
SMC/Particle Filtering with 
Dynamic Models:
A Spiral Tutorial

Nathaniel Osgood

University of Saskatchewan



Agenda

• Motivations & metaphors

• Particle filtering algorithm in a nutshell

• Case study

• Particle filtering: What

• Particle filtering: How

• Balancing model stochastics

• Particle filtering with agent-based models

• Summary

• Supplemental material

Slides (including supplemental material) available at:
https://tinyurl.com/PFMathEpi2019

https://tinyurl.com/PFMathEpi2019


Exemplar Context:  Outbreak 
Prediction & Response

• Many concerns around mobilization of health 
resources hinge on outbreak detection and 
anticipation of evolution

• Regular (e.g., weekly) reporting often gives some 
sense as to “where we’re at”, but little clarity on 
what lies ahead 

• Our focus lies in early detection of and anticipating 
trajectory of incident cases in an emerging outbreak

• Outbreak contexts are often marked by notable 
stochastics, including timing and evolution



Challenges for Dynamic Models
• With modeling projects, we typically

– Build the model

• Conceptualize, Formulate, Parameterize, Calibrate, Cross 
Validate & Otherwise test, …

– Use it for insight

• Running scenarios, studying outputs and intermediate 
dynamics, etc.

• After the model is formulated, often aligning it 
with new data is a heavy-weight manual process

– Typical: Reparameterization, Recalibrating, Redoing 
cross-validation

– Sometimes: Restratifying, reformulating, etc.



Problem B: Reflection 1

• Models as approximations: Unassisted, even the 
most detailed models eventually diverge from 
empirical situation as time passes
– Divergence between model state & empirical state

• Some relevant challenges
– Stochastics

– Omitted factors

– Approximations (e.g., random mixing)

– New exogenous influences

– Misunderstanding regarding process character

– Latent heterogeneity

– Mis-estimates





Problem B: Reflection 2

• While models can be very useful for responding to 
emerging issues, often there is little opportunity to 
craft a highly empirically grounded model

• Absent grounding in empirical evidence, accuracy of 
projections & analysis of policy tradeoffs is 
jeopardized

• By the time a highly grounded model can be 
created, often the greatest chance to shape policy is 
past



Solution Vision: Quickly Formulated, 

Frequently Regrounded Dynamic Models

• Rough & ready models quickly available to support 

decision-making, automatically regrounded & sharpened 

may be both more valuable and accurate than a far more 

detailed model that takes longer to create

• Rely not just on model predictions of where we’re at, but 

also empirical observations that have unfolded

• Model state is kept “current” with the latest evidence, but 

can be used to project forward & study anticipated 

intervention tradeoffs

• Through logic of model structure together with time series, 

model regrounding illuminates latent areas of the system





Avoiding Open-Loop Models



Like a weather

report, we seek to

always have the model 

updated to reflect the 

latest evidence &

use that to anticipate 

future state 

(project forward)



Agenda

Motivations & metaphors

• Particle filtering “how” in a nutshell

• Case study

• Particle filtering: What

• Particle filtering: How

• Balancing model stochastics

• Particle filtering with agent-based models

• Summary



Our Past and Current Lines of 

PF/PMCMC Application
• Influenza+

• West Nile 
virus/Mosquito 
dynamics+

• Measles+

• Pertussis+

• Tuberculosis+

• Opioids+

• Suicide

• Chickenpox

• Emergency department 
waiting times

• HPA axis dynamics

• HIV immunity and 
HAART dynamics

• Criminal justice 
processes (e.g., remand, 
bail, probation, 
incarceration)

• H1N1 ground truth 
model testing

+ indicates multiple explorations of particle filtered/PMCMC models



Context: Streaming, Repositories, Recurrently 

Regrounded Models for Decision Support

yelp



Machine Learning & Dynamic Models

• MCMC:  Sample from posteriors of deterministic dynamic 

model static parameters, latent states, scenario results, 

and incremental scenario gains.

• Particle Filtering/SMC:  Sample from posteriors of 

stochastic dynamic model latent states, stochastically 

evolving parameters, scenario results, and incremental 

scenario gains.

• Particle MCMC (PMCMC):  Sample from posteriors of 

stochastic dynamic model latent states, stochastically 

evolving parameters, scenario results, and incremental 

scenario gains and static parameters.



Particle Filtering: A Few Key Facts
The simulation model 

Only meaningful if include stochastic processes

Runs normally (“prediction”) between observation points

Is “corrected” to align w/empirical data at observation points 

Is performed recursively (in an on-line fashion)  
Rather than re-estimate the state over all time points de novo when 

new data comes in, the estimate when new data comes in 
depends on estimates derived from earlier data

Loose distributional assumptions (contrast: Kalman Filter)

No reliance on functional form/linearization of state equations

Samples from the state (and trajectory) distribution
Each sample is represented by a “particle”

Particles reflect “competing hypotheses” as to the current state

There is a “survival of the fittest” of particles (hypotheses)

Exploits importance sampling: distribution is sampled by 
associating samples from proposal dist (particles) w/weights



How to Perform PF on ODE in a Nutshell
Start with stochastic ODE model

Subscript ODE model by 100s to 1000s of particles

Each particle has its own full copy of model state (anything that could differ b/t 

realizations)

Sample from initial model state from prior distribution; set weights uniformly to 1

(Prediction phase):  Between observations

All particles evolve according to standard model dynamics (just perform 

integration of each particle’s state until next observation; all particles survive)

Particle weights remain invariant

(Update phase): At observation points: For each particle, multiply particle weight 

by likelihood of observing the empirical observation vector, given particle state

Resampling/“Survival of the fittest”: If effective sample size is too low (too much 

disparity in weights) following observation, particles are resampled according 

to their weights, and weight is reset to 1

Particles with high weights reproduce; with low weights disappear

Trajectories can be sampled by maintaining ancestry matrix holding lineages



Agenda

Motivations & metaphors

Particle filtering “how” in a nutshell

• Particle filtering: What

• Particle filtering: How

• Balancing model stochastics

• Particle filtering with agent-based models

• Summary



Agenda

Motivations & metaphors

Particle filtering “how” in a nutshell

• Case study

• Particle filtering: What

• Particle filtering: How

• Balancing model stochastics

• Particle filtering with agent-based models

• Summary



Empirical Datasets

● Measles and pertussis reported cases of Saskatchewan in pre-vaccination era 

(1921-1956):

○ Monthly reported cases across all population

○ Yearly reported cases in different (6) age groups

● Demographic data of Saskatchewan from 1921 to 1956.



Structure 1

Structure of measles aggregate population particle filtering model

Measles particle filtering models

dWt is for a Wiener 

Process

System Noise



Structure of measles age-structured population particle filtering models (2 age groups)

Measles particle filtering models
Structure 2

System Noise

dWt is for a Wiener 

Process



Results for Measles

● The sampled discrepancy of model's estimations vs. observed 

data is reduced by a factor of 2.0

● The age-structured model (PFage_15_both) is the minimum 

discrepancy model.

Comparison of the average RMSE of all models by incorporating empirical data across all 

observation points



measles

Comparison of the model result vs. empirical data (monthly) between calibration model and particle filtering model

Estimation Results of Measles



Estimation Results of Measles

model result vs. empirical data (monthly)

measles



Latent State for Measles - Children

The estimation of latent state (S, E, I, R) with the Child age group (less than 15 years) .



Latent State for Measles - Adults

The estimation of latent state (S, E, I, R) with the Adult age group (equal and 

greater than 15 years) .



Prediction results of the minimal discrepancy model
Predicting from the first or second time points of an outbreak of the minimum discrepancy model

measles



Prediction results of the minimal discrepancy model
Predicting from the peak of an outbreak of the minimum discrepancy model

measles



Prediction results of the minimal discrepancy model
Predicting from the end of an outbreak of the minimum discrepancy model

measles



Prediction results of the minimal discrepancy model
Predicting before the next outbreak of the minimum discrepancy model

measles



Intervention results of the minimal discrepancy model
simulating an outbreak-response quarantine intervention

Model prediction of monthly measles incidence after the intervention expressed as 

20-50% (panel A and B respectively) reduction in the contact rate.

measles

Experiment 1 - quarantine 

intervention: by decreasing the 

parameter of contact rate



Classifying outbreak occurrence with the prediction 

results of the particle filtering models

measles

AUC = 0.893



Agenda

Motivations & metaphors

Particle filtering “how” in a nutshell

Case study

• Particle filtering: What

• Particle filtering: How

• Balancing model stochastics

• Particle filtering with agent-based models

• Summary



Agenda

Motivations & metaphors

Particle filtering “how” in a nutshell

Case study

• Particle filtering: What

• Particle filtering: How

• Balancing model stochastics

• Particle filtering with agent-based models

• Summary



State Space Modeling

• State space Model 
𝑑𝑥𝑁

𝑑𝑡
= 𝑔(𝑥𝑁, 𝜗)

– N is the count of state variables

– XN represents a vector of length N (generally includes 
many latent – unobserved or unobservable – elements)

– 𝜗 Represents noise in state evolution

• Unit updates: Solution for time t=k is:

𝑥𝑘
𝑁 = 𝑔𝑘 𝑥𝑘−1

𝑁 , 𝜗𝑘−1 =  
𝑘−1

𝑘

𝑔(𝑥𝑁(𝑡), 𝜗)𝑑𝑡

• Where gk advances the model from k-1 to k



Simplifying Assumptions
• For ease of exposition, we make two assumptions 

here
– Making these assumptions allows out exposition to be 

far simpler

– These assumptions are for explanation and do not 
indicate limits to practical particle filter application

• Assumptions:
– Measurements are made at regular intervals

– The inter-measurement intervals are of unit length (i.e., 
measurements are separated by one time unit)

• Thus measurements occur at time k=1, k=2, etc., 
with measurement k occurring at time k.



Measurement Model

• We generally know a little bit about the underlying 
state of the system 𝑥𝑘

𝑁 at observation time k via 
noisy observations 𝑦𝑘

𝑀

• The measurement model is as follows:

𝑦𝑘
𝑀 = ℎ𝑘(𝑥𝑘

𝑁, 𝑛𝑘)

where

• 𝑦𝑘
𝑀 represents a vector of length M giving the 

(noisy & partial) observations at time k

• 𝑛𝑘 represents the noise affecting that observation

• ℎ𝑘 captures how state 𝑥𝑘
𝑁 is abstracted by observa.



Sampling Goal
• At time k, we seek to estimate state 𝑥𝑘

𝑁 (or, better, 
trajects 𝑥1:𝑘

𝑁 ) based on all of the observed data 𝑦1:𝑘
𝑀

• The ongoing presence of noise throughout the 
process prevents naïve application of sampling via 

e.g., MCMC of the likelihood of observing 𝑦1:𝑘
𝑀 for a 

sufficiently broad set of trajectories 𝑥1:𝑘
𝑁

• To make this feasible, we seek a recursive way of 

estimating (sampling) 𝑥𝑘
𝑁 from 𝑥𝑘−1

𝑁 as a new 
observation 𝑦𝑘

𝑀 occurs

– This mirrors classic Bayesian updating from a prior to a 
posterior when a new observation occurs

• This is updated in two stages: Prediction & Update



What: Two-Phase Recursive Procedure
• Prediction:  The state 𝑥𝑘−1

𝑁 (sampled from 
p(𝑥𝑘−1

𝑁 |𝑦1:𝑘−1
𝑀 )) at time k-1 to is mapped to 

samples from the state 𝑥𝑘−
𝑁 (sampled from 

p(𝑥𝑘
𝑁|𝑦1:𝑘−1

𝑀 )) at time k just prior to the 
observation 𝑦𝑘

𝑀.

• Update: 𝑥𝑘−
𝑁 is updated to 𝑥𝑘

𝑁 in a way that 
considers the current observation 𝑦𝑘

𝑀

• Net effect: Mapping p(𝑥𝑘−1
𝑁 |𝑦1:𝑘−1

𝑀 ) to p(𝑥𝑘
𝑁|𝑦1:𝑘

𝑀 )



What: Two-Phase Recursive Procedure
• Prediction:  The state 𝑥𝑘−1

𝑁 (sampled from 
p(𝑥𝑘−1

𝑁 |𝑦1:𝑘−1
𝑀 )) at time k-1 to is mapped to 

samples from the state 𝑥𝑘−
𝑁 (sampled from 

p(𝑥𝑘
𝑁|𝑦1:𝑘−1

𝑀 )) at time k just prior to the 
observation 𝑦𝑘

𝑀.

