TravelSMART Schools</td>
</tr>
<tr>
<td>Media and marketing</td>
<td>12. Walking School Bus</td>
</tr>
<tr>
<td></td>
<td>13. Reduce TV advertising of junk food</td>
</tr>
</tbody>
</table>
Overview of ACE-Obesity technical analysis

- Model resource costs of intervention and current practice
- Model disease burden of obesity
- Model change in BMI from intervention
- Model health gain from intervention (DALYs)
- Model cost-offsets from reduction in obesity-related diseases
- Net health gain
- Net cost of intervention

Incremental Cost Eff Ratios
- $ per BMI
- $ per DALY
Study parameters – technical analysis

- Standardised evaluation methods
- A common setting, target group, reference year, perspective, decision context
- Measured against current practice
- Uses Australian data
- Extensive use of probabilistic uncertainty analysis and sensitivity analysis
Economic modelling

- Measuring net costs of intervention
- Pathway analysis – identify all steps in intervention to determine associated resource use
- Costed in steady state – running to full effectiveness potential, no workforce issues, excludes planning and set-up stages
- Time horizon of intervention – reflect real-life application
- Cost-offsets – savings as a result of reduction in obesity related diseases
Assessment of benefit

10% Δ energy balance \rightarrow 4.5% Δ body weight

Reference: Swinburn et al AJCN 2006
BMI to DALY modelling (1)

- Start with BMI distribution (mean, SD) by 5 yr age and gender

- Outcome: DALYs saved due to intervention = difference in future mortality and morbidity outcomes between baseline (current practice) and intervention

- These differences based on changes in age-specific BMI distribution of target population over their remaining life

- Use historical BMI data to develop regression equation – then move cohort through life in 5 yr cycles
EAT WELL!
STAY FIT!
DIE ANYWAY!
BMI to DALY modelling (2)

- Calculate Potential Impact Fractions (PIFs) – proportional change in expected disease or death attributable to change in exposure to risk factor

- The diseases for which PIFs were calculated are:
 - Ischaemic heart disease
 - Ischaemic stroke
 - Hypertensive heart disease
 - Type 2 diabetes
 - Osteoarthritis
 - Cancers (endometrial, colon, kidney, post-menopausal breast)
Results: Effectiveness

Total DALYs saved

- Walking School Bus
- TravelSMART
- Active After School
- Orlistat in adolescents
- GP intervention
- Multi-faceted school-based - PE
- Gastric banding
- TV viewing
- Multi-faceted school-based + PE
- Fizzy drinks
- Family-based targeted
- Targeted multi-faceted school-based
- TV advertising
Results: Affordability

Total intervention cost

- Walking School Bus
- TravelSMART
- Active After School
- Orlistat in adolescents
- GP intervention
- Multi-faceted school-based - PE
- Gastric banding
- TV viewing
- Multi-faceted school-based + PE
- Fizzy drinks
- Family-based targeted
- Targeted multi-faceted school-based
- TV advertising

Millions
Results: Cost-effectiveness

Incremental cost-effectiveness of interventions (net $ per DALY saved)

Walking School Bus
TravelSMART
Active After School
Orlistat in adolescents
GP intervention
Multi-faceted school-based - PE
Gastric banding
TV viewing
Multi-faceted school-based + PE
Fizzy drinks
Family-based targeted
Targeted multi-faceted school-based
TV advertising

Thousands

> $0.23M
> $0.11M
2nd stage filter analysis – issues

• Contrary to known government policy (regulation of TV advertising)
• Potential for side-effects (gastric banding, Orlistat)
• Acceptability (gastric banding, Orlistat)
• Affordability (gastric banding)
• Sustainability (Walking School Bus, Active After-School Communities program)
• Important implications for other areas of government eg. Dept of Education (school-based interventions)
• Strength of evidence (GP intervention)
Conclusions and implications

- Policy interventions often inexpensive
- Energy intake interventions more potent than physical activity – but both are needed
- Reach is a big determinant of total costs and health benefits
- Packaging interventions complicated by broad factors (qualitative considerations, joint costs, cumulative impact of multiple interventions, targeted vs non-targeted interventions)
- Need multiple strategies in multiple settings with multiple partners
- Better evaluations of interventions required
- ACE process provides useful information for policy-makers, despite limitations
Presentation outline

– Obesity in Australia

– ACE-Obesity study

– Logic pathway for modelling interventions

– Future directions for ACE modelling
Logic pathway for obesity modelling

Δ Policy / Program

Δ Environment and Δ Behaviour

Δ Energy balance

Δ Weight / BMI

Δ Population Health
Logic pathway: Change in food and physical activity policy to change in health outcomes

Δ Policy → Δ Food environment → Δ Eating behaviour

Δ Food environment → Δ Physical activity environment

Δ Physical activity environment → Δ Physical activity behaviour

Δ Physical activity behaviour → Other effects

Δ Physical activity behaviour → Δ Energy expenditure

Δ Energy expenditure → Δ Level of physical activity

Δ Level of physical activity → Δ Sedentariness

Δ Dietary intake

Δ Diet composition (non energy-related)

Δ Fruit and Vegetable intake
Δ Fish intake
Δ Fat intake
Δ Salt intake
Δ Fibre intake
Δ Calcium intake

