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Exemplar Context: Outbreak

Prediction & Response

Many concerns around mobilization of health
resources hinge on outbreak detection and
anticipation of evolution

Regular (e.g., weekly) reporting often gives some
sense as to “where we're at”, but little clarity on
what lies ahead

Our focus lies in early detection of and anticipating
trajectory of incident cases in an emerging outbreak

Outbreak contexts are often marked by notable
stochastics, including timing and evolution



Challenges tor Dynamic Models
 With modeling projects, we typically

— Build the model

e Conceptualize, Formulate, Parameterize, Calibrate, Cross
Validate & Otherwise test, ...

— Use it for insight

* Running scenarios, studying outputs and intermediate
dynamics, etc.

* After the model is formulated, often aligning it
with new data is a heavy-weight manual process

— Typical: Reparameterization, Recalibrating, Redoing
cross-validation

— Sometimes: Restratifying, reformulating, etc.



Problem B: Reflection 1

* Models as approximations: Unassisted, even the
most detailed models eventually diverge from
empirical situation as time passes

— Divergence between model state & empirical state

 Some relevant challenges
— Stochastics
— Omitted factors
— Approximations (e.g., random mixing)
— New exogenous influences
— Misunderstanding regarding process character
— Latent heterogeneity
— Mis-estimates
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Problem B: Reflection 2

 While models can be very useful for responding to
emerging issues, often there is little opportunity to
craft a highly empirically grounded model

* Absent grounding in empirical evidence, accuracy of
projections & analysis of policy tradeoffs is
jeopardized

* By the time a highly grounded model can be
created, often the greatest chance to shape policy is
past



Solution Vision: Quickly Formulated,
Frequently Regrounded Dynamic Models

Rough & ready models quickly available to support
decision-making, automatically regrounded & sharpened
may be both more valuable and accurate than a far more
detailed model that takes longer to create

Rely not just on model predictions of where we’re at, but
also empirical observations that have unfolded

Model state 1s kept “current” with the latest evidence, but
can be used to project forward & study anticipated
intervention tradeoffs

Through logic of model structure together with time series,
model regrounding 1lluminates latent areas of the system




1 1 1 I I
1 1 1 | |
1 1 1 I I
1 1 1 I I
1 1 1 I I
1 1 1 | |
1 1 1 I I
1 1 1 I i
1 1 1 | |
1 1 1 I I
1 1 1 I I
1 1 1 I I
I T TENED DESIPEY NP 1
1 1 1 | |
1 1 1 I I
1 1 1 I I
1 1 1 I I
1 1 1 I I
1 1 1 I I
1 1 1 I |
1 1 1 | |
1 1 1 I I
1 1 1 I I
1 1 1 | |
1 1 1 I I
Leccie==d===d===i===& L
1 1 1 ] |
1 1 1 I I
1 1 1 I I
1 1 1 I I
1 1 1 I I
1 1 1 I I
1 1 1 I I
1 1 1 I I
1 1 1 I I
1 1 1 I I
1 1 1 I I
1 1 1 I I
I U PENEN DS R L
1 1 1 | |
1 1 1 I I 1
1 1 1 I I 1
1 1 1 I I 1
1 1 1 I I 1
1 1 1 I o 1
1 1 1 I 1
1 1 1 | 1
1 1 1 I 1
1 1 1 I 1
1 1 1 I I
1 1 1 I 1
I TR TR P R B, (R —
1 1 1 ] l
1 1 1 I "
1 1 1 I 1
1 1 1 | 1
1 1 1 ' 1
1 1 1 3 1
1 1 1 | 1
1 1 1 i 1
1 1 1 I 1
1 1 1 I 1
1 1 1 I I
1 1 1 I _w._
I R TR DRSPS R
1 1 1 | 1
1 1 1 I 1
1 1 1 | 1
1 1 1 I 1
1 1 1 I 1
1 1 1 1
1 1 B 1
1 1 1 1
1 ol i 1
1 1 1 1
1 1 1 1
1 1 1 1
I P TR | R
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
I T TR | R
1 1 1 1
1 1 1 1
1 1 1 Bl
1 1 1 1
1 1 1 1
1 1 1 .l
1 1 1 N
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
I TR VRN P R
1 1 1 | | 1
1 1 1 I I 1
1 1 1 I I 1
1 1 1 I I 1
1 1 1 I | 1
1 1 1 I I 1
1 1 1 I I il
1 1 1 I I 1
1 1 1 I I J
1 1 1 I | [ 1
1 1 1 b 1 LI |
1 1 1 | ] | ..i;_
1 1 1 1 1 1 Il 1
T T T T T T T T
] o o o o () o [ o [
] Ny (] L () Iy) o L L
= " " L] ] — — |

(Ayuow) uoneindad aanaau) pauoday

150 200 250 300 350 400 450
Time {month)

100

50

e Empirical Data

b Simulation Output



Avoiding Open-Loop Models
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Like a weather

report, we seek to
always have the model
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Our Past and Current Lines of

PF/PMCMC Application
* Influenza* * Emergency department
« \West Nile waiting times
virus/Mosquito « HPA axis dynamics
dynamics® * HIV immunity and
* Measles* HAART dynamics
 Pertussis* « Criminal justice
» Tuberculosis* processes (e.g., remand,
. Opioids* bail, probation,
Sp' » Incarceration)
diciae  HIN1 ground truth
» Chickenpox model testing

* indicates multiple explorations of particle filtered/PMCMC models



Context: Streaming, Repositories, Recurrently

Regrounded Models for Decision Support

PWA-based twitter reviewing
<:> system (reviewing &
administrative interfaces)

Other possible sources:
e Instagram
e Tumblr
¢ Weather-related variables
o News mentions

yelp

Tweet Repo
(Data & Metadata)
(Realized with attributes

cluding
proposed classification

Stateful
Tweet-stream-to-ti r N
me-series-transfor _
mer \

Topic-specific twitter
Time Series Repo
(Data & Metadata)

Topic-specific state
estimation particle
filter/Particle MCM
model (Includes Ul)

Decision
Support
System

(TEOO%I =|'__ Topic-specific
rends projection particle
API filter/Particle MCN

¥ model (Includes |

Topic-specific search

opic-specific
particular-interventio
n-specific particle
filtter/Particle MCMC
model (Includes Ul)

;’; Time Series Repo
= (Data & Metadata)




Machine Learning & Dynamic Models

MCMC: Sample from posteriors of deterministic dynamic
model static parameters, latent states, scenario results,
and incremental scenario gains.

Sample from posteriors of
stochastic dynamic model latent states, stochastically
evolving parameters, scenario results, and incremental
scenario gains.

~ Particle MCMC (PMCMC) Sample from posterlors of
- 1 e..f‘a‘r
- Stocnastic QY 1 ' 3
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- o' '
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Particle Filtering: A Few Key Facts

The simulation model

Only meaningful if include stochastic processes

Runs normally (“prediction”) between observation points

Is “corrected” to align w/empirical data at observation points
Is performed recursively (in an on-line fashion)

Rather than re-estimate the state over all time points de novo when
new data comes in, the estimate when new data comes In
depends on estimates derived from earlier data

Loose distributional assumptions (contrast: Kalman Filter)
No reliance on functional form/linearization of state eguations

Samples from the state (and trajectory) distribution

o ach sample.is represented by a “particle™ —
[PaIIGIES reliecl Competing hypolieses: asioihe: r*urreni t f
Trgre sz Survival of ina fittast” of daiielas (nyaainiasas

=xoloits [oortinca saunolineg: disiriouionis sepleldefoy
ASSOCIANNYISAMPIES from) PIOHESEIUISINPAIUCIES)ANVAVETY ALS;



How to Perform PF on ODE in a Nutshell

Start with stochastic ODE model
Subscript ODE model by 100s to 1000s of particles

Each particle has its own full copy of model state (anything that could differ b/t
realizations)

Sample from initial model state from prior distribution; set weights uniformly to 1
(Prediction phase): Between observations