– For our case (using the Condensation Algorithm), this 

update does not consider the coming observation 𝑦𝑘
𝑀

• Update: 𝑥𝑘−
𝑁 is updated to 𝑥𝑘

𝑁 in a way that 
considers the current observation 𝑦𝑘

𝑀



Prediction 1
• Assumption: p(𝑥𝑘−1

𝑁 |𝑦1:𝑘−1
𝑀 ) is available at time k-1

• Note that p(𝑥0
𝑁|𝑦0

𝑀) = p(𝑥0
𝑁) is the prior for the entire particle 

filter.

• We use this         to indicate this term in future slides

• Consider that for a binary outcome, B, if we can be 
confident of the identity:

𝑝 𝐴 𝐶 = 𝑝 𝐴𝐵 𝐶 + 𝑝 𝐴  𝐵 𝐶

• As formalized in the Chapman–Kolmogorov equation, a 
variant of this is further true for continuous system.  
Applying this principle, we can write

𝑝 𝑥𝑘
𝑁 𝑦1:𝑘−1

𝑀 =  −∞
+∞
𝑝 𝑥𝑘

𝑁 , 𝑥𝑘−1
𝑁 𝑦1:𝑘−1

𝑀 𝑑𝑥𝑘−1
𝑁

This is the analogue of the “+” in the binary situation



Prediction 2
• Consider the identity just shown:

𝑝 𝑥𝑘
𝑁 𝑦1:𝑘−1

𝑀 =  −∞
+∞
𝑝 𝑥𝑘

𝑁 , 𝑥𝑘−1
𝑁 𝑦1:𝑘−1

𝑀 𝑑𝑥𝑘−1
𝑁

• By the probabilistic chain rule, in general

𝑝 𝐴𝐵 𝐶 =
𝑝(𝐴𝐵𝐶)

𝑃(𝐶)
=
𝑝(𝐴|𝐵𝐶)𝑃(𝐵𝐶)

𝑃(𝐶)
= 𝑝(𝐴|𝐵𝐶)𝑃(𝐵|𝐶)

• Thus we can rewrite the above as:

 
−∞

+∞

p 𝑥𝑘
𝑁 𝑥𝑘−1

𝑁 , 𝑦1:𝑘−1
𝑀 𝑝(𝑥𝑘−1

𝑁 |𝑦1:𝑘−1
𝑀 )𝑑𝑥𝑘−1

𝑁

We call that in planning the recursive procedure,
We assumed (in the previous slide) that sampling from 
this term is possible at time k-1!



Prediction 3
• For a first-order Markov process such as this, the impact of 

past observations 𝑦1:𝑘−1
𝑀 earlier than time k-1 is imparted 

purely through their influence on state 𝒙𝒌−𝟏
𝑵 .  Thus

𝑝 𝑥𝑘
𝑁 𝑥𝑘−1

𝑁 , 𝑦1:𝑘−1
𝑀 = 𝑝 𝑥𝑘

𝑁 𝑥𝑘−1
𝑁

Thus the previous formula

 
−∞

+∞

p 𝑥𝑘
𝑁 𝑥𝑘−1

𝑁 , 𝑦1:𝑘−1
𝑀 𝑝(𝑥𝑘−1

𝑁 |𝑦1:𝑘−1
𝑀 )𝑑𝑥𝑘−1

𝑁

Can be rewritten as 

𝑝 𝑥𝑘
𝑁 𝑦1:𝑘−1

𝑀 =  −∞
+∞
𝑝 𝑥𝑘

𝑁 𝑥𝑘−1
𝑁 𝑝(𝑥𝑘−1

𝑁 |𝑦1:𝑘−1
𝑀 )𝑑𝑥𝑘−1

𝑁

Given 𝑥𝑘−1
𝑁 , we sample from this by just simulating

forward from time k-1 to time k!

These are just the samples available
at time k-1 (once having processed the 

observation 𝑦𝑘−1
𝑀 )



Dynamics at Observations

• At observations, the model estimates of state are 
“corrected” by empirical data

• This transitions from the “prior” to the “posterior”

– Prior: Estimate of model state immediately before 
considering the latest empirical data (NB: this was 
produced by running model)

– Posterior: Estimate of model state immediately after 
considering the new empirical data



Likelihood Function Explored

• Likelihood functions p(yt
M|xt

N) give 
the likelihood of the empirical datum, 
given the model state

• Common distributions
–Binomial

–Negative

–Poisson

–Normal

–Lognormal



What: Two-Phase Recursive Procedure
• Prediction:  The state 𝑥𝑘−1

𝑁 (sampled from 
p(𝑥𝑘−1

𝑁 |𝑦1:𝑘−1
𝑀 )) at time k-1 to is mapped to 

samples from the state 𝑥𝑘−
𝑁 (sampled from 

p(𝑥𝑘
𝑁|𝑦1:𝑘−1

𝑀 )) at time k just prior to the 
observation 𝑦𝑘

𝑀.

– For our case (using the Condensation Algorithm), this 

update does not consider the coming observation 𝑦𝑘
𝑀

• Update: 𝑥𝑘−
𝑁 is updated to 𝑥𝑘

𝑁 in a way that 
considers the current observation 𝑦𝑘

𝑀



Update 1
• The prediction phase provides the capacity to sample from
p 𝑥𝑘

𝑁 𝑦1:𝑘−1
𝑀

• i.e., given 𝑦𝑘−1
𝑀 the prediction phase updates samples from 

p(𝑥𝑘−1
𝑁 |𝑦1:𝑘−1

𝑀 ) to samples from p 𝑥𝑘
𝑁 𝑦1:𝑘−1

𝑀

• In future slides, we indicate this term p 𝑥𝑘
𝑁 𝑦1:𝑘−1

𝑀 using 

• The update phase maps samples from p 𝑥𝑘
𝑁 𝑦1:𝑘−1

𝑀 to 
samples from p 𝑥𝑘

𝑁 𝑦1:𝑘
𝑀

• This is just           updated from time k-1 to time k, which we 
indicate using the symbol

• Here, we have just taken into account information from the 
observable 𝑦𝑘

𝑀

• It turns out that sampling from p 𝑥𝑘
𝑁 𝑦1:𝑘

𝑀 can be readily 
achieved by exploiting the         fact that

𝑝 𝑥𝑘
𝑁 𝑦1:𝑘

𝑀 ∝ 𝑝(𝑦𝑘
𝑀|𝑥𝑘

𝑁)𝑝(𝑥𝑘
𝑁|𝑦1:𝑘−1

𝑀 )



Sampling from the full trajectory
• Recall from “Update 10” that

𝑝 𝑥𝑘
𝑁 𝑦1:𝑘

𝑀 ∝ 𝑝(𝑦𝑘
𝑀|𝑥𝑘

𝑁)𝑝(𝑥𝑘
𝑁|𝑦1:𝑘−1

𝑀 )

By extension, we have
𝑝 𝑥0:𝑘

𝑁 𝑦1:𝑘
𝑀 ∝ 𝑝(𝑦𝑘

𝑀|𝑥0:𝑘
𝑁 )𝑝(𝑥0:𝑘

𝑁 |𝑦1:𝑘−1
𝑀 )

Recognizing that 𝑥0:𝑘
𝑁 is composed of pieces, we rewrite this as

𝑝(𝑦𝑘
𝑀|𝑥0:𝑘

𝑁 )𝑝(𝑥𝑘
𝑁 , 𝑥0:𝑘−1

𝑁 |𝑦1:𝑘−1
𝑀 )

By the probabilistic chain rule, in general

𝑝 𝐴𝐵 𝐶 =
𝑝(𝐴𝐵𝐶)

𝑃(𝐶)
=
𝑝(𝐴|𝐵𝐶)𝑃(𝐵𝐶)

𝑃(𝐶)
= 𝑝(𝐴|𝐵𝐶)𝑃(𝐵|𝐶)

Thus we can rewrite the above as
𝑝 𝑥0:𝑘

𝑁 𝑦1:𝑘
𝑀

∝ 𝑝 𝑦𝑘
𝑀 𝑥𝑘

𝑁 , 𝑥0:𝑘−1
𝑁 𝑝 𝑥𝑘

𝑁 𝑥0:𝑘−1
𝑁 , 𝑦1:𝑘−1

𝑀 )𝑝(𝑥0:𝑘−1
𝑁 |𝑦1:𝑘−1

𝑀 )



Full Trajectory Distribution

• From the previous slide, we have
𝑝 𝑥0:𝑘

𝑁 𝑦1:𝑘
𝑀

∝ 𝑝 𝑦𝑘
𝑀 𝑥𝑘

𝑁 , 𝑥0:𝑘−1
𝑁 𝑝 𝑥𝑘

𝑁 𝑥0:𝑘−1
𝑁 , 𝑦1:𝑘−1

𝑀 )𝑝(𝑥0:𝑘−1
𝑁 |𝑦1:𝑘−1

𝑀 )

• because we assume a first-order Markov process, we 
recognize that two terms above can be simplified

𝑝 𝑦𝑘
𝑀 𝑥𝑘

𝑁 , 𝑥0:𝑘−1
𝑁 = 𝑝 𝑦𝑘

𝑀 𝑥𝑘
𝑁

𝑝 𝑥𝑘
𝑁 𝑥0:𝑘−1

𝑁 , 𝑦1:𝑘−1
𝑀 ) = 𝑝 𝑥𝑘

𝑁 𝑥𝑘−1
𝑁 )

• Substituting these in above, we have
𝑝 𝑥0:𝑘

𝑁 𝑦1:𝑘
𝑀 ∝ 𝑝 𝑦𝑘

𝑀 𝑥𝑘
𝑁 𝑝 𝑥𝑘

𝑁 𝑥𝑘−1
𝑁 )𝑝(𝑥0:𝑘−1

𝑁 |𝑦1:𝑘−1
𝑀 )



Agenda

Motivations & metaphors

Particle filtering “how” in a nutshell

Case study

Particle filtering: What

• Particle filtering: How

• Balancing model stochastics

• Particle filtering with agent-based models

• Summary

• Supplemental material:  Detailed documentation & 
derivations



Shifting Gears: From “What” to “How”
• The previous section indicated the “target distribution” from 

which have to sample

• This is a distribution 𝑝 𝑥0:𝑘
𝑁 𝑦1:𝑘

𝑀 over trajectories 𝑥0:𝑘
𝑁 of 

latent states of the system, given observations 𝑦1:𝑘
𝑀

• This section examines the mathematics underlying the 
scheme for how we actually go about sampling from that 
distribution



Central Role of Importance Sampling
• Particle Filtering uses another means of sampling –

sequential importance sampling

• Here, we forsake the goal of sampling directly from the ideal 
(“target”) distribution via MCMC

• Rather, we use the importance sampling technique of
• Sampling readily from a different “proposal distribution”

• Using weighting of the samples from the proposal distribution to 
characterize their relative representation in the target relative to 
the proposal distribution

• This weight allows us to sample more frequently from those 
samples that are well represented in the target distribution, and 
less frequently from others

• The coming slides present the theory behind importance 
sampling & sequential importance sampling



Importance Sampling 1
• Suppose that we want to draw samples x from a “target” 

distribution p(x) that 
• Is difficult to sample from directly

• Given an x, has a value that can be readily computed

• Suppose that we have another “proposal” distribution q(x) 
from which we can readily sample 
• Common example: Uniform distribution

• Ideally this would be something like p(x)



Importance Sampling 2
• We can readily sample N values x from p(x) by a 4 part 

procedure:
• Part 1: Create a set S of N sample values xi (1 ≤ i ≤ N) from q(x)

• e.g., draw each xi from a uniform distribution between 0 and 1

• Part 2: Label each drawn value xi with a “weight” Wi = p(xi)/q(xi)
• This “weight” expresses how much more common xi is within the target 

distribution p(x), when compared to the distribution from which it was 
drawn, q(x)