Δ Energy intake

Δ Amount (g) of food consumed
Δ Amount (g) of beverages consumed
Δ Energy density of food consumed
Δ Energy density of beverages consumed

Δ Energy balance

Δ Energy balance → Δ Weight / BMI

Δ Intermediates: risk factors

Δ Blood pressure
Δ Blood lipids
...
Logic pathway for obesity modelling

1. Δ Policy / Program
2. Δ Environment and Δ Behaviour
3. Δ Energy balance
4. Δ Weight / BMI
5. Δ Population Health
Obesity law and regulation project

– 5 year National Health and Medical Research Council (NHMRC) project grant

– Joint Deakin University and Monash University (public health lawyers)

– Identifying promising legal interventions (interviews with government and stakeholders at all levels)

– Ultimately will model ‘best buys’
Obesity prevention policy framework

<table>
<thead>
<tr>
<th>Process</th>
<th>Output</th>
<th>Impact</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strategic policy and leadership</td>
<td>Policy instruments</td>
<td>Supportive envmts</td>
<td>Health</td>
</tr>
<tr>
<td>- Laws & regulations</td>
<td>- Govt spending & taxing</td>
<td>- Service delivery</td>
<td>Economic</td>
</tr>
<tr>
<td>- Advocacy</td>
<td></td>
<td></td>
<td>Social</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Behav change</td>
<td>Environmental</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Health services</td>
<td></td>
</tr>
</tbody>
</table>

Sacks et al *Obesity Reviews* 2009 (Adapted from WHO Global Strategy for Diet & Physical Activity Framework)
Integrating different public health approaches

Socio-ecological (upstream) approach
- Policies that shape the economic, social and physical environment
 - Influence underlying determinants of health

Lifestyle (midstream) approach
- Policies that directly influence behaviour
 - Influence food environments

Medical (downstream) approach
- Policies that support health services and clinical interventions
 - Influence physical activity environments

Strategic policy and leadership
- Supportive environment
- Strategic policy and leadership
- Behaviour change
- Policy instruments
 - Service delivery
 - Spending & taxing
 - Advocacy
 - Laws & regulations
- Monitoring, evaluation, and research

Health services
- Environmental
- Economic
- Social
- Health
Policy areas that influence food environments

<table>
<thead>
<tr>
<th>LEVEL OF GOVERNANCE</th>
<th>LOCAL GOVERNMENT</th>
<th>STATE GOVERNMENT</th>
<th>NATIONAL GOVERNMENT</th>
<th>INTERNATIONAL</th>
<th>ORGANISATION</th>
</tr>
</thead>
</table>
| PRIMARY PRODUCTION | • Land-use management (zoning)
• Community gardens | • Agricultural subsidies | • Taxes on primary production
• Agricultural subsidies
• Research and development in agriculture | • Wealthy countries (e.g. USA, EU) agriculture subsidies | |
| FOOD PROCESSING | • Farmers markets | • Food safety | • Food composition standards
• Food composition monitoring | | |
| DISTRIBUTION | • Marketing to children (billboards and signage)
• Marketing to children
• Marketing practices in schools | • Food transport
• Access of fresh foods in remote areas | • Import tariffs
• Import restrictions / restrictions on supply | • Trade arrangements between countries | |
| MARKETING | • Land-use management (zoning)
• Number of fast food outlets
• Food handling | • Products sold in schools | • Nutrition labelling
• Health claims on food products | • School food policies
• Standards for food served in
• Food procurement policies | |
| RETAIL | • Community kitchens
• Nutrition information in restaurants | | | | |
| CATERING / FOOD SERVICE | • Nutrition information in restaurants | | | | |
Logic pathway for obesity modelling

Δ Policy / Program

Δ Environment and Δ Behaviour

Δ Energy balance

Δ Weight / BMI

Δ Population Health
Energy gap concepts

‘Energy Imbalance Gap’ = the average difference between daily TEI (top line) and TEE (bottom line) needed to produce weight gain over a period of time.

‘Energy Flux Gap’ = the average difference in energy flux (TEI ≈ TEE) between two points in time.

Period of weight gain

Time A
(Settling point A, lower mean weight)

Time B
(Settling point B, higher mean weight)
Relationship between energy & weight

- Children
- Adults
Presentation outline

– Obesity in Australia
– ACE-Obesity study
– Logic pathway for modelling interventions
– Future directions for ACE modelling
Other ACE-related work

– ACE Prevention project – 100 preventive, 50 treatment options across a range of chronic diseases

– Internationalization of ACE-Obesity (USA, Malaysia, New Zealand)

– Another round of ACE linking obesity and climate change – Raises methodological issues around measuring and health and environmental outcomes in a way meaningful to policymakers
Results: Cost-effectiveness plane

Results shown for alcohol prevention interventions
Results: Intervention pathway

Results shown for alcohol prevention interventions
Acknowledgements

– Boyd Swinburn
– Rob Carter
– Marj Moodie

Contact details

gary.sacks@deakin.edu.au
References (ACE process)

• Haby MM et al. *Int. J Obesity* 2006; 30; 1463-75.

Thank you!