All particles evolve according to standard model dynamics (just perform
integration of each particle’s state until next observation, all particles survive)

Particle weights remain invariant

(Update phase): At observation points: For each particle, multiply particle weight
by likelihood of observing the empirical observation vector, given particle state

.Resampling/“Survival of the ﬁttest”' If effective sampl size IS too low (too much

LONEI w-ﬂorm,J, mmcl NEIgNE J~ KESEL Lo ﬂ
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Empirical Datasets

e Measles and pertussis reported cases of Saskatchewan in pre-vaccination era
(1921-1956):
o Monthly reported cases across all population
o Yearly reported cases in different (6) age groups
e Demographic data of Saskatchewan from 1921 to 1956.
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age group age_16 [l ag=_32 ags_50 age_57 M sg=_s4
age 0 |l age_17 W age_32 M ag=_51 M ag=_58 age_85

800K L - ::_; :gi_iz = agi_:z = age_5§ [ ] age_fi e
_-:_-:-----———--—:::::::-——--==- .a=_3 - e see2 age_i‘: seet7

| :-_-_---_----—-——-___=========__= ge_3 [l age_20 M zq=_37 age_G4 .age_x-.age_SE
--=--= - ------------------:___:::- ag=_4 age_21 age_32 M ag=_55 age_72 [ age_89

e 500K = : . B = E== E = E === W age s W =g=_22 M age_z2 age_56 [l ag=_73 age_90
E: ==El EREEEEEEEREERE 7925 Wage 22 Msge 40 Mage 57 Mlage 74 Mlages1
§ === =1 _—= | EFE MW zg=_22 age_41 age_58 [ age_75 ags_92
£ ok SEES EEEEEEEE . . - - == age8 [Mage 25 Mlage 42 M age 59 I age 76 [l age 93
E == E = : ! ! | e M ag=_26 age_43 M age_50 M age_77 age_94

; = = 1111 | ] E age_10 age_27 [l age_44 age_G1 age_78 M sg=_35

E age_11 i age_28 age_45 M ag=_52 M =g=_7% age_96

= W age_12 age_25 [ age_46 age_63 [ ag=_30 W ag=_57

. age_13 age_30 age_47

Mok W W o 00 h O o A s W W 0 O e M s e = 27

oM oMo oMo om oMo o ef =f of of of of of <f WDoWw oW oW oW ouwown age_14 . age_31 . age_48
Loy I I I O T S O T O SO O e T 3 O+ O 3 T3 T« O S s B O+ T3

e e e e B B B B B B B B B B B e B B B B B | F = .395_15

age_81 age_98
. age_82 . @ge_99
age_83 [l age_100

o

oo
[rapra]
[ Irn i
oy oo oen oy
[

o

[r=]
|
o

age_32 age_459
year



SﬁdW;

— | In(P) |

. Poisson(f}+ SAT)

System Noise

Af

Measles particle filtering models

.S‘rdwf ] Cr
e
!
» [/ 4 R

Structure 1

—> Flow

————— » Dependency

State

Dynamic
variable

dW, is for a Wiener
Process

Structure of measles aggregate population particle filtering model



Measles particle filtering models
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Results for Measles

Comparison of the average RMSE of all models by incorporating empirical data across all
observation points

Model Monthly Yearly in Month | Total
Pure,ggregate 249.0 NONE NONE
Calibrated,ggregate 207.5 NONE NONE
PFyygregate 104.6 (994, 109.9) || NONE NONE
PFage s monthiy %1 (915, 100.7) | 179.5 (160.6, 198.3) | 275.5 (260.2, 290.9)
PFoge s both 8 (94.1, 101.5) 144.8 (112.5, 177.1) | 242.6 (210.2, 275.1)
PFoge 15 monthly 95.7 (89.8, 101.6) | 45.9 (39.9, 51.9) 141.6 (133.8, 149.4)
e ety 96.1 (91.6, 100.5) 39.9 (34.3, 45.6) 136.0 (127.6, 144.5)

data is reduced by a factor of 2.0

discrepancy model.

The sampled discrepancy of model's estimations vs. observed

The age-structured model (PFage_15 both) is the minimum




Estimation Results of Measles measles
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Repored Infective Population {yearly)

Repored Infective Population fyearly)

Estimation Results of Measles

measles
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Latent State for Mgﬂgsles - Adults
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Reported Infective Population (manthiy)

Reported Infective Population (monthly)
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Prediction results of the minimal discrepancy model

Predictina from the first or second time points of an outbreak of the minimum discrepancy model
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Reported Infective Population (manthiy)

Reported Infective Population {monthiy)

Prediction results of the minimal discrepancy model

Predicting from the peak of an outbreak of the minimum discrepancy model
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Reported Infective Population (manthly)

Reported Infective Population (monthiy)
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Predicting from the end of an outbreak of the minimum discrepancy model
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Prediction results of the minimal discrepancy model

Predicting before the next outbreak of the minimum discrepancy model
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Intervention results of the minimal discrepancy model

simulating an outbreak-response quarantine intervention
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Classifying outbreak occurrence with the prediction
results of the particle filtering models

measles
ROC Curve
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State Space Modeling

dXN N
* State space Model — = g(x™,09)
— N is the count of state variables

— XN represents a vector of length N (generally includes
many latent — unobserved or unobservable — elements)

— U Represents noise in state evolution

* Unit updates: Solution for time t=k is:
k

¥ = g (k) 0_y) = j gGeN (), 9) dt
k—1

* Where g, advances the model from k-1 to k



Simplifying Assumptions

* For ease of exposition, we make two assumptions
here

— Making these assumptions allows out exposition to be
far simpler

— These assumptions are for explanation and do not
indicate limits to practical particle filter application
* Assumptions:
— Measurements are made at regular intervals

— The inter-measurement intervals are of unit length (i.e.,
measurements are separated by one time unit)

e Thus measurements occur at time k=1, k=2, etc.,
with measurement k occurring at time k.



Measurement Model

 We generally know a little bit about the underlying
state of the system x5 at observation time k via
noisy observations yg.

* The measurement model is as follows:

}’;cw = hk(x;cv’ Nk )
where

. y}(v’ represents a vector of length M giving the
(noisy & partial) observations at time k

* Ny represents the noise affecting that observation
* h; captures how state x,’cv is abstracted by observa.



Sampling Goal
At time k, we seek to estimate state x,’{V (or, better,
trajects x1';.) based on all of the observed data y {7,

The ongoing presence of noise throughout the
process prevents naive application of sampling via
e.g., MCMC of the likelihood of observing y{vfk for a
sufficiently broad set of trajectories xffk

To make this feasible, we seek a recursive way of
estimating (sampling) x,’cv from x}cv_l as a hew
observation y,’{” occurs

— This mirrors classic Bayesian updating from a prior to a
posterior when a new observation occurs

This is updated in two stages: Prediction & Update



What: Two-Phase Recursive Procedure

* Prediction: The state x_, (sampled from
p(xr_1|Vih_41)) at time k-1 to is mapped to
samples from the state x,’cv_ (sampled from
p(x¥ |yt _4)) at time k just prior to the
observation yy.'.

» Update: x7_ is updated to x;' in a way that
considers the current observation yg!

 Net effect: Mapping p(x}_; [y%,_;) to p(xl) |y1%)



What: Two-Phase Recursive Procedure

» Prediction: The state x;._; (sampled from
p(xr_1|Vih_41)) at time k-1 to is mapped to
samples from the state x,’cv_ (sampled from
p(x¥ |yt _4)) at time k just prior to the
observation yy.'.

— For our case (using the Condensation Algorithm), this
update does not consider the coming observation y,’{”

» Update: x;_ is updated to x; in a way that

considers the current observation y.



Prediction 1

e Assumption: p(x;_ | yi5._4) is available at time k-1

e Note that p(x | vd!) = p(x{') is the prior for the entire particle
filter.

