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Abstract

We present an algebraic method of solving the magnetotelluric inverse
problem for the case of one-dimensional conductivity profiles in the class
D+. We show that the typically examined Dirichlet boundary conditions
are a limiting case of the radiative boundary conditions introduced by
Srnka and Crutchfield. By examining the analogous inverse inhomoge-
neous string problem studied by Krĕın we demonstrate the usefulness of
the conductivity class D+. Results of the inversion procedure are pre-
sented, as well as a discussion of the continued fraction expansions re-
sulting from the more general boundary conditions. The presentation
presupposes no knowledge of magnetotellurics.

1 Introduction

Scientists have made inferences about the electrical structure of the Earth based
on measurements of the electric and magnetic field at its surface since the end
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of the 19th century [25]. The magnetotelluric method is based on measure-
ments made at a single location on the surface of the Earth; as first noted by
Cagniard [9], Tikhonov [32], and Rikitake [30] the ratio of the electric and mag-
netic field at the surface contains information about the conductivity structure
of the Earth.

One–dimensional magnetotellurics is one of the few geophysical inverse prob-
lems that is exactly solvable [34]. Exact solutions have been given by, for ex-
ample, Bailey [2], Weidelt [34], and Parker [27]. The various approaches require
different degrees of smoothness of the conductivity profile; the modification of
the Gelfand–Levitan inversion given by Weidelt requires C2 conductivity pro-
files, whereas the approach of Parker examines conductivity profiles in the class
D+, i.e., weighted sums of Dirac deltas. This paper argues that the class D+

is a natural setting for the magnetotelluric inverse problem, and that profiles in
D+ can be meaningfully interpreted.

After deriving the equations that govern the electric (and magnetic) fields
inside of the Earth, we describe the inversion process for conductivity profiles of
class D+ and show some examples of the inversion procedure. The class D+ has
been shown by Parker to contain the optimal solution to the magnetotelluric
problem for finite datasets [27]. Conductivity profiles in D+ have attracted
some degree of criticism in the magnetotelluric literature on the basis of being
either geophysically unreasonable or insufficiently smooth [28, 14, 29]. In this
paper we argue that such concerns are unwarranted, and that the class D+ is
indeed worthy of the large amount of attention given to it in the literature.

2 Background Assumptions

To derive a model for the behaviour of the electric field within the Earth we make
several simplifying assumptions. It is assumed that the atmospheric current of
the Earth can be modeled as a uniform current sheet of infinite extent at a
given height h above the surface of the Earth; see [18] for a discussion of this
assumption. We assume that the conductivity σ of the Earth is a function of the
depth z only. We also assume that the Earth is composed of linear dielectrics,
meaning the elementary form of Ohm’s law J = σ(z)E holds within the Earth.
On physical grounds we assume that σ(z) is nonnegative for all z. Finally we
assume that the electrical permittivity ε and magnetic permeability µ within
each layer can be treated as being equal to the permittivity and permeability
of free space, ε0 and µ0. For numerical computations we use SI units, so that
µ0 = 4π × 10−7 NA−2, and ε0 = (µ0c

2
0)
−1, where c0 is the speed of light in

vacuum.

3 Governing Equation of the Electric Field

We choose coordinates in which the origin is contained within the Earth at a
depth L. We use a rectangular coordinate system, with the homogeneous current
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sheet directed along the x-axis.1 The current sheet is located at a height h above
the surface of the Earth, so it can be expressed as

J(x, y, z, t) = J(t)δ(z − (h + L))x̂. (1)

An application of Faraday’s law shows that the current sheet (1) induces
an electric field directed parallel to the y-axis. Ampére’s law shows that the
induced electric field induces a magnetic field within the Earth along the x-axis.
Subsequent induced fields are directed in the same directions, implying that
E(z, t) = E(z, t)ŷ and H(z, t) = H(z, t)x̂. The orthogonality of the electric
and magnetic fields suggests a plane wave solution to Maxwell’s equations.