• Part 3: Normalize weights, labeling each xi with weight wi = 
𝑊𝑖

 𝑗=1
𝑁 𝑊𝑗

• Part 4: Draw N samples from S, where the probability of drawing 
sample i each is proportional to wi

• For each such sample, this is readily performed by 
• Drawing a value u from [0,1]

• Going through each 1 ≤ i ≤ N accumulating the value of wi until the smallest i
where  𝑗=1

𝑖 𝑊𝑗 ≥ 𝑢



How: Particles in Particle Filtering
• Each importance-weighted sample is represented by a “particle”

– At any one time, the particles represent a sampling from the 
state of that model at that time

– We can compute statistics on sampled particles to 
approximate applying such statistics to the full distribution

• Each particle is associated with a
– Copy of model state (anything over which seeking distr.); 

here, values of state variables (stocks – S,E,I,R & contact rate)

– Normalized weight (like weight in importance sampling)

• “Survival of the fittest”: Particles reproduce and survive 
or perish according to their quality of match to the 
empirical observations (weight)
– Learning: Trajectories more consistent with the data survive

• There is typically a fixed number of particles retained 
through the simulation



Elements of Model State Associated with 
Particles

Evolves according to random walk

BackHint:  Think of the model as having a vertical (“Z”) direction, with each state variable
representing a “stack” of state variables, one for each particle



How: Particle Dynamics: Two Components
• Recall: Each particle has its own full copy of model 

state (anything that could differ b/t realizations)

• Prediction: Between observations

– Particles evolve according to standard [stochastic] model 
dynamics (just run the model on each particle’s state)

– Particle weights remain invariant

– There is no filtering out of particles

• Update: At observation point

– Particle weights are updated to reflect likelihood of 
observing the empirical data, given the particle state

– If too much disparity in weights, particles are resampled 
according to their weights; tendency:

• Particles w/ high weights reproduce; w/low weights disappear



Overall Algorithm

g is the likelihood function: Gives likelihood of the 
empirical datum yt, given the model state Xt

𝑤𝑡
(𝑖)
= 𝑤𝑡−1

(𝑖) 𝑝(𝑋𝑡
𝑖
|𝑋𝑡−1

𝑖
)𝑔(𝑦𝑡|𝑋𝑡

(𝑖)
)

𝑝(𝑋𝑡
𝑖
|𝑋𝑡−1

𝑖
)



How: Prediction
(Dynamics Between Observations)

• Recall: Each particle has its own full copy of model 
state (anything that could differ b/t realizations)

• Each particle runs the model forward until the next 
observation

– Originally identical particles diverge because of

• Model stochastics

• Distribution over some parameters

– For our model, the particle evolution is governed by a 
stochastic differential equation

• Weights remain unchanged



Convenient Choice in Proposal Distribution

• For convenience, we assume that
𝑞 𝑥1:𝑘

𝑁 𝑦1:𝑘
𝑀 = 𝑞 𝑥𝑘

𝑁 𝑥1:𝑘−1
𝑁 , 𝑦1:𝑘

𝑀 𝑞 𝑥1:𝑘−1
𝑁 𝑦1:𝑘−1

𝑀

• These terms represent
• 𝑞 𝑥1:𝑘−1

𝑁 𝑦1:𝑘−1
𝑀 is just the value for the proposal distribution 

at the time of the previous observations

• 𝑥𝑘
𝑁(𝑖)
~𝑞(𝑥𝑘

𝑁|𝑥1:𝑘−1
𝑁 , 𝑦1:𝑘

𝑀 ): the probability (density) of the 
updated state taking into account the new measurement 
measurements at time k



Update Phase: Dynamics at Observations

• N: Count of state variables (stocks)

• M: Count of observations

• Because we can’t easily draw a sample from the 
posterior distribution over trajectories 

𝑝 𝑥𝑘
𝑁 𝑦1:𝑘

𝑀 , 𝑥𝑘−1
𝑁 , we use importance sampling

– We actually capture the posterior by updating particle 
weights, and possibly resampling (see later)

– This involves choosing a proposal distribution 𝑞 𝑥𝑘
𝑁 𝑦𝑡,𝑥𝑘−1

𝑁

• Please note that we will often go beyond the above and 

sample from the full trajectories 𝑝 𝑥0:𝑘
𝑁 𝑦1:𝑘

𝑀

rather than simply from the value at time k



Sequential Importance Sampling
for Our Case

• Importance-weighted samples are maintained over time
• Such samples are termed “particles”

• Successive observations at integer times are made, with 
each such observation updating the underlying 

distribution p 𝑥0:𝑘
𝑁(𝑖)

𝑦1:𝑘
𝑀

• Direct sampling from this distribution is not generally possible

• To enable successively sample from p 𝑥0:𝑘
𝑁(𝑖)

𝑦1:𝑘
𝑀 as each 

observations k arrives, we draw instead from a proposal 

distribution q(x) & successively update samples 𝑥1:𝑘−1
𝑁(𝑖)

& 

weights 𝑤𝑘−1
(𝑖)

to reflect the observation, yielding 𝑥1:𝑘
𝑁(𝑖)

and 

𝑤𝑘
(𝑖)



Importance Sampling to Draw From 
• Target distribution is 𝑝 𝑥0:𝑘−1

𝑁(𝑖)
𝑦1:𝑘−1
𝑀

• 𝑥1:𝑘−1
𝑁(𝑖)

is drawn from proposal distribution 

𝑞 𝑥0:𝑘−1
𝑁(𝑖)

𝑦1:𝑘−1
𝑀

• Here we are seeking to choose and maintain a proposal 
distribution that can be readily sampled from over time
• Per importance sampling principles, these samples are then 

weighted as

𝑤𝑘−1
(𝑖)

=
𝑝 𝑥0:𝑘−1

𝑁(𝑖)
𝑦1:𝑘−1
𝑀

𝑞 𝑥0:𝑘−1
𝑁(𝑖)

𝑦1:𝑘−1
𝑀



Recursive Weight Updates Redux

• We have 𝑤𝑘−1
(𝑖)
=

𝑝 𝑥0:𝑘−1
𝑁(𝑖)

𝑦1:𝑘−1
𝑀

𝑞 𝑥0:𝑘−1
𝑁(𝑖)

𝑦1:𝑘−1
𝑀

• As demonstrated in the supplemental slides, we can then 
take advantage of several factors
• The assumed form of the proposal distribution

• The formula for the probability of the trajectories 𝑝 𝑥0:𝑘
𝑁 𝑦1:𝑘

𝑀

• Cancellation
• The fact that the process gk is first-order Markovian (and thus 

the current state the past state) 

• The formula for the weight can then be formulated 
recursively as:

𝑤𝑘
(𝑖)
∝ 𝑤𝑘−1

(𝑖)
𝑝 𝑦𝑘

𝑀 𝑥𝑘
𝑁(𝑖)

𝑝 𝑥𝑘
𝑁(𝑖)
|𝑥𝑘−1
𝑁(𝑖)

𝑞 𝑥𝑘
𝑁(𝑖)

𝑥𝑘−1
𝑁(𝑖)
, 𝑦𝑘
𝑀



Recursive Weight Updates Redux
• Supplemental slides demonstrate that:

𝑤𝑘
(𝑖)
=
𝑝 𝑦𝑘

𝑀 𝑥𝑘
𝑁 𝑝 𝑥𝑘

𝑁 𝑥𝑘−1
𝑁 )

𝑞 𝑥𝑘
𝑁 𝑥1:𝑘−1

𝑁 , 𝑦1:𝑘
𝑀

𝑤𝑘−1
(𝑖)

• Because the process gk is first-order Markovian, we can 
further simplify the denominator by recognizing that all 

impact of past state is captured in the previous state 𝑥𝑘−1
𝑁 𝑖

, 
and by assuming that all observations prior to k have 
already between reflected in the distribution, thus:

𝑞 𝑥𝑘
𝑁(𝑖)

𝑥1:𝑘−1
𝑁(𝑖)

, 𝑦1:𝑘
𝑀 = 𝑞 𝑥𝑘

𝑁 𝑖
𝑥𝑘−1
𝑁 𝑖
, 𝑦𝑘
𝑀

and (rearranging slightly) we have

𝑤𝑘
(𝑖)
∝ 𝑤𝑘−1

(𝑖)
𝑝 𝑦𝑘

𝑀 𝑥𝑘
𝑁(𝑖)

𝑝 𝑥𝑘
𝑁(𝑖)
|𝑥𝑘−1
𝑁(𝑖)

𝑞 𝑥𝑘
𝑁(𝑖)

𝑥𝑘−1
𝑁(𝑖)
, 𝑦𝑘
𝑀



Naïve Algorithm

Initialization (k=0)

• Sample 𝑋0
𝑁(𝑖)

from 
𝑞0(𝑥0

𝑁|𝑦0
𝑀)

• For each particle i

• 𝑤𝑘
(𝑖)
=

𝑝(𝑋0
𝑁(𝑖)

)𝑝(𝑦0
𝑀|𝑋0

𝑁(𝑖)
)

𝑞(𝑋0
𝑁 𝑖

|𝑦0
𝑀)

• For each particle i

• 𝑊0
(𝑖)
=

𝑤0
(𝑖)

 
𝑖=1
𝑁𝑠 𝑤0

(𝑖)

Ongoing Observations (k>0)

• For each particle i
• Advance state via sampling  

𝑋𝑘
𝑁(𝑖)
~𝑞(𝑥𝑘

𝑁|𝑦𝑘 , 𝑋0:𝑘−1
𝑁(𝑖)

)

• Supplement trajectory 

𝑋0:𝑘
𝑁(𝑖)

= (𝑋0:𝑘−1
𝑁 𝑖

, 𝑋𝑘
𝑁(𝑖)
)

• Update weight

𝑤𝑘
(𝑖)
= 𝑤𝑘−1

(𝑖)
𝑝 𝑦𝑘

𝑀 𝑥𝑘
𝑁(𝑖)

𝑝 𝑥𝑘
𝑁(𝑖)
|𝑥𝑘−1
𝑁(𝑖)

𝑞 𝑥𝑘
𝑁(𝑖)

𝑥𝑘−1
𝑁(𝑖)
, 𝑦𝑘
𝑀

• For each particle i

𝑊𝑘
(𝑖)
=

𝑤𝑘
(𝑖)

 
𝑖=1
𝑁𝑠 𝑤𝑘

(𝑖)



Choice of Proposal Distribution

• The algorithms above leave open to the implementer the 
choice of a proposal distribution 

𝑞(𝑥𝑘
𝑁|𝑦𝑘 , 𝑋0:𝑘−1

𝑁(𝑖)
)

• The choice of proposal distribution can have a sizeable 
impact on 
• The practical performance of the particle filtering

• The complexity of the implementation

• Many practitioners make use of the “condensation 
algorithm” of Isard & Blake (1998), which employs a 
particularly simple proposal distribution



Condensation Algorithm
• Goes by additional names in the computational 

statistics literature
• Involves just using the prior distribution until the next 

point of observation, and then updating at that time 
using the likelihood

• In operational terms, this means that we simply 
– Run the model forward from the last data point (this samples 

from “the prior”) until the next observation point
– At the time of the observation, multiply the weight of a 

particle by the value of the likelihood of observing the 
datapoint given the model state hypothesized by that particle

• It is not yet clear to the instructor if there is an effective 
and attractive alternative for a non-linear model
– Any such alternative would certainly be considerably more 

involved



The “condensation algorithm”
(Isard & Blake 1998)

• Here, one choses 𝑞 𝑥𝑘
𝑁(𝑖)

𝑥𝑘−1
𝑁(𝑖)
, 𝑦𝑘
𝑀 = 𝑝(𝑥𝑘

𝑁(𝑖)
|𝑥𝑘−1
𝑁(𝑖)
)

• In other words, the proposal distribution simply uses the 
simulation induced probability distribution and ignores the data

• Recall that, in general, for particle i

• 𝑤𝑘
(𝑖)
= 𝑤𝑘−1

(𝑖)
𝑝 𝑦𝑘

𝑀 𝑥𝑘
𝑁(𝑖)

𝑝(𝑥𝑘
𝑁(𝑖)

|𝑥𝑘−1
𝑁(𝑖)

)

𝑞 𝑥𝑘
𝑁(𝑖)

𝑥𝑘−1
𝑁(𝑖)
, 𝑦𝑘
𝑀

• For 𝑞 𝑥𝑘
𝑁(𝑖)

𝑥𝑘−1
𝑁(𝑖)
, 𝑦𝑘
𝑀 = 𝑝(𝑥𝑘

𝑁(𝑖)
|𝑥𝑘−1
𝑁(𝑖)
):

𝑤𝑘
(𝑖)
= 𝑤𝑘−1

(𝑖) 𝑝 𝑦𝑘
𝑀 𝑥𝑘

𝑁(𝑖)
𝑝(𝑥𝑘

𝑁(𝑖)
|𝑥𝑘−1
𝑁(𝑖)

)

𝑝(𝑥
𝑘
𝑁(𝑖)

|𝑥
𝑘−1
𝑁(𝑖)

)
=𝑤𝑘−1

(𝑖)
𝑝 𝑦𝑘

𝑀 𝑥𝑘
𝑁(𝑖)

• Recall further that𝑝 𝑦𝑘
𝑀 𝑥𝑘

𝑁(𝑖)
is the likelihood of 

observing the empirical data at that time (𝑦𝑡) given the 
particle state 𝑥𝑘

𝑁(𝑖)
at that time

We are just multiplying the
old weight by the likelihood
to get the new weight!