* We use this* to indicate this term in future slides

* Consider that for a binary outcome, B, if we can be
confident of the identity: ~
p(A|C) = p(AB|C) + p(AB|C)

* As formalized in the Chapman—Kolmogorov equation, a
variant of this is further true for continuous system.
Applying this principle, we can write

p(xllcv|yiv:lk—1) = fjozo p(x;{v,x;{\/_l |J’iv:1k—1)dx;cv—1

This is the analogue of the “+” in the binary situation



Prediction 2

* Consider the identity just shown:

+ o0
p(xllcvly{v:[k—l) = f_oo P(x;cv»x;cvq |3’iv:lk—1)dx;cv—1
* By the probabilistic chain rule, in general

p(aB|c) = PABO _PUABORBC) _ o 1peypesic)

P(C) P(C)
* Thus we can rewrite the above as: /
+ oo

IR IR R e . T

— 0

We call that in planning the recursive procedure,
We assumed (in the previous slide) that sampling from
this term is possible at time k-1!



Prediction 3

* For a first-order Markov process such as this, the impact of
past observations yi%. _, earlier than time k-1 is imparted
purely through their influence on state x;_;. Thus

P(xllcv ‘x;cv—1»3’i\:4k—1) = p(xllcv‘xllcv—l)

Thus the previous formula

+ 00
N |.N M N M N
f p(xk ‘xk—l'yl:k—l)p(xk—l|Y1:k—1 dxy_q

— 00

Can be rewritten as
p(xlly‘yiv:[k—l) = f:roc;o P(xilcvixlch—l)P(xllcv—1|Yiv:1k—1)d*(—1

These are just the samples available
at time k-1 (once having processed the

Given x,’cv_l, we sample from this by just simulating y
observation y;_ ;)

forward from time k-1 to time k!



Dynamics at Observations

* At observations, the model estimates of state are
“corrected” by empirical data

* This transitions from the “prior” to the “posterior”

— Prior: Estimate of model state immediately before
considering the latest empirical data (NB: this was
produced by running model)

— Posterior: Estimate of model state immediately after
considering the new empirical data



Likelihood Function Explored

* Likelihood functions p(y,"'|x.") give
the likelihood of the empirical datum,
given the model state

* Common distributions
—Binomial
—Negative
—Poisson
—Normal
—Lognormal



What: Two-Phase Recursive Procedure

* Prediction: The state x_, (sampled from
p(xr_1|Vih_41)) at time k-1 to is mapped to
samples from the state x,’cv_ (sampled from
p(x¥ |yt _4)) at time k just prior to the
observation yy.'.

— For our case (using the Condensation Algorithm), this
update does not consider the coming observation y,’{”

- Update: x;_ is updated to x;. in a way that

considers the current observation y.



Update 1

* The prediction phase provides the capacity to sample from
N |.,M
P(xk ‘3’1:k—1)
* j.e., given y,’(v’_l the prediction phase updates samples from
p(xR_1 | y1h-1) to samples from p(xf [ y1h 1)
* In future slides, we indicate this term p(xp |vi%_1) using

* The update phase maps sw)les from p(x}cv‘yff’k_l) 0
samples from p(x |vi%)

* This is just updated from time k-1 to time k, which we
indicate using the symbol

* Here, we have just taken into account information from the
observable y}!

* It turns out that sampling from p(x,’cv|yf:4k) can be readily
achieved by exploiting the fact that )‘

Yo P (i [vihe) o« pOR 1 D Gk 1y 21




Sampling from the full trajectory
* Recall from “Update 10” that

p(xk |yi) < o XD e [Y2ik-1)
By extension, we have
p(xé\{kli)’iv:lk) o (Vi %0 )P (X0uge | V118 —1)
Recognizing that x(,, is composed of pieces, we rewrite this as
P %0 )P (X » X0ige—1 1V 1 8 —1)

By the probabilisj’éclilcgghain rullf,ligncg}e)n%rgl

p(aBle) =g =PRI paiBOP(BIC)
Thus we can rewrite the above as

p(x(l)\{k‘yiv:lk)

X p(ylzcwlx;{v’xé\{k_l )P(xllcle(l)\{k—pYi\:dk—1)19(x(1)\{k—1|y{vzlk—1)




Full Trajectory Distribution

* From the previous slide, we have
P(Xé\{k‘yyk)
X P(J’llcw‘xllcv»xév:k—1 )P(xllcv‘xé\{k—v}’f/:lk—1)P(xé\{k—1|J’iv:Ik—1)
* because we assume a first-order Markov process, we
recognize that two terms above can be simplified

Pyl xou1 ) = (v %)
P(xk ‘xo:k—1»Y1:k—1) = P(xk ‘xk—l)
e Substituting these in above, we have

Pk |yihe) < oy | )o(xf [xR- D (cdik—1 1y -1)
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Shifting Gears: From “What” to “How”

* The previous section indicated the “target distribution” from
which have to sample

* This is a distribution p(x{/; |y1% ) over trajectories x{, of
latent states of the system, given observations y;,
* This section examines the mathematics underlying the

scheme for how we actually go about sampling from that
distribution



Central Role of Importance Sampling

* Particle Filtering uses another means of sampling —
sequential importance sampling

* Here, we forsake the goal of sampling directly from the ideal
(“target”) distribution via MCMC

* Rather, we use the importance sampling technique of
* Sampling readily from a different “proposal distribution”

* Using weighting of the samples from the proposal distribution to
characterize their relative representation in the target relative to
the proposal distribution

* This weight allows us to sample more frequently from those
samples that are well represented in the target distribution, and
less frequently from others

* The coming slides present the theory behind importance
sampling & sequential importance sampling



Importance Sampling 1

e Suppose that we want to draw samples x from a “target”
distribution p(x) that
* |s difficult to sample from directly
e Given an x, has a value that can be readily computed

e Suppose that we have another “proposal” distribution g(x)
from which we can readily sample
* Common example: Uniform distribution
* |deally this would be something like p(x)



Importance Sampling 2

* We can readily sample N values x from p(x) by a 4 part
procedure:

* Part 1: Create a set S of N sample values x, (1 <i < N) from q(x)
* e.g., draw each x; from a uniform distribution between 0 and 1

* Part 2: Label each drawn value x; with a “weight” W. = p(x.)/q(x:)

* This “weight” expresses how much more common x; is within the target
distribution p(x), when compared to the distribution from which it was
drawn, q(x)

Wi

e Part 4: Draw N samples from S, where the probability of drawing
sample i each is proportional to w,

* For each such sample, this is readily performed by
* Drawing a value u from [0,1]

* Part 3: Normalize weights, labeling each x; with weight w; =

* Going through each 1 <i < N accumulating the value of w; until the smallest i
where Y5, W; > u




How: Particles in Particle Filtering

Each importance-weighted sample is represented by a “particle”

— At any one time, the particles represent a sampling from the
state of that model at that time

— We can compute statistics on sampled particles to
approximate applying such statistics to the full distribution

Each particle is associated with a

— Copy of model state (anything over which seeking distr.);
here, values of state variables (stocks — S,E,I,R & contact rate)

— Normalized weight (like weight in importance sampling)
“Survival of the fittest”: Particles reproduce and survive

or perish according to their quality of match to the
empirical observations (weight)

— Learning: Trajectories more consistent with the data survive

There is typically a fixed number of particles retained
through the simulation



Elements of Model State Associated with

Particles

Evolves according to ra I
& lgl'oefﬂ)(i)llrpy 3’1" lanfle(-ctiun Transmission - Prevalence

Contacts per Week——__

| ,,.a-""’f- A \
| _— /

\
N -
Force nf In# cnon‘( Mean Latent Time j,’f ",l Mean Timﬁe to Recovery
Vaccination Rate " f '|| |
f <~ = *v‘" / 2y v k
‘ [ Susceptible Exposed >[ Infective | 7\ ,{ Recovered J
\& \ —
<] ____—f—-""’ﬁf
/ Populatmn{—— —
~ Vi
| [ Vaccinated —7¢