Maxwell’s equations in linear media take the form

∇ ·E =
ρf

ε0
, (2a)

∇×E = −µ0
∂H

∂t
, (2b)

∇ ·H = 0, (2c)

∇×H = Jf + ε0
∂E

∂t
, (2d)

where ρf is the free charge density and Jf is the free current. The continuity
equation, which is a consequence of equations (2a) and (2d), is

∇ · Jf = −∂ρf

∂t
(3)

and has the clear interpretation of conservation of charge. Substituting Ohm’s
law (Jf = σ(z)E) into (3) gives

∇σ(z) ·E +
σ(z)
ε0

ρf = −∂ρf

∂t
. (4)

By assumption ∇σ(z) points in the ẑ direction, so ∇σ(z) ·E = 0, implying that

ρf (z, t) = ρf (z, 0)e−σ(z)t/ε0 . (5)

For most physically reasonable Earth compositions σ(z) is between 10−4 and
100 S/m, and as previously mentioned ε0 = 8.85× 10−12 Ss/m, so for all t large
enough equation (5) shows that ρf (z, t) ≈ 0. For the remainder of the paper we
will assume ρf (z, t) = 0.

Putting a plane wave ansatz E = E(z)eiωtŷ, H = H(z)eiωtx̂ into (2b)
and (2d) and using Ohm’s law gives

∇×E = −iωµ0H, (6)
∇×H = σ(z)E + iωε0E. (7)

1This research was conducted with exploratory magnetotellurics in mind, in which case the
depths of investigation are sufficiently small for the curvature of the Earth to be neglected.
The methods described are equally valid for greater depths; to take into account the curvature
of the Earth the transformations described by Weidelt in [34] can be used.
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We make what is known as the quasistatic approximation by neglecting dis-
placement current term iωε0E of (7). This is justified by comparing the mag-
nitude of the displacement current and σ(z)E. For reasonable ω (waves with
period between 10−4 and 105 seconds), σ(z)/ωε0 & O(106). Equation (7) be-
comes

∇×H = σE. (8)

To arrive at a differential equation for E we take the curl of (2b), use the
vector identity ∇ × (∇ × A) = ∇(∇ · A) − ∇2A, and substitute (8) into the
left–hand side of (8) to obtain

d2E(z)
dz2

= iωµ0σ(z)E(z). (9)

As has been noted by several authors, this is essentially the equation for a
vibrating string with an inhomogeneous mass distribution [27, 3]. The inverse
problem for a vibrating string has been thoroughly studied, particularly by M.G.
Krĕın in the 1950s [4, 19], and more recently in connection with the Camassa-
Holm equation [6]. The relationship between the inhomogeneous string and
magnetotelluric inverse problems is discussed further in Section 7.

4 Boundary Conditions

The boundary conditions are based upon the requirement that

lim
z→−∞

E(z) = 0,

which corresponds to the physical condition that there can be only a finite
amount of energy deposited into the Earth by the electric field.

We suppose that for z < 0 the Earth is composed of a homogeneous medium
with constant conductivity σ2

B ∈ (0,∞). The general solution of (9) for z < 0
can therefore be written as a sum of exponentials

E(z) = A1e
√

iωµ0σ2
Bz + A2e

−
√

iωµ0σ2
Bz. (10)

The requirement that limz→−∞E(z) = 0 implies that A2 = 0, provided we take
the root of i with positive real part. Evidently

dE(z)
dz

=
√

iωµ0σBE(z), (11)

so in particular
E(0) = E0, E′(0) =

√
iωµ0σBE0, (12)

and these are taken as the boundary conditions for (9). By convention we choose
E0 ∈ R+.

Note that by setting σB = 0 in equation (11) we get Neumann boundary
conditions. Alternatively, by letting σB → ∞, we get Dirichlet boundary con-
ditions. The Dirichlet conditions are the most studied in the magnetotelluric
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literature; see for example [27, 34, 2, 3]. The more general boundary condi-
tions (12), called the radiation boundary conditions, are studied in [31] as well
as in a forthcoming paper of Beals, Sattinger, and Szmigielski [5].

5 Spectral Properties

The spectrum of (9) is of critical importance in what follows. In this section
we present relevant results from a larger project in preparation [5]. The re-
sults we report here are those which are central to numerical studies of the
magnetotelluric problem.