Recall:
Central Choice: Likelihood Function(s)
• The likelihood function expresses the likelihood of 

observing the empirical data in light of particle-
posited model state

– In the condensation algorithm, this is applied (only) 
when we receive a new observation

– Given a view of particle filtering as a “survival of the 
fittest” our likelihood function dictates what “fit” means 
(dictates “how good a match” there is to observed data)

• The choice of one or more likelihood functions is 
one of the most important elements in design of an 
effective particle filter model



Forms of Likelihood Functions Explored
• Binomial

– Not recommended because gives 0 likelihood if all 
particles posit values for the count of trials (“coin flips”) 
that are less than the observed value

• Negative Binomial

This p(yt|it) is non-zero for all it > 0 

• Normal 

– Here, we are matching against values that could in 
general be negative

yt|xs
t  yt|it ~ NegativeBinomial(it, r)



Dealing with Multiple 
Types of Observations

• To deal with multiple types of observations, we 
require a multivariate likelihood function

• Common simplification: Take product of 
observation-specific likelihood functions



Incremental (Recursive) Nature of 
Updates & Streaming

• Particle filtering with condensation algorithm 
involves just incremental (“recursive”) updates to 
the weights over time
– When a new observation comes in, we just take the old 

weight and multiply by the value of the likelihood 
function applied to the 
• Current state

• New observation

• Do not have handle all observations jointly at a time

• This incremental nature of the updates makes the 
process very well suited to streaming solutions that 
handle each new observation vector as it arrives



Resampling Step

• When there is too large a diversity of particle 
weights following the updating of weights, we
perform a (weighted) resampling from the particles

– We draw a new set of particles from the set of particles 
(reflecting the updated weights), where the chance of 
selecting a given particle is proportional to is weight

– A given particle may be disappear or be duplicated 
many times

• NB: If it is duplicated several times, note that the resulting 
particles have a complete copy of the state of the original 
particle (such that this state can then evolve independently)

– The resampled particles are assigned a weight of 1



Practical Problem: Reduced 
Effective Sample Size

• Performed naively, the algorithm above can lead to a 
situation where 
• Most particles have very low weight

• Only a few particles have significant weight

• This situation gives a low “effective sample size” in that with 
sequential importance sampling, the high weight particles 
will be overwhelmingly overrepresented

• We can recognize this situation by monitoring the variance in 
weights, using the second moment of the weights

𝑆𝑒𝑓𝑓 =
1

 𝑖=1
𝑁 (𝑤𝑘

(𝑖)
)2

• If 𝑆𝑒𝑓𝑓 < 𝑆𝑇, we view the samples as suffering too low a 
sample size, and perform resampling



Resampling Step

• Suppose we have particles 𝑋𝑘
𝑁(𝑖)

(call these 𝑋𝑘−
𝑁(𝑖)

) whose 
weight 𝑊𝑘−

(𝑖)
has just been updated by an observation; 

• Let 𝑆𝑒𝑓𝑓 =
1

 𝑖=1
𝑁 (𝑊𝑘

(𝑖)
)2

• If 𝑆𝑒𝑓𝑓 < 𝑆𝑇, then ∀𝑖, 1 ≤ 𝑖 ≤ 𝑁

• 𝑋𝑘+
𝑁(𝑖)
~𝑋𝑘−

𝑁(𝑚𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑊𝑘−
(1..𝑁)

))

• 𝑊𝑘+
(𝑖)
= 1/N

• Please note that 𝑚𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑊𝑘−
(1..𝑁)

) represents a 
sample from the multinomial distribution, taking as 
arguments N parameters representing the probabilities of 
returning each value (here 𝑊𝑘−

(1..𝑁)
) and returning an index 

of the chosen value



Algorithm Maintaining Sample Size
Initialization (k=0)

• Sample 𝑋0
𝑁(𝑖)

from 
𝑞0(𝑥0

𝑁|𝑦0
𝑀)

• For each particle i

• 𝑤𝑘
(𝑖)
=

𝑝(𝑋0
𝑁(𝑖)

)𝑝(𝑦0
𝑀|𝑋0

𝑁(𝑖)
)

𝑞(𝑋0
𝑁 𝑖

|𝑦0
𝑀)

• For each particle i

• 𝑊0
(𝑖)
=

𝑤0
(𝑖)

 
𝑖=1
𝑁𝑠 𝑤0

(𝑖)

Ongoing Observations (k>0)
• For each particle i

• Advance state via sampling  
𝑋𝑘
𝑁(𝑖)
~𝑞(𝑥𝑘

𝑁|𝑦𝑘 , 𝑋0:𝑘−1
𝑁(𝑖)

)
• Supplement trajectory 

𝑋0:𝑘
𝑁(𝑖)

= (𝑋0:𝑘−1
𝑁 𝑖

, 𝑋𝑘
𝑁(𝑖)
)

• Update weight
𝑤𝑘
(𝑖)

= 𝑤𝑘−1
(𝑖)
𝑝 𝑦𝑘

𝑀 𝑥𝑘
𝑁(𝑖)

𝑝 𝑥𝑘
𝑁(𝑖)

𝑥𝑘−1
𝑁(𝑖)
)

𝑞 𝑥𝑘
𝑁(𝑖)

𝑥𝑘−1
𝑁(𝑖)
, 𝑦𝑘
𝑀

• For each particle i

𝑊𝑘
(𝑖)
=

𝑤𝑘
(𝑖)

 
𝑖=1
𝑁𝑠 𝑤𝑘

(𝑖)

• Let 𝑆𝑒𝑓𝑓 =
1

 
𝑖=1
𝑁𝑠 (𝑊𝑘

(𝑖)
)2

• If 𝑆𝑒𝑓𝑓 < 𝑆𝑇, resample 𝑋𝑘
𝑁(𝑖)



Resampling

Image taken from Xiaoyan Li M.Sc. Thesis

resampling resampling

resampling



Computing Statistics over Model Quantities

• If we wish to compute statistics over the model 
output, we must do so over samples from the 
weighted particles
– That is, we draw the samples with replacement from the 

values of the particles, where the probability of drawing 
a particle is proportional to its weight

• Because particles are samples from the proposal 
distribution (rather than from the target 
distribution), we should not be computing statistics 
on the particles themselves, but on samples from 
them



Agenda

Motivations & metaphors

Particle filtering “how” in a nutshell

Particle filtering: What

Particle filtering: How

• Balancing model stochastics

• Particle filtering with agent-based models

• Summary

• Supplemental material:  Detailed documentation & 
derivations



Uncertainty: A Key Balance

• Sometimes such stochastics characterize particular 
known stochastic processes (e.g., evolution of 
reporting or contact rates)

• Sometimes stochastics seem to play mostly an 
instrumental role in achieving model “humility” 
(breadth of possibilities across particles) without 
characterizing specific known stochastic 
phenomena

– We just use to avoid model overconfidence

• We are currently investigating alternative means of 
adding in variety & stochastics to the model



Stochastics: A Key Balance

• We need some stochastics in the model, or else all 
particles cloned during resampling will evolve 
identically, with no divergence

• Avoid overconfidence: We require enough model 
stochastics to allow the model to have a requisite 
variety to match a wide variety of different data
– Too narrow a distribution will lead to “overconfidence” 

in model predictions – will not be as open to correction 
by “surprising” data

• Avoid underconfidence: We don’t want the model 
to have such pronounced stochastics that, absent 
data, it quickly becomes hopelessly uncertain



Two common means of introducing 
stochastics

• Via having parameter values represented as stocks, 
and allowing them or transforms to evolve via 
random walks over time (e.g., reporting rate, 
contact rate)

• Stochastics in processes (e.g., a distribution of 
count of people infected, around the mean)



Dangers
• Too few particles

– e.g., if have large number of uncertain input parameters 

• Particle impoverishment

– Particles become too small in number

• Condensation algorithm is too naïve

– e.g., if new data is received very frequently compared to 
how quickly the growth in model-related uncertainty



Agenda

Motivations & metaphors

Particle filtering “how” in a nutshell

Particle filtering: What

Particle filtering: How

Balancing model stochastics

• Particle filtering with agent-based models

• Summary

• Supplemental material:  Detailed documentation & 
derivations



Particle Filtering with ABMs

• Guidelines for effective particle filtering with ABMs have yet 
to be elucidated

• Given high nominal (& likely moderately high intrinsic) 
dimensionality of state space, non-sparse coverage requires 
high # of particles

• Exceptionally weighty computational resource demand
• High dimensionality  High number of particles 

• Per-ensemble high because each particle is associated with a …
• Complete model state representation  High memory need

• ABM: Large populations & inter-agent interactions  High computational 
burden

• Our lines of research: Active investigation with large-scale 
parallel (GPU, future: FPGA) & distributed computation



Agenda

Motivations & metaphors

Particle filtering “how” in a nutshell

Particle filtering: What

Particle filtering: How

Balancing model stochastics

Particle filtering with agent-based models

• Summary

• Supplemental material:  Detailed documentation & 
derivations



Points of Notes
• Particle filtering continually regrounds model state given 

evidence from latest data
• With estimated current state, PF model can probabilistically 

project forward & be used for intervention evaluation
• Particle filtering is often far more effective than calibration, 

because of continual regrounding latent state
• Choice of likelihood function is very important
• Particle filtering can take many lines of evidence give a portrait 

of the underlying system and how it evolves
• Particle filter needs to balance 

• Too little confidence:  Posterior distribution is too diffuse;model unable 
to predict even over short intervals

• Too much confidence: Model does not lend enough credibility to 
observations, and gives poor & biased results

• Model stochastics capture empirical stochastics & add humility 

• Tuning probabilistic model parameters and stochastics makes a 
big difference for the accuracy of the particle filter



Conclusions
• Because of lack of strict distributional and model form 

assumptions, particle filtering is highly versatile

• Particle Filtering is well suited to work with many public 
health data streams & stochastic models

• In the presence of aggregate dynamic models, particle 
filtering can perform well

• Application of Particle Filtering is not a “turn the crank” 
process: it does involve iteration & learning

• Research progress is required to improve software support 
for Particle Filtering for ABM & DES models



Upcoming Events
Bootcamp & Incubator on 
Understanding Health 
Behavior using Smartphones 
& Wearables (June 24-26, 2019)

Detailed hands-on training in use 
of smartphone-based data 
collection for health. Instructors & 
TA assisted incubator to create, 
test, monitor, refine & analyze 
your study.
http://tinyurl.com/Smartphones4HealthBootcamp2019

Combining Data Science and 
Systems Science (Big Data and 
Dynamic Modeling) for Health 
(Jul 29-Aug 2, 2019)

Concrete guidance/resources for 
applying multiple concrete 
means of cross-leveraging data 
science and systems science
http://tinyurl.com/DataAndSystemScience2019