Vaccine Effectiveness

\

Mean Time Taken for Antibodies to Develop

Hint: Think of the model as having a vertical (“Z”) direction, with each state variable

]
representing a “stack” of state variables, one for each particle

Back



How: Particle Dynamics: Two Components
* Recall: Each particle has its own full copy of model

state (anything that could differ b/t realizations)
* Prediction: Between observations

— Particles evolve according to standard [stochastic] model
dynamics (just run the model on each particle’s state)

— Particle weights remain invariant
— There is no filtering out of particles

* Update: At observation point

— Particle weights are updated to reflect likelihood of
observing the empirical data, given the particle state

— If too much disparity in weights, particles are resampled
according to their weights; tendency:

* Particles w/ high weights reproduce; w/low weights disappear



Overall Algorithm

At time t = 2. perform a recursive updan:.: as follows
(1) Advance the sampled state by sampling Xé-l-:' ~qe(X¢| Ve X{-fg_lj and set X}fgz(}fl':fg_l, Xt(l}):
(2) Update the weights to reflect the probabilistic and state update models

(D) P(Xt(i)lx,f?l)g(det(i)y\g is the likelihood function: Gives likelihood of the

(0
w , - empirical datum y,, given the model state X
P12 t t

t — t-1

(i)
_Wr
N (i)
i=1 W

Normalize the weights W;{I} =

For any time ¢, if the effective sample size 1s too small (1.e.. the variance of the weights 1s
)

too high, ‘K), resample er-! and set Wr':-!} == Here K i1s a threshold value for

oY, w2
the variation of the weights.



How: Prediction

(Dynamics Between Observations)
* Recall: Each particle has its own full copy of model

state (anything that could differ b/t realizations)

e Each particle runs the model forward until the next
observation

— Originally identical particles diverge because of

* Model stochastics
e Distribution over some parameters

— For our model, the particle evolution is governed by a
stochastic differential equation

* Weights remain unchanged



Convenient Choice in Proposal Distribution

e for convenience, we assume that
AQ(xi\{k‘yglk) = q(x;cleﬁk—l'yf/:[k)Q(xﬁk—l|Yiv:lk—1)A
* These terms represent

. q(xffk_l |yf;4k_1) is just the value for the proposal distribution
at the time of the previous observations

. x,iv(l)~q(x,iv|xﬁk_1,y{‘fk): the probability (density) of the
updated state taking into account the new measurement
measurements at time k



Update Phase: Dynamics at Observations

N: Count of state variables (stocks)
M: Count of observations

Because we can’t easily draw a sample from the
posterior distribution over trajectories

p(x,lcv‘yff’k, x,lcv_l), we use importance sampling

— We actually capture the posterior by updating particle
weights, and possibly resampling (see later)

— This involves choosing a proposal distribution q(x,’cv|yt,x,iv_1)
Please note that we will often go beyond the above and
sample from the full trajectories p(x{,\fk‘y{‘f’k)

rather than simply from the value at time k



Sequential Importance Sampling
for Our Case

* Importance-weighted samples are maintained over time
e Such samples are termed “particles”

* Successive observations at integer times are made, with
each such observation updating the underlying

L N (i
distribution p (xo:,({l)‘yffk)
e Direct sampling from this distribution is not generally possible

* To enable successively sample from p (xg’:,({i) ‘y{‘f’,{) as each
observations k arrives, we draw instead from a proposal
distribution g(x) & successively update samples xf’,((lz &
W?_i;ghts W,Ei_)l to reflect the observation, yielding xiv,gl% and

l
Wi



Importance Sampli

* Target distribution is p (x(l)\f,((izl

N(1)
X1 k- 1

CI( Ok 1‘y1k 1)

ng to Draw From
}’iv:lk—1)

|s drawn from proposal distribution

* Here we are seeking to choose and maintain a proposal
distribution that can be readily sampled from over time

* Per importance sampling principles, these samples are then

weighted as

N (1)

@ _ P (ka

1 yiv:lk—l)

W1 =

q (xé)vl(cl)1 Yiv:lk—l)




Recursive Weight Updates Redux

N(i
O p(x();]((lz1 yiv:lk—l)

* We have w,,”, = NG |
q(xo;k_l yl:k—l)

* As demonstrated in the supplemental slides, we can then
take advantage of several factors

* The assumed form of the proposal distribution
» The formula for the probability of the trajectories p(xd'x | Vi)
* Cancellation

* The fact that the process g, is first-order Markovian (and thus
the current state the past state)

* The formula for the weight can then be formulated
recursively as:
N(l)l N(l))

MO ()p(y'f‘xk )p(
Wi & Weq ( (l)‘xk(ll)'yk)




Recursive Weight Updates Redux

e Supplemental slides demonstrate that:
N
i) _ P()’k ‘xk )P(xk ‘xk 1) @

k Wk-1
(xk ‘x1 k-1 V1 k)
* Because the process g, is first-order Markovian, we can
further simplify the denominator by recognizing that all

impact of past state is captured in the previous state x;, "7 (l)

and by assuming that all observations prior to k have
already between reflected in the distribution, thus:

(xN(i)‘ ivl(c)yylk) S (x,’{v(‘) x;{\f(zl),yk )
and (rearranging slightly) we have
y PO e (V)
w® o w®. VAR
q (xN O D ym)




Naive Algorithm

Initialization (k=0) Ongoing Observations (k>0)

. Sample XN(i) from ° Foreach particlei

do (xo |YO ) . )A((Ijv\z?)rf;(s;?vtli,vi(sl\?ggp;ng
* For each particle i . sfpmemeni tr;’ec(t);kr;,l
. WIEL) XN(l) _ (X(I)V,((l)l,XN(l))
PXo NP 1Xg ) + Update weight
q(XN(‘)ly ) ORNG P(Yk ‘xk )p( N(l)l N(l))
* For each particle i e T e q (O | L)
e @ = wy) | * For each particle i
0 Zﬁvjl w(()‘) WO _ (l)
D)

(l)
Zl 1 k



Choice of Proposal Distribution

* The algorithms above leave open to the implementer the

choice of a proposal distribution
N N(1)
q(xk |yk1X();k_1
* The choice of proposal distribution can have a sizeable
Impact on
* The practical performance of the particle filtering

* The complexity of the implementation

* Many practitioners make use of the “condensation
algorithm” of Isard & Blake (1998), which employs a
particularly simple proposal distribution



Condensation Algorithm

Goes by additional names in the computational
statistics literature

Involves just using the prior distribution until the next
point of observation, and then updating at that time
using the likelihood

In operational terms, this means that we simply

— Run the model forward from the last data point (this samples
from “the prior”) until the next observation point

— At the time of the observation, multiply the weight of a
particle by the value of the likelihood of observing the
datapoint given the model state hypothesized by that particle

It is not yet clear to the instructor if there is an effective
and attractive alternative for a non-linear model

— Any such alternative would certainly be considerably more
involved



The “condensation algorithm”
(lsard & Blgke 1998)

* Here, one choses ¢ (xk 4 )|xk (f,yk ) p(x, (l)l N(l))

* In other words, the proposal distribution simply uses the
simulation induced probability distribution and ignores the data

* Recall that, in general, for particle i

M xN(l p(x (l)| N(l)) We are just multiplying the
(i) k k . B
old weight by the likelihood
N(L) N(L) ,
Xie_1» k to get the new weight!