To simplify later expressions we set λ2 = iωµ0, and for clarity we explicitly
include the dependence of the electric field on λ by writing E(z) = E(z;λ). We
note that E(z;λ) is necessarily an entire function of order one in λ; see [33].
Letting primes represent differentiation with respect to z, (9) becomes

E′′(z;λ) = λ2σ(z)E(z;λ). (13)

The boundary conditions are

E(0;λ) = E0, E′(0;λ) = σBE0λ, (14)

with E0 ∈ R. We search for eigenvalues λ∗ such that E(L;λ∗) = 0 and λ† such
that E′(L;λ†) = 0; recall that the right endpoint z = L lies at the surface of
the Earth.

Proposition 1. The real parts of all eigenvalues are negative, and any eigen-
values with nonzero imaginary parts occur in conjugate pairs.

Proof. Multiplying (13) by E(z;λ), multiplying the conjugate of (13) by E(z;λ),
taking the difference between the two equations and then integrating from 0 to
L gives

(λ2 − λ
2
)
∫ L

0

σ(z)|E(z;λ)|2 dz =
∫ L

0

(
E(z;λ)E′′(z;λ)− E(z;λ)E′′(z;λ)

)
dz

=
(

E(z;λ)E′(z;λ)− E(z;λ)E′(z;λ)
)∣∣∣L

0
. (15)

Applying the boundary conditions (14) gives

E(L;λ)E′(L;λ)− E(L;λ)E′(L;λ)

= (λ− λ)

(
σB |E0|2 + (λ + λ)

∫ L

0

σ(z)|E(z;λ)|2 dz

)
. (16)

Suppose Im(λ∗) 6= 0. Then setting λ = λ∗ (16) becomes

0 = 2iIm(λ∗)

(
σB |E0|2 + 2 Re(λ∗)

∫ L

0

σ(z)|E(z;λ∗)|2 dz

)
,
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which implies Re(λ∗) < 0. The symmetric occurrence of E(L;λ) and E′(L;λ)
in (16) implies that Re(λ†) < 0 as well.

The boundary conditions (14) and differential equation (13) imply that
E(z;λ) = E(z;λ). In particular for λ∗ ∈ R E(z;λ) is real. Multiplication
of (13) by E(z;λ) and integration from 0 to L gives

λ2

∫ L

0

σ(z)E(z;λ)2 dz +
∫ L

0

E′(z;λ)2 dz = E′(L;λ)E(L;λ)− |E0|2σBλ. (17)

Substitution of λ∗ into (17) when λ∗ ∈ R combined with the non-negativity of
σB implies that λ∗ < 0. The argument for λ† ∈ R is essentially identical.

In the case of Dirichlet or Neumann boundary conditions at z = 0, more can
be said about the spectrum.

Proposition 2. For Dirichlet or Neumann boundary conditions the spectrum
of (13) is purely imaginary, and all nonzero eigenvalues occur in conjugate
pairs.

Proof. We explicitly write down the boundary conditions. For the Neumann
problem σB = 0, so

E(0;λ) = E0, E′(0;λ) = 0, (18)

and for the Dirichlet problem, which formally corresponds to σB = ∞,

E(0;λ) = 0, E′(0;λ) = E′
0. (19)

We show first that the spectrum is purely imaginary for Dirichlet or Neumann
boundary conditions. Let λ∗ belong to the spectrum. Either of the boundary
conditions (18) or (19) turn equation (15) into

(λ∗2 − λ∗
2
)
∫ L

0

σ(z)|E(z;λ)|2 dz = 0, (20)

which implies that λ∗ is either purely real or purely imaginary.
Both the Neumann and Dirichlet boundary conditions imply that equa-

tion (17) becomes∫ L

0

E′(z;λ∗)2 dz = −λ∗2
∫ L

0

σ(z)E(z;λ∗)2 dz, (21)

which implies that λ∗ ∈ iR, as for purely real and purely imaginary eigenvalues
E(z;λ) = E(z;λ), so that −λ∗2 is positive.