Agent-Based and Hybrid 

Modeling Bootcamp and 

Incubator for Health 

Researchers (Aug 19-24, 2019)

Hands-on learning for building 

agent-based and hybrid 

dynamic models.  Incubator 

component provides close 

guidance and hands-on 

assistance building, testing and 

refining a working ABM.
http://tinyurl.com/ABMBootcamp2019

http://tinyurl.com/Smartphones4HealthBootcamp2019
http://tinyurl.com/DataAndSystemScience2019
http://tinyurl.com/ABMBootcamp2019


Agenda

Motivations & metaphors

Particle filtering “how” in a nutshell

Particle filtering: What

Particle filtering: How

Balancing model stochastics

Particle filtering with agent-based models

Summary

• Supplemental material:  Detailed documentation & 
derivations



MORE DETAILED DERIVATION



State Space Modeling

• State space Model 
𝑑𝑥𝑁

𝑑𝑡
= 𝑔(𝑥𝑁 , 𝜗)

• N is the count of state variables

• XN represents a vector of length N

• 𝜗 Represents noise in state evolution



State Space Modeling

• State space Model 
𝑑𝑥𝑁

𝑑𝑡
= 𝑔(𝑥𝑁 , 𝜗)

• N is the count of state variables

• XN represents a vector of length N (generally latent i.e., 
unobservable)

• 𝜗 Represents noise in state evolution

• Unit updates: Solution for time t=k is:

𝑥𝑘
𝑁 = 𝑔𝑘 𝑥𝑘−1

𝑁 , 𝜗𝑘−1 =  
𝑘−1

𝑘

𝑔(𝑥𝑁(𝑡), 𝜗)𝑑𝑡

• Where gk advances the model from k-1 to k



Simplifying Assumptions
• For ease of exposition, we make two assumptions here

• Making these assumptions allows out exposition to be far simpler

• These assumptions are for explanation and do not indicate limits 
to practical particle filter application

• Assumptions:
• Measurements are made at regular intervals

• The inter-measurement intervals are of unit length (i.e., 
measurements are separated by one time unit)

• Thus measurements occur at time k=1, k=2, etc., with 
measurement k occurring at time k.



Measurement Model

• We generally know a little bit about the underlying state of 
the system 𝑥𝑘

𝑁 at observation time k via noisy observations 
𝑦𝑘
𝑀

• The measurement model is as follows:
𝑦𝑘
𝑀 = ℎ𝑘(𝑥𝑘

𝑁 , 𝑛𝑘)

where

• 𝑦𝑘
𝑀 represents a vector of length M giving the (noisy & 

partial) observations at time k

• 𝑛𝑘 represents the noise affecting that observation

• ℎ𝑘 captures how state 𝑥𝑘
𝑁 is abstracted by observa.



Measurement Model
• We are seeking a way of estimating the state 𝑥𝑘

𝑁 at time k
based on all of the observed data 𝑦1:𝑘

𝑀

• The ongoing presence of noise throughout the process 
prevents naïve application of sampling via e.g., MCMC of 
the likelihood of observing 𝑦1:𝑘

𝑀 for a sufficiently broad set 
of trajectories 𝑥1:𝑘

𝑁

• To make this feasible, we seek a recursive way of estimating 
(sampling) 𝑥𝑘

𝑁 from 𝑥𝑘−1
𝑁 as a new observation 𝑦𝑘

𝑀 occurs
• This mirrors classic Bayesian updating from a prior to a posterior 

when a new observation occurs

• This is updated in two stages: Prediction & Update



Recursive Update
• Prediction:  The state 𝑥𝑘−1

𝑁 (sampled from p(𝑥𝑘−1
𝑁 |𝑦1:𝑘−1

𝑀 )) 
at time k-1 to is mapped to samples from the state 𝑥𝑘−

𝑁

(sampled from p(𝑥𝑘
𝑁|𝑦1:𝑘−1

𝑀 )) at time k just prior to the 
observation 𝑦𝑘

𝑀.
• For our case (using the Condensation Algorithm), this update does 

not consider the coming observation 𝑦𝑘
𝑀

• Update: 𝑥𝑘−
𝑁 is updated to 𝑥𝑘

𝑁 in a way that considers the 
current observation 𝑦𝑘

𝑀



Dividing Our Difficulties

• Problem A:   Theory for what needs to be sampled
• This involves the theory for the distributions from which we are 

wishing to draw

• Problem B:   Theory for how to do the sampling
• This involves leveraging sequential importance sampling to 

actually perform the sampling in a viable way

• Problem C: Practicalities in performing the sampling
• Reductions in sample diversity/effective sample size



Dividing Our Difficulties

• Problem A:   Theory for what needs to be sampled
• This involves the theory for the distributions from which we are 

wishing to draw

• Problem B:   Theory for how to do the sampling
• This involves leveraging sequential importance sampling to 

actually perform the sampling in a viable way

• Problem C: Practicalities in performing the sampling
• Reductions in sample diversity/effective sample size



Prediction 1
• Assumption: p(𝑥𝑘−1

𝑁 |𝑦1:𝑘−1
𝑀 ) is available at time k-1

• Note that p(𝑥0
𝑁|𝑦0

𝑀) = p(𝑥0
𝑁) is the prior for the entire particle 

filter.

• We use this         to indicate this term in future slides

• Consider that for a binary outcome, B, if we can be 
confident of the identity:

𝑝 𝐴 𝐶 = 𝑝 𝐴𝐵 𝐶 + 𝑝 𝐴  𝐵 𝐶

• As formalized in the Chapman–Kolmogorov equation, this is 
further true for continuous system.  Applying this principle, 
we can write

𝑝 𝑥𝑘
𝑁 𝑦1:𝑘−1

𝑀 =  −∞
+∞
𝑝 𝑥𝑘

𝑁 , 𝑥𝑘−1
𝑁 𝑦1:𝑘−1

𝑀 𝑑𝑥𝑘−1
𝑁



Prediction 2
• Consider the identity just shown:

𝑝 𝑥𝑘
𝑁 𝑦1:𝑘−1

𝑀 =  −∞
+∞
𝑝 𝑥𝑘

𝑁 , 𝑥𝑘−1
𝑁 𝑦1:𝑘−1

𝑀 𝑑𝑥𝑘−1
𝑁

• By the probabilistic chain rule, in general

𝑝 𝐴𝐵 𝐶 =
𝑝(𝐴𝐵𝐶)

𝑃(𝐶)
=
𝑝(𝐴|𝐵𝐶)𝑃(𝐵𝐶)

𝑃(𝐶)
= 𝑝(𝐴|𝐵𝐶)𝑃(𝐵|𝐶)

• Thus we can rewrite the above as:

 
−∞

+∞

p 𝑥𝑘
𝑁 𝑥𝑘−1

𝑁 , 𝑦1:𝑘−1
𝑀 𝑝(𝑥𝑘−1

𝑁 |𝑦1:𝑘−1
𝑀 )𝑑𝑥𝑘−1

𝑁

We call that in planning the recursive procedure,
We assumed (in the previous slide) that sampling from 
this term is possible at time k-1!



Prediction 3
• For a first-order Markov process such as this, the impact of 

past observations 𝑦1:𝑘−1
𝑀 after time k-1 is imparted purely 

through their influence on state 𝑥𝑘−1
𝑁 .  Thus

𝑝 𝑥𝑘
𝑁 𝑥𝑘−1

𝑁 , 𝑦1:𝑘−1
𝑀 = 𝑝 𝑥𝑘

𝑁 𝑥𝑘−1
𝑁

Thus the previous formula

 
−∞

+∞

p 𝑥𝑘
𝑁 𝑥𝑘−1

𝑁 , 𝑦1:𝑘−1
𝑀 𝑝(𝑥𝑘−1

𝑁 |𝑦1:𝑘−1
𝑀 )𝑑𝑥𝑘−1

𝑁

Can be rewritten as 

𝑝 𝑥𝑘
𝑁 𝑦1:𝑘−1

𝑀 =  −∞
+∞
𝑝 𝑥𝑘

𝑁 𝑥𝑘−1
𝑁 𝑝(𝑥𝑘−1

𝑁 |𝑦1:𝑘−1
𝑀 )𝑑𝑥𝑘−1

𝑁

Given 𝑥𝑘−1
𝑁 , we sample from this by just simulating

forward from time k-1 to time k!

These are just the samples available
at time k-1 (once having processed the 

observation 𝑦𝑘−1
𝑀 )



Update 1
• The prediction phase provides the capacity to sample from
p 𝑥𝑘

𝑁 𝑦1:𝑘−1
𝑀

• i.e., given 𝑦𝑘−1
𝑀 the prediction phase updates samples from 

p(𝑥𝑘−1
𝑁 |𝑦1:𝑘−1

𝑀 ) to samples from p 𝑥𝑘
𝑁 𝑦1:𝑘−1

𝑀

• In future slides, we indicate this term p 𝑥𝑘
𝑁 𝑦1:𝑘−1

𝑀 using 

• The update phase maps samples from p 𝑥𝑘
𝑁 𝑦1:𝑘−1

𝑀 to 
samples from p 𝑥𝑘

𝑁 𝑦1:𝑘
𝑀

• This is just           updated from time k-1 to time k, which we 
indicate using the symbol

• Here, we have just taken into account information from the 
observable 𝑦𝑘

𝑀



Brief Summary of Where We’re Headed
• Recall: The update phase maps samples from p 𝑥𝑘

𝑁 𝑦1:𝑘−1
𝑀

to samples from p 𝑥𝑘
𝑁 𝑦1:𝑘

𝑀

• This is just           updated from time k-1 to time k, which we 
indicate using the symbol

• Where we will get to is that sampling from simply requires 
sampling from a distribution where

𝑝 𝑥𝑘
𝑁 𝑦1:𝑘

𝑀 ∝ 𝑝(𝑦𝑘
𝑀|𝑥𝑘

𝑁)𝑝(𝑥𝑘
𝑁|𝑦1:𝑘−1

𝑀 )

• Warning: A very highly detailed derivation lies ahead.  If 
you are satisfied with the knowledge above, just “fast 
forward” ahead until after Slide “Update 10”.



Update 2
• Recall: The update phase maps samples from p 𝑥𝑘

𝑁 𝑦1:𝑘−1
𝑀

to samples from p 𝑥𝑘
𝑁 𝑦1:𝑘

𝑀

• We can express

𝑝 𝑥𝑘
𝑁 𝑦1:𝑘

𝑀 =
𝑝(𝑦1:𝑘

𝑀 |𝑥𝑘
𝑁)𝑝(𝑥𝑘

𝑁)

𝑝(𝑦1:𝑘
𝑀 )

• Recognizing that 𝑝 𝑦1:𝑘
𝑀 = 𝑝(𝑦1:𝑘−1

𝑀 , 𝑦𝑘
𝑀), we can rewrite this 

as:

𝑝 𝑥𝑘
𝑁 𝑦1:𝑘

𝑀 =
𝑝(𝑦1:𝑘−1

𝑀 ,𝑦𝑘
𝑀,|𝑥𝑘

𝑁)𝑝(𝑥𝑘
𝑁)

𝑝(𝑦𝑘
𝑀,𝑦1:𝑘−1

𝑀 )



Update 3

• Consider previous result 𝑝 𝑥𝑘
𝑁 𝑦1:𝑘

𝑀 =
𝑝(𝑦1:𝑘−1

𝑀 ,𝑦𝑘
𝑀,|𝑥𝑘

𝑁)𝑝(𝑥𝑘
𝑁)

𝑝(𝑦𝑘
𝑀,𝑦1:𝑘−1

𝑀 )

• By the probabilistic chain rule, in general

𝑝 𝐴𝐵 𝐶 =
𝑝(𝐴𝐵𝐶)

𝑃(𝐶)
=
𝑝(𝐴|𝐵𝐶)𝑃(𝐵𝐶)

𝑃(𝐶)
= 𝑝(𝐴|𝐵𝐶)𝑃(𝐵|𝐶)