N
e For q (xk (1 )‘xk (1)’yk ) p(xk (l)l (l))

(1) (D), N

@ = @ (ke Jpesi Ot D_ O (31| ®)
k k—1 p(xN(l)lxN(l)) k—1P \ VK |X

* Recall further thatp (yk |xk ®) ) is the likelihood of

observing the empirical data at that time (y;) given the
: N(1) :
particle state x,, ~ “at that time

o 1D _
Wi Wkl




Recall:
Central Choice: Likelihood Function(s)

* The likelihood function expresses the likelihood of
observing the empirical data in light of particle-
posited model state

— In the condensation algorithm, this is applied (only)
when we receive a new observation

— Given a view of particle filtering as a “survival of the
fittest” our likelihood function dictates what “fit” means
(dictates “how good a match” there is to observed data)

 The choice of one or more likelihood functions is
one of the most important elements in design of an
effective particle filter model



Forms of Likelihood Functions Explored
* Binomial

— Not recommended because gives 0 likelihood if all
particles posit values for the count of trials (“coin flips”)
that are less than the observed value

Negative Binomial
v.|%%, =v,|i,~ NegativeBinomial(i,, r)
This p(y,|i,) is non-zero for all i, > 0

e Normal

— Here, we are matching against values that could in
general be negative



Dealing with Multiple
Types of Observations
* To deal with multiple types of observations, we
require a multivariate likelihood function

e Common simplification: Take product of
observation-specific likelihood functions



Incremental (Recursive) Nature of
Updates & Streaming

* Particle filtering with condensation algorithm
involves just incremental (“recursive”) updates to
the weights over time

— When a new observation comes in, we just take the old
weight and multiply by the value of the likelihood
function applied to the

* Current state
e New observation

* Do not have handle all observations jointly at a time

* This incremental nature of the updates makes the
process very well suited to streaming solutions that
handle each new observation vector as it arrives



Resampling Step

* When there is too large a diversity of particle
weights following the updating of weights, we
perform a (weighted) resampling from the particles

— We draw a new set of particles from the set of particles

(reflecting the updated weights), where the chance of
selecting a given particle is proportional to is weight

— A given particle may be disappear or be duplicated
many times

* NB: If it is duplicated several times, note that the resulting
particles have a complete copy of the state of the original
particle (such that this state can then evolve independently)

— The resampled particles are assigned a weight of 1



Practical

Effect;

Problem: Reduced

ve Sample Size

* Performed naively, the algorithm above can lead to a

situation where

* Most particles have very low weight
* Only a few particles have significant weight

* This situation gives a low “effective sample size” in that with
sequential importance sampling, the high weight particles
will be overwhelmingly overrepresented

* We can recognize this situation by monitoring the variance in
weights, using the second moment of the weights

Seff =

1

Iivz 1 (ngl) ) 2

* If Serr < St, we view the samples as suffering too low a
sample size, and perform resampling



Resampling Step

* Suppose we have particles X ,iv ) (call these X ,ICV_(i)) whose

weight Wk(? has just been updated by an observation;
1

n, w2
¢ IfSeff < ST, then Vl, 1<i<N

. XN(i) NXN(multinomial(W,S"N)))
k+ k—

@
w® = 1/n

* Let Seff —

* Please note that multinomial(Wk(}"N)) represents a

sample from the multinomial distribution, taking as
arguments N parameters representing the probabilities of

returning each value (here Wk(f"N)) and returning an index
of the chosen value



Algorithm Maintaining Sample Size

Initialization (k=0)

 Sample XN(i) from
CIo(xo |YO )

* For each particle i

o )
Wi

p(X, (”)p(;v xV 0y
a(xy Py

* For each particle i
ORI

0 TN 0

=1 O

Ongoing Observations (k>0)
* For each particle i

. A%vagnce state via Sﬁmplmg

(xk |YIO 0:k—1
° Supplement trajectory

XN(l) — (X(I)V]((l)liXN(l))
. Update weight

NG
o P (yk ‘xk @ )p( NG)

Wk
= Wk-1 N N
q (xk (1) X (?»Yk )

* For each particle |

N
X (11))

TS (We)?
* If Serr < S7, resample X, NQ)



Image taken from Xiaoyan Li M.Sc. Thesis resampling

Resampling

) ) area of a circle = weight of a particle
number of infectious
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Computing Statistics over Model Quantities

* |f we wish to compute statistics over the model
output, we must do so over samples from the

weighted particles

— That is, we draw the samples with replacement from the
values of the particles, where the probability of drawing
a particle is proportional to its weight

* Because particles are samples from the proposal
distribution (rather than from the target
distribution), we should not be computing statistics
on the particles themselves, but on samples from

them
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Uncertainty: A Key Balance

* Sometimes such stochastics characterize particular
known stochastic processes (e.g., evolution of
reporting or contact rates)

* Sometimes stochastics seem to play mostly an
instrumental role in achieving model “humility”
(breadth of possibilities across particles) without
characterizing specific known stochastic
phenomena

— We just use to avoid model overconfidence

 We are currently investigating alternative means of
adding in variety & stochastics to the model



Stochastics: A Key Balance

* We need some stochastics in the model, or else all
particles cloned during resampling will evolve
identically, with no divergence

* Avoid overconfidence: We require enough model
stochastics to allow the model to have a requisite
variety to match a wide variety of different data
— Too narrow a distribution will lead to “overconfidence”

in model predictions — will not be as open to correction
by “surprising” data

* Avoid underconfidence: We don’t want the model
to have such pronounced stochastics that, absent
data, it quickly becomes hopelessly uncertain



Two common means of introducing

stochastics

* Via having parameter values represented as stocks,
and allowing them or transforms to evolve via
random walks over time (e.g., reporting rate,
contact rate)

e Stochastics in processes (e.g., a distribution of
count of people infected, around the mean)



Dangers
* Too few particles

— e.g., if have large number of uncertain input parameters

e Particle impoverishment

— Particles become too small in number

* Condensation algorithm is too naive

— e.g., if new data is received very frequently compared to
how quickly the growth in model-related uncertainty
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Particle Filtering with ABMs

* Guidelines for effective particle filtering with ABMs have yet
to be elucidated

* Given high nominal (& likely moderately high intrinsic)
dimensionality of state space, non-sparse coverage requires
high # of particles

* Exceptionally weighty computational resource demand

* High dimensionality = High number of particles

* Per-ensemble high because each particle is associated with a ...
 Complete model state representation = High memory need

 ABM: Large populations & inter-agent interactions = High computational
burden

* Our lines of research: Active investigation with large-scale
parallel (GPU, future: FPGA) & distributed computation
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Points of Notes

* Particle filterin% continually regrounds model state given
evidence from latest data

* With estimated current state, PF model can probabilistically
project forward & be used for intervention evaluation

* Particle filtering is often far more effective than calibration,
because of continual regrounding latent state

* Choice of likelihood function is very important

* Particle filtering can take many lines of evidence give a portrait
of the underlying system and how it evolves

e Particle filter needs to balance

* Too little confidence: Posterior distribution is too diffuse;model unable
to predict even over short intervals

* Too much confidence: Model does not lend enough credibility to
observations, and gives poor & biased results

* Model stochastics capture empirical stochastics & add humility

. Tpning probabilistic model parameters and stochastics makes a
big ditference for the accuracy of the particle filter



Conclusions

e Because of lack of strict distributional and model form
assumptions, particle filtering is highly versatile

* Particle Filtering is well suited to work with many public
health data streams & stochastic models

* In the presence of aggregate dynamic models, particle
filtering can perform well

* Application of Particle Filtering is not a “turn the crank”
process: it does involve iteration & learning

* Research progress is required to improve software support
for Particle Filtering for ABM & DES models
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* Supplemental material: Detailed documentation &
derivations



MORE DETAILED DERIVATION



State Space Modeling

dxN

- State space Model —— = g(xN,9)
* N is the count of state variables
» XN represents a vector of length N

* ¥ Represents noise in state evolution



State Space Modeling

dxN
- State space Model —— = g(xN,9)
* N is the count of state variables
» XN represents a vector of length N (generally latent i.e.,

unobservable)
* ¥ Represents noise in state evolution

* Unit updates: Solution for time t=k is:
k

W = g(ha b)) = [ g6 @,
k-1
* Where g, advances the model from k-1 to k



Simplitying Assumptions
* For ease of exposition, we make two assumptions here
* Making these assumptions allows out exposition to be far simpler
* These assumptions are for explanation and do not indicate limits
to practical particle filter application
* Assumptions:

* Measurements are made at regular intervals

* The inter-measurement intervals are of unit length (i.e.,
measurements are separated by one time unit)

 Thus measurements occur at time k=1, k=2, etc., with
measurement k occurring at time k.