Proposition 3. For the cases of Dirichlet and Neumann boundary conditions
the spectrum of (13) is simple, i.e., both the geometric and algebraic multiplic-
ities of eigenvalues are one.
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Proof. Differentiate (13) with respect to λ and multiply the result by E(z;λ),
and subtract from this (13) multiplied by Eλ(z;λ), where the subscript denotes
differentiation with respect to λ. The result of this is

E(z;λ)E′′
λ(z;λ)− Eλ(z;λ)E′′(z;λ) = 2λσ(z)E(z;λ)2. (22)

Recognizing that the left hand side of (22) is a total derivative, integration from
0 to L gives

(E(z;λ)E′
λ(z;λ)− Eλ(z;λ)E′(z;λ))|L0 = 2λ

∫ L

0

σ(z)E(z;λ)2 dz. (23)

Setting λ = λ∗ and using either the Neumann boundary conditions (18) or the
Dirichlet boundary conditions (19) equation (23) specializes to

− Eλ(L;λ∗)E′(L;λ∗) = 2λ∗
∫ L

0

σ(z)E(z;λ∗)2 dz. (24)

For all nonzero eigenvalues λ∗ the right hand side of (24) is nonzero. This
implies that both factors on the left hand side are nonzero, and as E(z;λ) is an
entire function of λ this implies that all eigenvalues λ∗ of E(z;λ) are simple.

The following result can be utilized to simplify computations later:

Proposition 4. For the Dirichlet and Neumann problems the residues bj of the
function E′(L;λ)/E(L;λ) are purely imaginary, and residues corresponding to
conjugate eigenvalues are conjugate.

Proof. As mentioned at the beginning of section 5 E(L;λ) is an entire function
of order 1. Therefore we can write

E′(L;λ)
E(L;λ)

=
E′(L;λ)

E0

∏
j(1− λ/λj)

. (25)

Since the zeroes of E(L;λ) are all simple, we can also write (25) in a partial
fraction decomposition:

E′(L;λ)
E(L;λ)

=
∑

j

aj

λ− λj
. (26)

This gives

aj = − λjE
′(L;λj)

E0

∏
k
k 6=j

(1− λj/λk)
. (27)

Note also that
− λjEλ(L;λj) =

∏
k
k 6=j

(1− λj/λk). (28)

Insert (27) into (28), and put the result and (21) into (24) to get

aj = λj
E′(L;λj)2

2
∫ L

0
E′(z;λj)2 dz

(29)

The positivity of the integral and E′(L;λj)2 gives the result.
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6 Discretization of the Conductivity Profile

For the remainder of the paper we focus on the case of conductivities in the
class D+, that is, conductivity profiles which are sums of weighted Dirac deltas:

σn(z) =
n∑

j=1

σjδ(z − zj). (30)

As mentioned in Section 1, the conductivity class D+ has been viewed with
some skepticism from a geophysical point of view in the magnetotelluric litera-
ture [28, 14, 29]. We share the view that D+ is not a physical class of solutions,
so a few words explaining the utility of D+ may be in order. One reason why
D+ is a good class of conductivity profiles is that the theory concerning the
existence of a solution for a given data set is understood; see Parker [27] and
especially Yee & Paulson [35]. However, the main reason for viewing discrete
conductivity profiles as adequate approximations to physical conductivity pro-
files comes from converting (13) to an integral equation for E(z;λ):

E(z;λ) = E0 + zλσBE0 + λ2

∫ z

0

∫ y

0

σ(x)E(x;λ) dxdy. (31)

Integration by parts converts this expression to

E(z;λ) = E0 + zλσBE0 + λ2

∫ z

0

(z − x)E(x;λ)σ(x) dx, (32)

which is identical to (13) for all continuous σ(z).
It is natural to consider (32) as the fundamental equation of our problem

for discontinuous conductivity profiles. We further re-express the equation as
follows. Define the cumulative conductance M(z) of the Earth by

M(z) =
∫ z

0

σ(z) dz. (33)

This is a nondecreasing function of z. We simply refer to the cumulative con-
ductance function as the conductance when there is no risk of confusion. Equa-
tion (32) becomes

E(z;λ) = E0 + zλσBE0 + λ2

∫ z

0

(z − x)E(x;λ) dM(x). (34)

At this point what has been done resembles work done by Parker [27]. We
make the following additional points:

(i) The integral equation (34) makes sense for any nondecreasing function
M(x). Using standard techniques [1] one easily shows that the solution to
this integral equation exists and is unique. Moreover dM(x) is a measure
(as the distributional derivative of a function of bounded variation) and as
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such it can be approximated in the weak topology by sums of Dirac deltas.
Therefore D+ is dense in the space of positive measure M+(R). There is
also a more elementary way of thinking about the role of M+. A conduc-
tance M(z) corresponding to a conductivity profile σn(z) of type (30) con-
verts this integral equation into a Riemann sum; it creates an approximate
solution. For any continuous function f(z) and continuous conductance
σ(z), it is possible to show that there exists a sequence of step function
conductances {Mn(z)}n such that

lim
n→∞

∫ L

0

f(z)dMn(z) =
∫ L

0

f(z)dM(z)

Even more importantly, the following continuity results holds

Theorem 1. Let σn be a sequence of Borel measures converging weakly
to a Borel measure σ and let Mn and M be their respective cumulative
distribution functions. Let {En} be the sequence of solutions to the integral
equation (34). Then En → E.

Proof. Let us set E − En = un. Then un satisfies:

un(z;λ) = λ2

(∫ z

0

(z − x)un(x;λ)dMn(x) +
∫ z

0

(z − x)E(x;λ)d(M −Mn)(x)
)

Because E(x;λ) is absolutely continuous and dMn → dM weakly, the
second term converges uniformly to 0 on every compact set. Let us define

αn(z;λ) =
∣∣∣∣∫ z

0

(z − x)E(x;λ)d(M −Mn)(x)
∣∣∣∣ .

Then we have the following inequality:

|un(z;λ)| ≤ αn(z;λ) + |λ|2
∫ z

0

(z − x)|un(x;λ)|dMn(x).

Then, by the integral form of Grönwall’s inequality [16],

|un(z;λ)| ≤ αn(z;λ)+|λ|2
∫ z

0

(z−x)αn(x;λ) exp(
∫ z

x

(z−s)dMn(s))dMn(x)

which, in view of the uniform convergence αn → 0 and the weak con-
vergence of dMn implies uniform convergence un → 0 on every compact
set.

(ii) Expressing the problem as an integral equation shifts the focus from the
conductivity profile to the conductance. An exact inversion procedure
recovers the function M(z), from which the conductivity σ(z) is easily
computed for continuous σ(z). Without significant a priori assumptions
incomplete datasets force us to consider M(z) that are step functions, in
which case we cannot uniquely recover σ(z) — we can only determine the
average of σ(z) in between the jumps of M(z).
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7 Inhomogeneous Strings

As mentioned in Section 3, equation (9) is essentially the same as the equation
governing the motion of a vibrating inhomogeneous string. The inhomogeneous
string inverse problem is to determine the cumulative mass of the string as a
function of position based on observations of the string at one endpoint at vari-
ous frequencies. Much work on the string problem has been performed by M.G.
Krĕın [21, 19, 20, 22, 23, 24], as well as I.S. Kac and M.G. Krĕın [17]. An
alternative perspective on the string problem is provided by Dym and McK-
ean [13]; see also [11, 12] . Aside from the connection to the magnetotelluric
problem, the inhomogeneous string problem also plays a role in constructing
multi-peakon solutions to the Camassa-Holm equation [7, 6]. We do not dwell
on the inhomogeneous string problem other than to make explicit the relation
to the magnetotelluric problem, because this helps to clarify the roles of the
objects involved in the magnetotelluric problem.