• Thus
𝑝(𝑦1:𝑘−1

𝑀 , 𝑦𝑘
𝑀 , |𝑥𝑘

𝑁) = 𝑝 𝑦1:𝑘−1
𝑀 𝑦𝑘

𝑀 , 𝑥𝑘
𝑁 𝑝 𝑦𝑘

𝑀 𝑥𝑘
𝑁



Update 4

• Consider previous result 𝑝 𝑥𝑘
𝑁 𝑦1:𝑘

𝑀 =
𝑝(𝑦1:𝑘−1

𝑀 ,𝑦𝑘
𝑀,|𝑥𝑘

𝑁)𝑝(𝑥𝑘
𝑁)

𝑝(𝑦𝑘
𝑀,𝑦1:𝑘−1

𝑀 )

• By the probabilistic chain rule, in general

𝑝 𝐴𝐵 𝐶 =
𝑝(𝐴𝐵𝐶)

𝑃(𝐶)
=
𝑝(𝐴|𝐵𝐶)𝑃(𝐵𝐶)

𝑃(𝐶)
= 𝑝(𝐴|𝐵𝐶)𝑃(𝐵|𝐶)

• Thus
𝑝(𝑦1:𝑘−1

𝑀 , 𝑦𝑘
𝑀 , |𝑥𝑘

𝑁) = 𝑝 𝑦1:𝑘−1
𝑀 𝑦𝑘

𝑀 , 𝑥𝑘
𝑁 𝑝 𝑦𝑘

𝑀 𝑥𝑘
𝑁

• Recall that by Bayes’ rule: 𝑝 𝐴 𝐵 =
𝑝(𝐵|𝐴)𝑃(𝐴)

𝑃(𝐵)

• Thus 𝑝 𝑦1:𝑘−1
𝑀 𝑦𝑘

𝑀 , 𝑥𝑘
𝑁 =

𝑝 𝑦𝑘
𝑀 , 𝑥𝑘

𝑁 𝑦1:𝑘−1
𝑀

𝑝(𝑦1:𝑘−1
𝑀 )

𝑝 𝑦𝑘
𝑀,𝑥𝑘

𝑁

• Thus

• 𝑝(𝑦1:𝑘−1
𝑀 , 𝑦𝑘

𝑀 , |𝑥𝑘
𝑁) =

𝑝 𝑦𝑘
𝑀 , 𝑥𝑘

𝑁 𝑦1:𝑘−1
𝑀

𝑝(𝑦1:𝑘−1
𝑀 )

𝑝 𝑦𝑘
𝑀,𝑥𝑘

𝑁 𝑝 𝑦𝑘
𝑀 𝑥𝑘

𝑁



Update 5

• Recall from earlier that

• 𝑝 𝑥𝑘
𝑁 𝑦1:𝑘

𝑀 =
𝑝(𝑦𝑘

𝑀,𝑦1:𝑘−1
𝑀 |𝑥𝑘

𝑁)𝑝(𝑥𝑘
𝑁)

𝑝(𝑦𝑘
𝑀,𝑦1:𝑘−1

𝑀 )

• Further recall that from the previous slide,

• 𝑝(𝑦1:𝑘−1
𝑀 , 𝑦𝑘

𝑀 , |𝑥𝑘
𝑁) =

𝑝 𝑦𝑘
𝑀 , 𝑥𝑘

𝑁 𝑦1:𝑘−1
𝑀

𝑝(𝑦1:𝑘−1
𝑀 )

𝑝 𝑦𝑘
𝑀,𝑥𝑘

𝑁 𝑝 𝑦𝑘
𝑀 𝑥𝑘

𝑁

• Putting the two together, we have

• 𝑝 𝑥𝑘
𝑁 𝑦1:𝑘

𝑀 =
𝑝 𝑦𝑘

𝑀 , 𝑥𝑘
𝑁 𝑦1:𝑘−1

𝑀
𝑝 𝑦1:𝑘−1

𝑀 𝑝 𝑦𝑘
𝑀 𝑥𝑘

𝑁
𝑝(𝑥𝑘

𝑁)

𝑝 𝑦𝑘
𝑀,𝑥𝑘

𝑁 𝑝(𝑦𝑘
𝑀,𝑦1:𝑘−1

𝑀 )



Update 6
• From the previous slide, we have

𝑝 𝑥𝑘
𝑁 𝑦1:𝑘

𝑀 =
𝑝 𝑦𝑘

𝑀 , 𝑥𝑘
𝑁 𝑦1:𝑘−1

𝑀 𝑝 𝑦1:𝑘−1
𝑀 𝑝 𝑦𝑘

𝑀 𝑥𝑘
𝑁 𝑝(𝑥𝑘

𝑁)

𝑝 𝑦𝑘
𝑀 , 𝑥𝑘

𝑁 𝑝(𝑦𝑘
𝑀 , 𝑦1:𝑘−1

𝑀 )

• Recall further that by the definition of a joint distribution,
𝑝 𝑦𝑘

𝑀 , 𝑦1:𝑘−1
𝑀 = 𝑝(𝑦𝑘

𝑀| 𝑦1:𝑘−1
𝑀 )𝑝(𝑦1:𝑘−1

𝑀 )

• Substituting in for 𝑝 𝑦𝑘
𝑀 , 𝑦1:𝑘−1

𝑀 , we get

𝑝 𝑥𝑘
𝑁 𝑦1:𝑘

𝑀 =
𝑝 𝑦𝑘

𝑀 , 𝑥𝑘
𝑁 𝑦1:𝑘−1

𝑀 𝑝 𝑦1:𝑘−1
𝑀 𝑝 𝑦𝑘

𝑀 𝑥𝑘
𝑁 𝑝(𝑥𝑘

𝑁)

𝑝 𝑦𝑘
𝑀 , 𝑥𝑘

𝑁 𝑝(𝑦𝑘
𝑀| 𝑦1:𝑘−1

𝑀 )𝑝(𝑦1:𝑘−1
𝑀 )

• Cancelling the term involving 𝑝 𝑦1:𝑘−1
𝑀 , we have

𝑝 𝑥𝑘
𝑁 𝑦1:𝑘

𝑀 =
𝑝 𝑦𝑘

𝑀 , 𝑥𝑘
𝑁 𝑦1:𝑘−1

𝑀 𝑝 𝑦𝑘
𝑀 𝑥𝑘

𝑁 𝑝(𝑥𝑘
𝑁)

𝑝 𝑦𝑘
𝑀 , 𝑥𝑘

𝑁 𝑝(𝑦𝑘
𝑀| 𝑦1:𝑘−1

𝑀 )



Update 7

• From the previous slide, we have

𝑝 𝑥𝑘
𝑁 𝑦1:𝑘

𝑀 =
𝑝 𝑦𝑘

𝑀 , 𝑥𝑘
𝑁 𝑦1:𝑘−1

𝑀 𝑝 𝑦𝑘
𝑀 𝑥𝑘

𝑁 𝑝(𝑥𝑘
𝑁)

𝑝 𝑦𝑘
𝑀 , 𝑥𝑘

𝑁 𝑝(𝑦𝑘
𝑀| 𝑦1:𝑘−1

𝑀 )

• We can now further recognize that 
𝑝 𝑦𝑘

𝑀 , 𝑥𝑘
𝑁 = 𝑝 𝑦𝑘

𝑀|𝑥𝑘
𝑁 𝑝 𝑥𝑘

𝑁

• And by cancelling reduce the above to

𝑝 𝑥𝑘
𝑁 𝑦1:𝑘

𝑀 =
𝑝 𝑦𝑘

𝑀 , 𝑥𝑘
𝑁 𝑦1:𝑘−1

𝑀
𝑝 𝑦𝑘

𝑀 𝑥𝑘
𝑁
𝑝(𝑥𝑘

𝑁)

𝑝 𝑦𝑘
𝑀|𝑥𝑘

𝑁 𝑝(𝑥𝑘
𝑁)𝑝(𝑦𝑘

𝑀| 𝑦1:𝑘−1
𝑀 )

=
𝑝 𝑦𝑘

𝑀 , 𝑥𝑘
𝑁 𝑦1:𝑘−1

𝑀

𝑝(𝑦𝑘
𝑀| 𝑦1:𝑘−1

𝑀 )



Update 8
• From the previous slide, we have

𝑝 𝑥𝑘
𝑁 𝑦1:𝑘

𝑀 =
𝑝 𝑦𝑘

𝑀 , 𝑥𝑘
𝑁 𝑦1:𝑘−1

𝑀

𝑝(𝑦𝑘
𝑀| 𝑦1:𝑘−1

𝑀 )

• Recall that by the probabilistic chain rule, in general

𝑝 𝐴𝐵 𝐶 =
𝑝(𝐴𝐵𝐶)

𝑃(𝐶)
=
𝑝(𝐴|𝐵𝐶)𝑃(𝐵𝐶)

𝑃(𝐶)
= 𝑝(𝐴|𝐵𝐶)𝑃(𝐵|𝐶)

• Thus we have

𝑝 𝑥𝑘
𝑁 𝑦1:𝑘

𝑀 =
𝑝 𝑦𝑘

𝑀 , 𝑥𝑘
𝑁 𝑦1:𝑘−1

𝑀

𝑝(𝑦𝑘
𝑀| 𝑦1:𝑘−1

𝑀 )

=
𝑝 𝑦𝑘

𝑀 𝑥𝑘
𝑁, 𝑦1:𝑘−1

𝑀 𝑝 𝑥𝑘
𝑁|𝑦1:𝑘−1

𝑀

𝑝(𝑦𝑘
𝑀| 𝑦1:𝑘−1

𝑀 )



Update 9
• From the previous slide, we have

𝑝 𝑥𝑘
𝑁 𝑦1:𝑘

𝑀 =
𝑝 𝑦𝑘

𝑀 𝑥𝑘
𝑁 , 𝑦1:𝑘−1

𝑀 𝑝 𝑥𝑘
𝑁|𝑦1:𝑘−1

𝑀

𝑝(𝑦𝑘
𝑀| 𝑦1:𝑘−1

𝑀 )

• Recall again that for a first-order Markov process such as 
this, the impact of past observations 𝑦1:𝑘−1

𝑀 after time k-1 is 
imparted purely through their influence on state 𝑥𝑘−1

𝑁 . 

• By the properties of a first-order Markov chain, we know 
that the state 

𝑝 𝑦𝑘
𝑀 𝑥𝑘

𝑁 , 𝑦1:𝑘−1
𝑀 = 𝑝 𝑦𝑘

𝑀 𝑥𝑘
𝑁

• Where 𝑝 𝑦𝑘
𝑀 𝑥𝑘

𝑁 is the likelihood of observing 𝑦𝑘
𝑀 given 𝑥𝑘

𝑁

, and which we indicate in our formulae using 

• Thus, in summary, we have

𝑝 𝑥𝑘
𝑁 𝑦1:𝑘

𝑀 =
𝑝(𝑦𝑘

𝑀|𝑥𝑘
𝑁)𝑝(𝑥𝑘

𝑁|𝑦1:𝑘−1
𝑀 )

𝑝(𝑦𝑘
𝑀| 𝑦1:𝑘−1

𝑀 )



Update 10
• From the previous slide, we have

𝑝 𝑥𝑘
𝑁 𝑦1:𝑘

𝑀 =
𝑝(𝑦𝑘

𝑀|𝑥𝑘
𝑁)𝑝(𝑥𝑘

𝑁|𝑦1:𝑘−1
𝑀 )

𝑝(𝑦𝑘
𝑀| 𝑦1:𝑘−1

𝑀 )

• Particularly because our expression will in general not be 
expressible in closed form, our interest here lies in sampling 
from 𝑝 𝑥𝑘

𝑁 𝑦1:𝑘
𝑀 .   