Measurement Model

* We generally know a little bit about the underlying state of
the system x,’{V at observation time k via noisy observations

Vi
* The measurement model is as follows:
YIlcw = hy (xllcvlnk)
where

* y! represents a vector of length M giving the (noisy &
partial) observations at time k

* n, represents the noise affecting that observation

* h; captures how state x,’{V is abstracted by observa.



NVeasurement iViodel

* We are seeking a way of estimating the state x,’{V at time k
based on all of the observed data y{?,

* The ongoing presence of noise throughout the process
prevents naive application of sampling via e.g., MCMC of
the likelihood of observing y1%. for a sufficiently broad set
of trajectories x7',

* To make this feasible, we seek a recursive way of estimating
(sampling) x7 from x#_, as a new observation y,' occurs
* This mirrors classic Bayesian updating from a prior to a posterior
when a new observation occurs

* This is updated in two stages: Prediction & Update



Recursive Update

e Prediction: The state x;_, (sampled from p(xp_1 | V1% _1))
at time k-1 to is mapped to samples from the state x,I{V_
(sampled from p(x,’(\’ |y{‘/:’k_1)) at time k just prior to the
observation yi..

* For our case (using the Condensation Algorithm), this update does
not consider the coming observation ;!

* Update: x,’{V_ is updated to x}cv in a way that considers the
current observation y,’{v’



Dividing Our Difficulties

* Problem A: Theory for what needs to be sampled

* This involves the theory for the distributions from which we are
wishing to draw

* Problem B: Theory for how to do the sampling

* This involves leveraging sequential importance sampling to
actually perform the sampling in a viable way

* Problem C: Practicalities in performing the sampling
* Reductions in sample diversity/effective sample size



Dividing Our Difficulties

* Problem A: Theory for what needs to be sampled

* This involves the theory for the distributions from which we are
wishing to draw

* Problem B: Theory for how to do the sampling

* This involves leveraging sequential importance sampling to
actually perform the sampling in a viable way

* Problem C: Practicalities in performing the sampling
* Reductions in sample diversity/effective sample size



Prediction 1

e Assumption: p(x;_ | yi5._4) is available at time k-1

e Note that p(x | vd!) = p(x{') is the prior for the entire particle
filter.

* We use this* to indicate this term in future slides

* Consider that for a binary outcome, B, if we can be
confident of the identity: ~
p(A|C) = p(AB|C) + p(AB|C)

* As formalized in the Chapman—Kolmogorov equation, this is
further true for continuous system. Applying this principle,
we can write

p(xllcv|y{v:lk—1) = fjozo p(x;{v,x;{\/_l |J’iv:1k—1)dx;cv—1



Prediction 2

* Consider the identity just shown:

+ o0
p(xllcvly{v:[k—l) = f_oo P(x;cv»x;cvq |3’iv:lk—1)dx;cv—1
* By the probabilistic chain rule, in general

p(aB|c) = PABO _PUABORBC) _ o 1peypesic)

P(C) P(C)
* Thus we can rewrite the above as: /
+ oo

IR IR R e . T

— 0

We call that in planning the recursive procedure,
We assumed (in the previous slide) that sampling from
this term is possible at time k-1!



Prediction 3

* For a first-order Markov process such as this, the impact of
past observations y{vfk_l after time k-1 is imparted purely
through their influence on state x»_,. Thus

P(xllcv ‘x;cv—1»3’£:4k—1) = p(xllcv‘xllcv—l)

Thus the previous formula

+00 *
f P(x;cv ‘xllcv—1»3’iv:lk—1)l9(xl{cv—1|3’iv:lk—1)dx;cv—1

— 00

Can be rewritten as
p(xllcv‘yiv:[k—l) = f:roc;o P(xilcvixlrcl—l)P(xllcv—1|3’iv:1k—1)d*+—1

These are just the samples available
at time k-1 (once having processed the

Given x,’cv_l, we sample from this by just simulating y
observation y;_ ;)

forward from time k-1 to time k!



Update 1

* The prediction phase provides the capacity to sample from
N|.,M
P(xk b’1:k—1)
* j.e., given y,’(v’_l the prediction phase updates samples from
p(xi-1 |yiﬁ’k_i)At'o samples from p(xg [y1h-1)
* In future slides, we indicate this term p(xp |vi%_1) using ‘
* The update phase maps samples from p(xk ‘yl e— 1)‘ to
samples from ;(xﬁyl K

* This is just updated from time k-1 to time k, which we
indicate using the symbol

* Here, we have just taken into account information from the
observable y}!




Brief Summary of Where We’re Headed
e Recall: The update phase maps samples from p(x,’cv‘yf:dk_l)
to samples from p(x,’cv‘y{‘f’k)

* This is just * updated from time k-1 to time k, which we
indicate using the symbol*

* Where we will get to is that sampling from simply requires
sampling from a distribution where *

*P(xz’f |17 ) o p(Ey;’f’ XD R Y1 he—1

* Warning: A very highly detailed derivation lies ahead. If
you are satisfied with the knowledge above, just “fast
forward” ahead until after Slide “Update 10”.



Update 2

e Recall: The update phase maps samples from p(x,’cv‘yf’:’k_l) ‘
to samples from p(x,’cv‘y{‘f’k)*

* We can express

PV XR )P (xR)
p(Vih)

p(xllcv‘ygk) —

* Recognizing that p(y{‘f’k) = p(y1h_1, V&), we can rewrite this
as:

M M N N
P(V1:k—1Yk Xk )P (X))
p(yMyM )

P(xllcv‘y{\f[k) =



Update 3

M M . N N

| | -1k X )P (X

* Consider previous result Q‘akalygk) = p(yllg(;zkyLk)ﬁ( =
k »71:k—1

* By the probabilistic chain rule, in general
p(ABC) p(A|BC)P(BC)

PUABIC) = =5 = =y = PAIBCO)R(BIC)
°Thus\ \

VM1 v i) = p (i [y R 2 ) p (v | )




Update 4

M M . N N

| | -1k X )P (X

* Consider previous result Q‘akalygk) = p(yllg(;zkykk)ﬁ( =
k »71:k—1

* By the probabilistic chain rule, in general
p(ABC) p(A|BC)P(BC)

PUABIC) = =5 = =y = PAIBCO)R(BIC)
°Thus\ \

VM v i) = p (i [y i 2 )p (v | )

* Recall that by Bayes’rule: p(4|B) = p(BIL“(l]);;(A)
M . N[,M M
Pk Xk |Y1:k—1 )P V11
* Thus p(y{v:’k_1|y}{"’,x}(\’) — ( ‘11\/1 N) 1:k-1
p(¥Vi' X )

* Thus

p(yllcvl' xllcv‘yll.v:lk—l)p(yg/:lk—l) p(yf(v"x,]{\')

M

. M M Ny _
PVik—1 Vi o XK ) p(y 7 X



Update 5

 Recall from earlier that

M M N N
PV Vi:k—11Xk )P(X))
p(yMyM )

* Further recall that from the previousslide,

* P(xfcv )’i\?k) =

L

p(y;(VI' Xllcv‘yiv:[k—l)p(yi\flk—l) p(y;{vl ‘XI]{V)

* p(yiv:lk—l'y}cw» |x;cv) = p(y7 %)

e Putting the two together, we have L

M N|.,,M : M| N
P()’k » Xk )’1:k—1)P(J’i‘fIk—1)P(Yk ‘xk )P(xfcv)
p(vr xR )Pk V1)