The linearized equation governing the motion of a vibrating string with mass
density ρ(z) under constant tension T is

Tvzz = ρ(z)vtt. (35)

Harmonic modes of the string are obtained by setting v(z, t) = u(z) cos νt.
Substituting this into (35) results in a differential equation for u(z):

Tu′′(z; ν) = −ν2ρ(z)u(z; ν). (36)

Initially one considers mass densities ρ(z) that are nonnegative positive func-
tions, often with additional constraints to facilitate analysis. For example, sup-
posing that ρ(z) ∈ C2, ρ(z) > 0, allows one to rewrite (36) in the Schrödinger
(canonical) form [10]:

ũzz + V (z)ũ = λũ. (37)

One can also consider highly singular mass densities ρ(z) given by Radon
measures by interpreting (36) as a distributional equation. This is equivalent to
recasting (36) as a Stieltjes integral equation. This formulation of the problem is
common in the string literature. For example, an inhomogeneous string of total
length 2, tension T = 1, tied at both ends can be described by the following
integral equation:

u(z) = −ν2

∫ 1

−1

K(z, y)u(y) dM(y), (38)

where K(z, y) = (1+z)/(2−2y) and M(y) is a non-decreasing, right-continuous
function, describing the total mass accumulated on the interval [−1, y]. A partic-
ularly simple case is that of point masses m1,m2, . . . mn, situated at z1 < z2 <
· · · < zn. Then for y ∈ [zk, zk+1) the cumulative mass is M(y) = m1 + . . . + mk

and the integral equation is equivalent to a linear system of algebraic equations:

Û = −ν2K̂M̂Û ,
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where

Û =
[
u(z1) u(z2) · · · u(zn)

]T
, M̂ = diag(m1,m2, . . . ,mn), K̂ = [K(zi, zj)].

Magnetotelluric Object Inhomogeneous String Object
Conductivity σ(z) Mass density ρ(z)

Point Conductance σi Point mass mi

Perfectly resistive layer Massless wire segment

Table 1: Analogous objects in the magnetotelluric and inhomogeneous string
inverse problems.

Table 1 summarizes the correspondence between the objects involved in the
magnetotelluric problem and the inhomogeneous string problem. It is typical to
think of mass (conductance) as the integral of the mass density (conductivity),
but we would advocate thinking of mass density (conductivity) in the way it is
ideally defined, namely as the derivative of the cumulative mass (conductivity).
This derivative must be interpreted in the correct sense, as it is certainly possible
to have discontinuous cumulative mass functions.

8 General Inversion for Discrete Conductivities

The central object for inversion is the response (or Weyl) function W (L;λ) =
E′(L;λ)/E(L;λ).2 We describe how to perform the inversion for the general
boundary conditions (14) and conductivity profiles in the class D+. As a first
step we reinterpret (13) for conductivities in the class D+; the equations become

E′′(z;λ) = 0, z 6= zj , (39a)

E′(z+
j ;λ)− E′(z−j ;λ) = λ2σjE(zj ;λ), z ∈ {z1, z2, . . . , zn}. (39b)

We explicitly label two more points: z0 = 0 and zn+1 = L. The boundary
conditions then become E(z0;λ) = E0, E′(z0;λ) = λσBE0, and at an eigenvalue
λ∗ we have E(zn+1;λ∗) = 0. For convenience let qj = E(zj ;λ), pj = E′(z+

j ;λ),
and `j = zj − zj−1. We then have, from (39a) and (39b),

pj`j+1 = qj+1 − qj , pj+1 − pj = λ2σj+1qj+1. (40)

2Many authors define the response function to be c(λ) = 1/W (L; λ); the difference is
immaterial in practice.

11



Observe that

W (L;λ) =
pn+1

qn+1

= λ2σn+1 +
pn

qn+1

=
pn

qn + pn`n+1

=
1

`n+1 + qn/pn

=
1

`n+1 +
1

pn/qn

,

so that

W (L;λ) =
1

`n+1 +
1

λ2σn +
1

`n +
1

. . .
+

1
λσB

. (41)

The termination of the expansion occurs at q0/p0, which are the boundary val-
ues E(0;λ) and E′(0;λ). Use of the fact that the point zj+1 lies in perfectly
insulating space has been made; i.e., σn+1 = 0. For Neumann boundary con-
ditions (σB = 0) and Dirichlet boundary conditions (σB = ∞) the continued
fractions are particularly nice:

WN (L;λ) =
1

`n+1 +
1

λ2σn +
1

`n +
1

. . .
+

1
λ2σ1

(42)

WD(L;λ) =
1

`n+1 +
1

λ2σn +
1

`n +
1

. . .
+

1
`1

(43)
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9 Recovering the Standard Boundary Condition
Continued Fractions