• Because the denominator

𝑝(𝑦𝑘
𝑀| 𝑦1:𝑘−1

𝑀 ) =  
−∞

+∞

𝑝(𝑦𝑘
𝑀|𝑋𝑘

𝑁)𝑝(𝑋𝑘
𝑁|𝑦1:𝑘−1

𝑀 )𝑑𝑋𝑘
𝑁

• does not depend on 𝑥𝑘
𝑁, performing the sampling does not 

require calculating it.  Thus it is sufficient to sample using 
the knowledge that

𝑝 𝑥𝑘
𝑁 𝑦1:𝑘

𝑀 ∝ 𝑝(𝑦𝑘
𝑀|𝑥𝑘

𝑁)𝑝(𝑥𝑘
𝑁|𝑦1:𝑘−1

𝑀 )



Sampling from the full trajectory
• Recall from “Update 10” that

𝑝 𝑥𝑘
𝑁 𝑦1:𝑘

𝑀 ∝ 𝑝(𝑦𝑘
𝑀|𝑥𝑘

𝑁)𝑝(𝑥𝑘
𝑁|𝑦1:𝑘−1

𝑀 )

By extension, we have
𝑝 𝑥0:𝑘

𝑁 𝑦1:𝑘
𝑀 ∝ 𝑝(𝑦𝑘

𝑀|𝑥0:𝑘
𝑁 )𝑝(𝑥0:𝑘

𝑁 |𝑦1:𝑘−1
𝑀 )

Recognizing that 𝑥0:𝑘
𝑁 is composed of pieces, we rewrite this as

𝑝(𝑦𝑘
𝑀|𝑥0:𝑘

𝑁 )𝑝(𝑥𝑘
𝑁 , 𝑥0:𝑘−1

𝑁 |𝑦1:𝑘−1
𝑀 )

By the probabilistic chain rule, in general

𝑝 𝐴𝐵 𝐶 =
𝑝(𝐴𝐵𝐶)

𝑃(𝐶)
=
𝑝(𝐴|𝐵𝐶)𝑃(𝐵𝐶)

𝑃(𝐶)
= 𝑝(𝐴|𝐵𝐶)𝑃(𝐵|𝐶)

Thus we can rewrite the above as
𝑝 𝑥0:𝑘

𝑁 𝑦1:𝑘
𝑀

∝ 𝑝 𝑦𝑘
𝑀 𝑥𝑘

𝑁 , 𝑥0:𝑘−1
𝑁 𝑝 𝑥𝑘

𝑁 𝑥0:𝑘−1
𝑁 , 𝑦1:𝑘−1

𝑀 )𝑝(𝑥0:𝑘−1
𝑁 |𝑦1:𝑘−1

𝑀 )



Full Trajectory Distribution

• From the previous slide, we have
𝑝 𝑥0:𝑘

𝑁 𝑦1:𝑘
𝑀

∝ 𝑝 𝑦𝑘
𝑀 𝑥𝑘

𝑁 , 𝑥0:𝑘−1
𝑁 𝑝 𝑥𝑘

𝑁 𝑥0:𝑘−1
𝑁 , 𝑦1:𝑘−1

𝑀 )𝑝(𝑥0:𝑘−1
𝑁 |𝑦1:𝑘−1

𝑀 )

• because we assume a first-order Markov process, we 
recognize that two terms above can be simplified

𝑝 𝑦𝑘
𝑀 𝑥𝑘

𝑁 , 𝑥0:𝑘−1
𝑁 = 𝑝 𝑦𝑘

𝑀 𝑥𝑘
𝑁

𝑝 𝑥𝑘
𝑁 𝑥0:𝑘−1

𝑁 , 𝑦1:𝑘−1
𝑀 ) = 𝑝 𝑥𝑘

𝑁 𝑥𝑘−1
𝑁 )

• Substituting these in above, we have
𝑝 𝑥0:𝑘

𝑁 𝑦1:𝑘
𝑀 ∝ 𝑝 𝑦𝑘

𝑀 𝑥𝑘
𝑁 𝑝 𝑥𝑘

𝑁 𝑥𝑘−1
𝑁 )𝑝(𝑥0:𝑘−1

𝑁 |𝑦1:𝑘−1
𝑀 )



Dividing Our Difficulties

• Problem A:   Theory for what needs to be sampled
• This involves the theory for the distributions from which we are 

wishing to draw

• Problem B:   Theory for how to do the sampling
• This involves leveraging sequential importance sampling to 

actually perform the sampling in a viable way

• Problem C: Practicalities in performing the sampling
• Reductions in sample diversity/effective sample size



Taking Stock
• The previous section indicated the “target distribution” from 

which have to sample

• This is a distribution 𝑝 𝑥0:𝑘
𝑁 𝑦1:𝑘

𝑀 over trajectories 𝑥0:𝑘
𝑁 of 

latent states of the system, given observations 𝑦1:𝑘
𝑀

• This section examines the mathematics underlying the 
scheme for how we actually go about sampling from that 
distribution



Common Problem: Sampling Difficulty
• Two common ways of sampling from a distribution are

• Computing the cumulative distribution and then using a draw from 
1 or more uniform distributions to sample from the cumulative

• Sampling via MCMC

• There are sometimes problems with such approaches
• Lack of closed-form specification of the distribution  Cannot 

derive closed-form characterization of the cumulative distribution

• The distribution has extremely high dimensionality  Difficult to 
use MCMC and related techniques, compute cumulative 
distribution function
• This applies to our case



Reflection: Why MCMC Based Sampling 
Won’t Work with Stochastic Models

• So we have to sample from a (recursively defined) distribut.

• A well-established traditional way for sampling parameters –
including with dynamic models – is to use MCMC

• Two central difficulty for doing this for the latent state with 
a stochastic dynamic model is that
• We have to simple from a massive number of different values –

values stochastically evolving at each time step

• In contrast to the case with MCMC (where we are sampling from 
parameter values that drive the dynamic model), the latent state 
of the model is emergent from the dynamic model
• We thus can’t simply sample different values of it and assess the likelihood 

of each based on the output

• In order to try to sample these latent states via MCMC, we would need to 
generate again and again, without a clear ability to sample from high 
density regions  Great inefficiency



Another Means of Sampling
• Particle Filtering uses another means of sampling –

sequential importance sampling

• Here, we forsake the infeasible goal of sampling directly 
from the ideal (“target”) distribution via MCMC

• Rather, we use the importance sampling technique of
• Sampling readily from a different “proposal distribution”

• Using weighting of the samples from the proposal distribution to 
characterize their relative representation in the target relative to 
the proposal distribution

• This weight allows us to sample more frequently from those 
samples that are well represented in the target distribution, and 
less frequently from others

• The coming slides present the theory behind importance 
sampling & sequential importance sampling



Importance Sampling 1
• Suppose that we want to draw samples from a “target” 

distribution p(x) that 
• Is difficult to sample from directly

• Given an x, has a value that can be readily computed

• Suppose that we have another “proposal” distribution q(x) 
from which we can readily sample 
• Common example: Uniform distribution

• Ideally this would be something like p(x)



Importance Sampling 2
• We can readily sample N values from p(x) by a 4 part 

procedure:
• Part 1: Create a set S of N sample values xi (1 ≤ i ≤ N) from q(x)

• e.g., draw each xi from a uniform distribution between 0 and 1

• Part 2: Label each drawn value xi with a “weight” Wi = p(xi)/q(xi)
• This “weight” expresses how much more common xi is within the target 

distribution p(x), when compared to the distribution from which it was 
drawn, q(x)

• Part 3: Normalize weights, labeling each xi with weight wi = 
𝑊𝑖

 𝑗=1
𝑁 𝑊𝑗

• Part 4: Draw N samples from S, where the probability of drawing 
sample i each is proportional to wi

• For each such sample, this is readily performed by 
• Drawing a value u from [0,1]

• Going through each 1 ≤ i ≤ N accumulating the value of wi until the smallest i
where  𝑗=1

𝑖 𝑊𝑗 ≥ 𝑢



Importance Sampling 3
• Importance sampling approximation to p(x) is as follows:

 𝑝 𝑥 ≈  𝑖=1
𝑛 𝑤(𝑥 𝑖 )𝛿𝑋 𝑖

Where the normalized weights 𝑤 𝑥(𝑖) are given by

𝑤 𝑥(𝑖) =
𝑊 𝑥(𝑖)

 𝑗=1
𝑁 𝑊 𝑥(𝑗)

Based on unnormalized weights 𝑊 𝑥(𝑖) :

𝑊 𝑥(𝑖) =
𝑝(𝑥(𝑖))

𝑞(𝑥(𝑖))

And 𝛿𝑋 𝑖 is the Dirac Delta probability mass located at point 
𝑥(𝑖)



Sequential Importance Sampling
for Our Case

• Importance-weighted samples are maintained over time
• Such samples are termed “particles”

• Successive observations at integer times are made, with 
each such observation updating the underlying 

distribution p 𝑥0:𝑘
𝑁(𝑖)

𝑦1:𝑘
𝑀

• Direct sampling from this distribution is not generally possible

• To enable successively sample from p 𝑥0:𝑘
𝑁(𝑖)

𝑦1:𝑘
𝑀 as each 

observations k arrives, we draw instead from a proposal 

distribution q(x) & successively update samples 𝑥1:𝑘−1
𝑁(𝑖)

& 

weights 𝑤𝑘−1
(𝑖)

to reflect the observation, yielding 𝑥1:𝑘
𝑁(𝑖)

and 

𝑤𝑘
(𝑖)



Importance Sampling to Draw From 
• Target distribution is 𝑝 𝑥0:𝑘−1

𝑁(𝑖)
𝑦1:𝑘−1
𝑀

• 𝑥1:𝑘−1
𝑁(𝑖)

is drawn from proposal distribution 

𝑞 𝑥0:𝑘−1
𝑁(𝑖)

𝑦1:𝑘−1
𝑀

• Here we are seeking to choose and maintain a proposal 
distribution that can be readily sampled from over time
• Per importance sampling principles, these samples are then 

weighted as

𝑤𝑘−1
(𝑖)

=
𝑝 𝑥0:𝑘−1

𝑁(𝑖)
𝑦1:𝑘−1
𝑀

𝑞 𝑥0:𝑘−1
𝑁(𝑖)

𝑦1:𝑘−1
𝑀



Convenient Choice in Proposal Distribution

• For convenience, we assume that
𝑞 𝑥1:𝑘

𝑁 𝑦1:𝑘
𝑀 = 𝑞 𝑥𝑘

𝑁 𝑥1:𝑘−1
𝑁 , 𝑦1:𝑘

𝑀 𝑞 𝑥1:𝑘−1
𝑁 𝑦1:𝑘−1

𝑀

• These terms represent
• 𝑞 𝑥1:𝑘−1

𝑁 𝑦1:𝑘−1
𝑀 is just the value for the proposal distribution 

at the time of the previous observations

• 𝑥𝑘
𝑁(𝑖)
~𝑞(𝑥𝑘

𝑁|𝑥1:𝑘−1
𝑁 , 𝑦1:𝑘

𝑀 ): the probability (density) of the 
updated state taking into account the new measurement 
measurements at time k



Key Need: Weight Updates

• Given: A sample (particle) drawn with a weight 𝑤𝑘−1
(𝑖)

from 
the importance-sampling approximated distribution 
𝑝 𝑥1:𝑘−1

𝑁 𝑦1:𝑘−1
𝑀 at time k-1

• Need: Formulate an equation to update the weight of that 

particle to draw from the target distribution 𝑝 𝑥0:𝑘
𝑁(𝑖)

𝑦1:𝑘
𝑀

for time.  This update would take into account both
• The model-borne dynamics mapping from 𝑥𝑘−1

𝑁 to 𝑥𝑘
𝑁

• The observation 𝑦𝑘
𝑀



• Recall from earlier that we have

𝑤𝑘
(𝑖)
=
𝑝 𝑥0:𝑘

𝑁(𝑖)
𝑦1:𝑘
𝑀

𝑞 𝑥0:𝑘
𝑁(𝑖)

𝑦1:𝑘
𝑀

• Recall from earlier slide “Full Trajectory Distribution” that
𝑝 𝑥0:𝑘

𝑁 𝑦1:𝑘
𝑀 ∝ 𝑝 𝑦𝑘

𝑀 𝑥𝑘
𝑁 𝑝 𝑥𝑘

𝑁 𝑥𝑘−1
𝑁 )𝑝(𝑥0:𝑘−1

𝑁 |𝑦1:𝑘−1
𝑀 )

• Recall further that we chose a proposal distribution of the 
form
𝑞 𝑥1:𝑘

𝑁 𝑦1:𝑘
𝑀 = 𝑞 𝑥𝑘

𝑁 𝑥1:𝑘−1
𝑁 , 𝑦1:𝑘

𝑀 𝑞 𝑥1:𝑘−1
𝑁 𝑦1:𝑘−1

𝑀

• We thus have

𝑤𝑘
(𝑖)
=
𝑝 𝑦𝑘

𝑀 𝑥𝑘
𝑁 𝑝 𝑥𝑘

𝑁 𝑥𝑘−1
𝑁 )𝑝(𝑥0:𝑘−1

𝑁 |𝑦1:𝑘−1
𝑀 )