* P(X{I\L‘Yiv:[k) =



Update 6

* From the previous slide, we have
AR YO e e
vﬁr - P, P Yite—1)

e Recall further that by the definition of a joint distribution,

PV yik-1) = PO | Y1i-1)P 1-1)
» Substituting in for p(y!, yi%_1), we get
viom . PO xR Yiv:’k_lgp(ﬂk-l)p(yf |2 )p(xr)

p(x¢1:k) _

P X DP W | Yik-DP 1ik-1)
* Cancelling the term involving p(y{v:’k_l), we have

%CN‘}/M ) = p(vie,xi ‘y{v:lk—l)l%yllfw i )P Cci)
k | V1:k p(y,’y,x,lcv)p(y;m Y{V:Ik—l)




Update 7

* From the previous slide, we have

AR (i Xk [yi—1)P (Vi |k ) (xic)
*" e PO, XOP R | Yik-1)
* We can now further recognize that
p(yi, xl) = pﬁgz’f’lx{?)p(xx’f)
* And by%\celling reduce the above to

p(x’fl\\; y{;/l:vk); %‘M N M _N|. M
P()’k » Xk b’1:k—1)P Yk ‘xk )P(xlly)_P(Yk » Xk ‘3’1:k—1)
p(MIxN NI yM_D  poMIyM._D)

B



* From the previous s

Update 8

ide, we have
p(yllcvl'xllcv‘y{v:[k—l)
P(YII<W| Yi\f[k—ﬂ

)’ivzlk) —

* Recall that by the probabilistic chain rule, in general

p(4B|C) =

p(ABC) p(A|BC)P(BC)

P(C)
e Thus we have*

P(xilcv‘Yfk) —

= P(C) =p(A|BC)P(B|C)

P()’in»xilcv‘Yi\/:Ik—l)
PO | Vyk-

_ P(y;cw ‘x;cv'yiv:[k—l)p(xk |3’1:k—1)

p(ya |y )



Update S

* From the previous slide, v&/e hlz\a,veM . M‘)
P(Yk ‘xk :}’1:k—1)19(xk [Viik-1
P(YII<W| Yi\ilk—ﬂ

e Recall again that for a first-order Markov process such as

this, the impact of past observations y}%,_, after time k-1 is

imparted purely through their influence on state x}cv_l.

* By the properties of a first-order Markov chain, we know

that the state
p(y;cw‘xllcv'yiv:lk—l) = p%}{\/[‘xll{v)
N

* Where p(y,i”‘x}cv) is the likelihood of observing y%! given x;
, and which we indicate in our formulae using[L,

* Thus, in summary, we have E

p xllcv‘yivlk) —

Nty POR XD |y1em)
p xk ‘yl:k) — M M
Vi | Yik—-1)



Update 10

* From the previous slide, we have

M|..N N
. N‘yM ) - Wk Ixx )p(x |y #2,)
1:k) — M M
% Pk | Y1k—1)
* Particularly because our expression will in general not be
expressible in closed form, our interest here lies in sampling

N|..M
from p (xl [y2%).
e Because the denominator

+ oo
P M) = j pOM XM XY [y M, ydxD

* does not depend on x,’{V, performing the sampling does not
require calculating it. Thus it is sufficient to sample using
the knowledge that

P i) g



Sampling from the full trajectory
* Recall from “Update 10” that

p(xk |yi) < o XD e [Y2ik-1)
By extension, we have
p(xé\{kli)’iv:lk) o (Vi %0 )P (X0uge | V118 —1)
Recognizing that x(,, is composed of pieces, we rewrite this as
P %0 )P (X » X0ige—1 1V 1 8 —1)

By the probabilisj’éclilcgghain rullf,ligncg}e)n%rgl

p(aBle) =g =PRI paiBOP(BIC)
Thus we can rewrite the above as

p(x(l)\{k‘yiv:lk)

X p(ylzcwlx;{v’xé\{k_l )P(xllcle(l)\{k—pYi\:dk—1)19(x(1)\{k—1|y{vzlk—1)




Full Trajectory Distribution

* From the previous slide, we have
P(Xé\{k‘yyk)
X P(J’llcw‘xllcv»xév:k—1 )P(xllcv‘xé\{k—v}’f/:lk—1)P(xé\{k—1|J’iv:Ik—1)
* because we assume a first-order Markov process, we
recognize that two terms above can be simplified

Pyl xou1 ) = (v %)
P(xk ‘xo:k—1»Y1:k—1) = P(xk ‘xk—l)
e Substituting these in above, we have

Pk |yihe) < oy | )o(xf [xR- D (cdik—1 1y -1)



Dividing Our Difficulties

* Problem A: Theory for what needs to be sampled

* This involves the theory for the distributions from which we are
wishing to draw

* Problem B: Theory for how to do the sampling

* This involves leveraging sequential importance sampling to
actually perform the sampling in a viable way

* Problem C: Practicalities in performing the sampling
* Reductions in sample diversity/effective sample size



Taking Stock

* The previous section indicated the “target distribution” from
which have to sample

* This is a distribution p(x{/; |y1% ) over trajectories x{, of
latent states of the system, given observations y;,
* This section examines the mathematics underlying the

scheme for how we actually go about sampling from that
distribution



Common Problem: Sampling Difficulty

 Two common ways of sampling from a distribution are

* Computing the cumulative distribution and then using a draw from
1 or more uniform distributions to sample from the cumulative

e Sampling via MCMC

* There are sometimes problems with such approaches

* Lack of closed-form specification of the distribution = Cannot
derive closed-form characterization of the cumulative distribution

* The distribution has extremely high dimensionality = Difficult to
use MCMC and related techniques, compute cumulative
distribution function

* This applies to our case



Reflection: Why MCMC Based Sampling
Won’t Work with Stochastic Models

* So we have to sample from a (recursively defined) distribut.

* A well-established traditional way for sampling parameters —
including with dynamic models — is to use MCMC

* Two central difficulty for doing this for the latent state with
a stochastic dynamic model is that

* We have to simple from a massive number of different values —
values stochastically evolving at each time step

* In contrast to the case with MCMC (where we are sampling from
parameter values that drive the dynamic model), the latent state
of the model is emergent from the dynamic model

* We thus can’t simply sample different values of it and assess the likelihood
of each based on the output

* In order to try to sample these latent states via MCMC, we would need to
generate again and again, without a clear ability to sample from high
density regions = Great inefficiency



Another Means of Sampling

* Particle Filtering uses another means of sampling —
sequential importance sampling

* Here, we forsake the infeasible goal of sampling directly
from the ideal (“target”) distribution via MCMC

* Rather, we use the importance sampling technique of
* Sampling readily from a different “proposal distribution”

* Using weighting of the samples from the proposal distribution to
characterize their relative representation in the target relative to
the proposal distribution

* This weight allows us to sample more frequently from those
samples that are well represented in the target distribution, and
less frequently from others

* The coming slides present the theory behind importance
sampling & sequential importance sampling



Importance Sampling 1

e Suppose that we want to draw samples from a “target”
distribution p(x) that
* |s difficult to sample from directly
e Given an x, has a value that can be readily computed

e Suppose that we have another “proposal” distribution g(x)
from which we can readily sample
* Common example: Uniform distribution
* |deally this would be something like p(x)



Importance Sampling 2

* We can readily sample N values from p(x) by a 4 part
procedure:

* Part 1: Create a set S of N sample values x, (1 <i < N) from q(x)
* e.g., draw each x; from a uniform distribution between 0 and 1

* Part 2: Label each drawn value x; with a “weight” W. = p(x.)/q(x:)

* This “weight” expresses how much more common x; is within the target
distribution p(x), when compared to the distribution from which it was
drawn, q(x)

Wi

e Part 4: Draw N samples from S, where the probability of drawing
sample i each is proportional to w,

* For each such sample, this is readily performed by
* Drawing a value u from [0,1]

* Part 3: Normalize weights, labeling each x; with weight w; =

* Going through each 1 <i < N accumulating the value of w; until the smallest i
where Y5, W; > u




Importance Sampling 3

* Importance sampling approximation to p(x) is as follows:
p(x) = Xy w(x D)8y
Where the normalized weights W(x(i) are given by
. W (x®
w(xW) = ~ ( )(
Based on unnormalized weights W(x(_i)):