𝑞 𝑥𝑘
𝑁 𝑥1:𝑘−1

𝑁 , 𝑦1:𝑘
𝑀 𝑞 𝑥1:𝑘−1

𝑁 𝑦1:𝑘−1
𝑀



Recursive Weight Updates
• Recall from the previous slide that

𝑤𝑘
(𝑖)
=
𝑝 𝑦𝑘

𝑀 𝑥𝑘
𝑁 𝑝 𝑥𝑘

𝑁 𝑥𝑘−1
𝑁 )

𝑞 𝑥𝑘
𝑁 𝑥1:𝑘−1

𝑁 , 𝑦1:𝑘
𝑀

𝑝(𝑥0:𝑘−1
𝑁 |𝑦1:𝑘−1

𝑀 )

𝑞 𝑥1:𝑘−1
𝑁 𝑦1:𝑘−1

𝑀

• Recalling from a few slides earlier that 

𝑤𝑘−1
(𝑖)

=
𝑝 𝑥0:𝑘−1

𝑁(𝑖)
𝑦1:𝑘−1
𝑀

𝑞 𝑥0:𝑘−1
𝑁(𝑖)

𝑦1:𝑘−1
𝑀

• We can recognize the ratio of the final terms in the 

numerator & denominator as 𝑤𝑘−1
(𝑖)

, and thus rewrite the 
equation as:

𝑤𝑘
(𝑖)
=
𝑝 𝑦𝑘

𝑀 𝑥𝑘
𝑁 𝑝 𝑥𝑘

𝑁 𝑥𝑘−1
𝑁 )

𝑞 𝑥𝑘
𝑁 𝑥1:𝑘−1

𝑁 , 𝑦1:𝑘
𝑀

𝑤𝑘−1
(𝑖)



Recursive Weight Updates Redux
• From the previous slide, we have

𝑤𝑘
(𝑖)
=
𝑝 𝑦𝑘

𝑀 𝑥𝑘
𝑁 𝑝 𝑥𝑘

𝑁 𝑥𝑘−1
𝑁 )

𝑞 𝑥𝑘
𝑁 𝑥1:𝑘−1

𝑁 , 𝑦1:𝑘
𝑀

𝑤𝑘−1
(𝑖)

• Because the process gk is first-order Markovian, we can 
further simplify the denominator by recognizing that all 

impact of past state is captured in the previous state 𝑥𝑘−1
𝑁 𝑖

, 
and by assuming that all observations prior to k have 
already between reflected in the distribution, thus:

𝑞 𝑥𝑘
𝑁(𝑖)

𝑥1:𝑘−1
𝑁(𝑖)

, 𝑦1:𝑘
𝑀 = 𝑞 𝑥𝑘

𝑁 𝑖
𝑥𝑘−1
𝑁 𝑖
, 𝑦𝑘
𝑀

and (rearranging slightly) we have

𝑤𝑘
(𝑖)
∝ 𝑤𝑘−1

(𝑖)
𝑝 𝑦𝑘

𝑀 𝑥𝑘
𝑁(𝑖)

𝑝 𝑥𝑘
𝑁(𝑖)
|𝑥𝑘−1
𝑁(𝑖)

𝑞 𝑥𝑘
𝑁(𝑖)

𝑥𝑘−1
𝑁(𝑖)
, 𝑦𝑘
𝑀



Naïve Algorithm

Initialization (k=0)

• Sample 𝑋0
𝑁(𝑖)

from 
𝑞0(𝑥0

𝑁|𝑦0
𝑀)

• For each particle i

• 𝑤𝑘
(𝑖)
=

𝑝(𝑋0
𝑁(𝑖)

)𝑝(𝑦0
𝑀|𝑋0

𝑁(𝑖)
)

𝑞(𝑋0
𝑁 𝑖

|𝑦0
𝑀)

• For each particle i

• 𝑊0
(𝑖)
=

𝑤0
(𝑖)

 
𝑖=1
𝑁𝑠 𝑤0

(𝑖)

Ongoing Observations (k>0)

• For each particle i
• Advance state via sampling  

𝑋𝑘
𝑁(𝑖)
~𝑞(𝑥𝑘

𝑁|𝑦𝑘 , 𝑋0:𝑘−1
𝑁(𝑖)

)

• Supplement trajectory 

𝑋0:𝑘
𝑁(𝑖)

= (𝑋0:𝑘−1
𝑁 𝑖

, 𝑋𝑘
𝑁(𝑖)
)

• Update weight

𝑤𝑘
(𝑖)
= 𝑤𝑘−1

(𝑖)
𝑝 𝑦𝑘

𝑀 𝑥𝑘
𝑁(𝑖)

𝑝 𝑥𝑘
𝑁(𝑖)
|𝑥𝑘−1
𝑁(𝑖)

𝑞 𝑥𝑘
𝑁(𝑖)

𝑥𝑘−1
𝑁(𝑖)
, 𝑦𝑘
𝑀

• For each particle i

𝑊𝑘
(𝑖)
=

𝑤𝑘
(𝑖)

 
𝑖=1
𝑁𝑠 𝑤𝑘

(𝑖)



Practical Problem: Reduced 
Effective Sample Size

• Performed naively, the algorithm above can lead to a 
situation where 
• Most particles have very low weight

• Only a few particles have significant weight

• This situation gives a low “effective sample size” in that with 
sequential importance sampling, the high weight particles 
will be overwhelmingly overrepresented

• We can recognize this situation by monitoring the variance in 
weights, using the second moment of the weights

𝑆𝑒𝑓𝑓 =
1

 𝑖=1
𝑁 (𝑤𝑘

(𝑖)
)2

• If 𝑆𝑒𝑓𝑓 < 𝑆𝑇, we view the samples as suffering too low a 
sample size



Resampling Step
• When there is too large a diversity of particle 

weights following the updating of weights, we
perform a (weighted) resampling from the particles

– We draw a new set of particles from the set of particles 
(reflecting the updated weights), where the chance of 
selecting a given particle is proportional to is weight

– A given particle may be disappear or be duplicated 
many times

• NB: If it is duplicated several times, note that the resulting 
particles have a complete copy of the state of the original 
particle (such that this state can then evolve independently)

– The resampled particles are assigned a weight of 1



Resampling Step
• Suppose we have particles 𝑋𝑘

𝑁(𝑖)
(call these 𝑋𝑘−

𝑁(𝑖)
) whose 

weight 𝑊𝑘−
(𝑖)

has just been updated by an observation; 

• Let 𝑆𝑒𝑓𝑓 =
1

 𝑖=1
𝑁 (𝑊𝑘

(𝑖)
)2

• If 𝑆𝑒𝑓𝑓 < 𝑆𝑇, then ∀𝑖, 1 ≤ 𝑖 ≤ 𝑁

• 𝑋𝑘+
𝑁(𝑖)
~𝑋𝑘−

𝑁(𝑚𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑊𝑘−
(1..𝑁)

))

• 𝑊𝑘+
(𝑖)
= 1/N

• Please note that 𝑚𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑊𝑘−
(1..𝑁)

) represents a 
sample from the multinomial distribution, taking as 
arguments N parameters representing the probabilities of 
returning each value (here 𝑊𝑘−

(1..𝑁)
) and returning an index 

of the chosen value



Algorithm Maintaining Sample Size
Initialization (k=0)

• Sample 𝑋0
𝑁(𝑖)

from 
𝑞0(𝑥0

𝑁|𝑦0
𝑀)

• For each particle i

• 𝑤𝑘
(𝑖)
=

𝑝(𝑋0
𝑁(𝑖)

)𝑝(𝑦0
𝑀|𝑋0

𝑁(𝑖)
)

𝑞(𝑋0
𝑁 𝑖

|𝑦0
𝑀)

• For each particle i

• 𝑊0
(𝑖)
=

𝑤0
(𝑖)

 
𝑖=1
𝑁𝑠 𝑤0

(𝑖)

Ongoing Observations (k>0)
• For each particle i

• Advance state via sampling  
𝑋𝑘
𝑁(𝑖)
~𝑞(𝑥𝑘

𝑁|𝑦𝑘 , 𝑋0:𝑘−1
𝑁(𝑖)

)
• Supplement trajectory 

𝑋0:𝑘
𝑁(𝑖)

= (𝑋0:𝑘−1
𝑁 𝑖

, 𝑋𝑘
𝑁(𝑖)
)

• Update weight
𝑤𝑘
(𝑖)

= 𝑤𝑘−1
(𝑖)
𝑝 𝑦𝑘

𝑀 𝑥𝑘
𝑁(𝑖)

𝑝 𝑥𝑘
𝑁(𝑖)

𝑥𝑘−1
𝑁(𝑖)
)

𝑞 𝑥𝑘
𝑁(𝑖)

𝑥𝑘−1
𝑁(𝑖)
, 𝑦𝑘
𝑀

• For each particle i

𝑊𝑘
(𝑖)
=

𝑤𝑘
(𝑖)

 
𝑖=1
𝑁𝑠 𝑤𝑘

(𝑖)

• Let 𝑆𝑒𝑓𝑓 =
1

 
𝑖=1
𝑁𝑠 (𝑊𝑘

(𝑖)
)2

• If 𝑆𝑒𝑓𝑓 < 𝑆𝑇, resample 𝑋𝑘
𝑁(𝑖)



Choice of Proposal Distribution

• The algorithms above leave open to the 
implementer the choice of a proposal distribution 

𝑞(𝑥𝑘
𝑁|𝑦𝑘 , 𝑋0:𝑘−1

𝑁(𝑖)
)

• The choice of proposal distribution can have a 
sizeable impact on 
• The practical performance of the particle filtering

• The complexity of the implementation

• Many practitioners make use of the “condensation 
algorithm” of Isard & Blake (1998), which employs 
a particularly simple proposal distribution



The “condensation algorithm”
(Isard & Blake 1998)

• Here, one choses 𝑞 𝑥𝑘
𝑁(𝑖)

𝑥𝑘−1
𝑁(𝑖)
, 𝑦𝑘
𝑀 = 𝑝(𝑥𝑘

𝑁(𝑖)
|𝑥𝑘−1
𝑁(𝑖)
)

• In other words, the proposal distribution simply uses the 
simulation induced probability distribution and ignores the data

• Recall that, in general, for particle i

• 𝑤𝑘
(𝑖)
= 𝑤𝑘−1

(𝑖)
𝑝 𝑦𝑘

𝑀 𝑥𝑘
𝑁(𝑖)

𝑝(𝑥𝑘
𝑁(𝑖)

|𝑥𝑘−1
𝑁(𝑖)

)

𝑞 𝑥𝑘
𝑁(𝑖)

𝑥𝑘−1
𝑁(𝑖)
, 𝑦𝑘
𝑀

• For 𝑞 𝑥𝑘
𝑁(𝑖)

𝑥𝑘−1
𝑁(𝑖)
, 𝑦𝑘
𝑀 = 𝑝(𝑥𝑘

𝑁(𝑖)
|𝑥𝑘−1
𝑁(𝑖)
):

𝑤𝑘
(𝑖)
= 𝑤𝑘−1

(𝑖) 𝑝 𝑦𝑘
𝑀 𝑥𝑘

𝑁(𝑖)
𝑝(𝑥𝑘

𝑁(𝑖)
|𝑥𝑘−1
𝑁(𝑖)

)

𝑝(𝑥
𝑘
𝑁(𝑖)

|𝑥
𝑘−1
𝑁(𝑖)

)
=𝑤𝑘−1

(𝑖)
𝑝 𝑦𝑘

𝑀 𝑥𝑘
𝑁(𝑖)

• Recall further that𝑝 𝑦𝑘
𝑀 𝑥𝑘

𝑁(𝑖)
is the likelihood of 

observing the empirical data at that time (𝑦𝑡) given the 
particle state 𝑥𝑘

𝑁(𝑖)
at that time