(D)
. X
W (x®) = p(x™)
q(x™)
And 0. (» is the Dirac Delta probability mass located at point
(1)
X




Sequential Importance Sampling
for Our Case

* Importance-weighted samples are maintained over time
e Such samples are termed “particles”

* Successive observations at integer times are made, with
each such observation updating the underlying

L N (i
distribution p (xo:,({l)‘yffk)
e Direct sampling from this distribution is not generally possible

* To enable successively sample from p (xg’:,({i) ‘y{‘f’,{) as each
observations k arrives, we draw instead from a proposal
distribution g(x) & successively update samples xf’,((lz &
W?_i;ghts W,Ei_)l to reflect the observation, yielding xiv,gl% and

l
Wi



Importance Sampli

* Target distribution is p (x(l)\f,((izl

N(1)
X1 k- 1

CI( Ok 1‘y1k 1)

ng to Draw From
}’iv:lk—1)

|s drawn from proposal distribution

* Here we are seeking to choose and maintain a proposal
distribution that can be readily sampled from over time

* Per importance sampling principles, these samples are then

weighted as

N (1)

@ _ P (ka

1 yiv:lk—l)

W1 =

q (xé)vl(cl)1 Yiv:lk—l)




Convenient Choice in Proposal Distribution

e for convenience, we assume that
ACI(xf{kb’f?k) = q(x;cleﬁk—l'yf/:lk)Q(xﬁk—l|Yiv:lk—1)A
* These terms represent

. q(xffk_l |yf;4k_1) is just the value for the proposal distribution
at the time of the previous observations

. x,iv(l)~q(x,iv|xﬁk_1,y{‘fk): the probability (density) of the
updated state taking into account the new measurement
measurements at time k



Key Need: Weight Updates

e Given: A sample (particle) drawn with a weight ngi_)l from
the importance-sampling approximated distribution

p(xf{k_l ‘yfk_l) at time k-1
* Need: Formulate an equation to update the weight of that
particle to draw from the target distribution p (xé\{,({l) ‘yfk)

for time. This update would take into account both
* The model-borne dynamics mapping from x,{(\’_1 to x,’(V
* The observation y;!



e Recall from earlier that we have "
N(i M
i) _ p (xo;k yl:k)

W, = :
" q (xé\{;({l) )’f?k)
* Recall from earlier slide “Full Trajectory Distribution” that
(x| yi) < (" |k ) (ok | XR- )P (eolse—1 1Y 15— 1)
* Recall further that we chose a proposal distribution of the
form

Q(xﬁk‘yiv:[k) = Q(X;cv‘xﬁk—1»3’iv:[k)Q(xﬁk—1‘y{v:[kq)
 We thus have
HON P(YIlcw‘xllcv )p(x{cv‘xfcv_l)p(xé\fk_l|yi‘f’k_1)

“ q(x,lcv‘xf{k_l,yf/:’k)q(xﬁk_l‘yff[k_l)




Recursive Weight Updates

* Recall from the previous slide that
@ _ PO )p(x [xe_1) p(roe-1ly1ie-1)

: N‘xi\{k—l'yf?k) Cl(xﬁk—ﬂy{\:qu)

Q(xk
* Recalling from a few slides earlier that

@ P (xév:;(ﬁl )’f?k—l)

T G D [y )

* We can recognize the ratio of the final terms in the

numerator & denominator as W,El_)l, and thus rewrite the
equation as:

M|..N N|..N
NON 'P()’k ‘Xk )P(xk ‘xk—l) @

“ Q(xllcv‘xﬁk—l'y{v:[k) A




Recursive Weight Updates Redux

* From the previous slide, we have
N
i) _ P()’k ‘xk )P(xk ‘xk 1) @

k Wk-1
(xk ‘x1 k-1 V1 k)
* Because the process g, is first-order Markovian, we can
further simplify the denominator by recognizing that all

impact of past state is captured in the previous state x;, "7 (l)

and by assuming that all observations prior to k have
already between reflected in the distribution, thus:

(xN(i)‘ ivl(c)yylk) S (x,’{v(‘) x;{\f(zl),yk )
and (rearranging slightly) we have
y PO e (V)
w® o w®. VAR
q (xN O D ym)




Naive Algorithm

Initialization (k=0) Ongoing Observations (k>0)

. Sample XN(i) from ° Foreach particlei

do (xo |YO ) . )A((Ijv\z?)rf;(s;?vtli,vi(sl\?ggp;ng
* For each particle i . sfpmemeni tr;’ec(t);kr;,l
. WIEL) XN(l) _ (X(I)V,((l)l,XN(l))
PXo NP 1Xg ) + Update weight
q(XN(‘)ly ) ORNG P(Yk ‘xk )p( N(l)l N(l))
* For each particle i e T e q (O | L)
e @ = wy) | * For each particle i
0 Zﬁvjl w(()‘) WO _ (l)
D)

(l)
Zl 1 k



Practical

Effect;

Problem: Reduced

ve Sample Size

* Performed naively, the algorithm above can lead to a

situation where

* Most particles have very low weight
* Only a few particles have significant weight

* This situation gives a low “effective sample size” in that with
sequential importance sampling, the high weight particles
will be overwhelmingly overrepresented

* We can recognize this situation by monitoring the variance in
weights, using the second moment of the weights

Seff =

1

Iivz 1 (ngl) ) 2

* If Serr < St, we view the samples as suffering too low a

sample size



Resampling Step

* When there is too large a diversity of particle
weights following the updating of weights, we
perform a (weighted) resampling from the particles

— We draw a new set of particles from the set of particles

(reflecting the updated weights), where the chance of
selecting a given particle is proportional to is weight

— A given particle may be disappear or be duplicated
many times

* NB: If it is duplicated several times, note that the resulting
particles have a complete copy of the state of the original
particle (such that this state can then evolve independently)

— The resampled particles are assigned a weight of 1



Resampling Step

* Suppose we have particles X ,iv ) (call these X ,ICV_(i)) whose

weight Wk(? has just been updated by an observation;
1

n, w2
¢ IfSeff < ST, then Vl, 1<i<N

. XN(i) NXN(multinomial(W,S"N)))
k+ k—

@
w® = 1/n

* Let Seff —

* Please note that multinomial(Wk(}"N)) represents a

sample from the multinomial distribution, taking as
arguments N parameters representing the probabilities of

returning each value (here Wk(f"N)) and returning an index
of the chosen value



Algorithm Maintaining Sample Size

Initialization (k=0)

 Sample XN(i) from
CIo(xo |YO )

* For each particle i

o )
Wi

p(X, (”)p(;v xV 0y
a(xy Py

* For each particle i
ORI

0 TN 0

=1 O

Ongoing Observations (k>0)
* For each particle i

. A%vagnce state via Sﬁmplmg

(xk |YIO 0:k—1
° Supplement trajectory

XN(l) — (X(I)V]((l)liXN(l))
. Update weight

NG
o P (yk ‘xk @ )p( NG)

Wk
= Wk-1 N N
q (xk (1) X (?»Yk )

* For each particle |

N
X (11))

TS (We)?
* If Serr < S7, resample X, NQ)



Choice of Proposal Distribution

* The algorithms above leave open to the

implementer the choice of a proposal distribution
N N(1)
Q(xk |yer0;k_1
* The choice of proposal distribution can have a
sizeable impact on
* The practical performance of the particle filtering

* The complexity of the implementation

* Many practitioners make use of the “condensation
algorithm” of Isard & Blake (1998), which employs
a particularly simple proposal distribution



The “condensation algorithm”
(Isard & Blake 1998

* Here, one choses g (xk ¢ )|xk 1 Yk ) p(x,

* In other words, the proposal distribution simply uses the
simulation induced probability distribution and ignores the data

* Recall that, in general, for particle i
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* Recall further thatp (yk |xk ®) ) is the likelihood of

observing the emplrlcal data at that time (y;) given the
particle state x, N3t that time
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