The problem (13) is highly overdetermined; see [5] for an expanded discussion.
The overdetermination can be seen by recasting the recurrence relations in terms
of a series of matrix multiplications applied to q0 and p0:[

qn+1

pn+1

]
= T (λ2)

[
q0

p0

]
, (44)

where

T (λ2) =
[
1 `n+1

0 1

] [
1 0

λ2σn 1

] [
1 `n

0 1

]
· · ·
[

1 0
λ2σ1 1

] [
1 `1
0 1

]
. (45)

The initial vector [q0, p0]
T can be decomposed[
q0

p0

]
= E0

([
1
0

]
+ λσB

[
0
1

])
, (46)

which gives the final solution as

E0

[
qe(λ2) + λσBqo(λ2)
pe(λ2) + λσBpo(λ2)

]
= T (λ2)

[
q0

p0

]
, (47)

and this division emphasizes that E(L;λ) and E′(L;λ) are composed of even
and odd polynomial parts. These separate parts solve problems associated with
the same conductivity profile but different boundary conditions. See Table 2.

Function Boundary Condition at 0 Boundary Condition at L
qo Dirichlet Dirichlet
qe Neumann Dirichlet
po Dirichlet Neumann
pe Neumann Neumann

Table 2: Boundary conditions satisfied by the even and odd parts of the poly-
nomials q(λ) and p(λ).

A theorem of Krĕın [17], the conditions of which are satisfied due to the
Hermite-Biehler theorem [15], guarantees that knowledge of any one of the pairs
(qo, qe), (qo, po), (qe, pe), and (po, pe) is sufficient to determine nearly the entire
conductance function. Our restriction to discrete conductivity profiles makes it
simpler to explicitly demonstrate the determination than to invoke these theo-
rems. Section 17 details how to perform the inversion using these polynomials.

The essential point is that the information regarding the conductivity profile
above the uniform basement is contained in the matrix T (λ2), so the same
information regarding the discrete conductivity profile can be recovered using
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any valid pair of functions, with the exception of the final length `n+1, which
can only be determined using pairs of functions satisfying Dirichlet conditions.

We remark that the ability to perform the inversion using solely the electric
or magnetic field (that is, one of the pairs (qo, qe) or (po, pe)) is primarily of
theoretical interest. This is because the inversion procedure applies to fields
that are due to the electrical structure of the Earth, the so-called internal fields.
The observed electrical field is composed of the internal field and the external
field, which originates from sources external to the conductivity structure of
the Earth. There is evidently a causal relationship between the internal and
external fields, and this relationship is necessarily of the following form [26]

Eint(L;λ) = τ(λ)Eext(L;λ). (48)

The same equation holds for the magnetic field. Therefore

Eobs(L;λ) = (1 + τ−1(λ))Eint(L;λ), (49)

and likewise for the magnetic field. The ratio of Eobs(L;λ) to Hobs(L;λ) is
therefore dependent only on the internal fields. Without exact knowledge of the
operator τ(λ), which in general requires knowledge of the conductivity structure
of the Earth, one can not discover the internal electric field from measurements
of the electric field at a single spatial location.

We remark that in the frequency domain the operator τ(λ) is simply a mul-
tiplier; it is an open question as to how this multiplier behaves over the range
of practically measurable frequencies.

10 The Method in Practice

To implement the described procedure two issues must be addressed. The first
is that the response function W (L;λ) is only ever known at a finite number of
frequency values, and the second is that the conductivity profile of a physical
Earth is unlikely to belong to the class D+. We have noted in Section 6 and
Section 7 that the second problem is primarily a matter of correctly interpreting
results in D+. The ability to interpret solutions in D+ allows for a solution to
the first problem by fitting response functions in the class D+ to finite data
sets.

The form of the response function to be fit to the finite data set is crucial.
In this section we outline the general procedure for Dirichlet boundary condi-
tions and give an example. The same approach applies to Neumann boundary
conditions, but the radiation boundary conditions require a different approach
due to the overdetermination of the Weyl function; see Section 13.

We can use a partial fraction decomposition to express the response function
in terms of its poles and residues:

W (L;λ) =
∞∑

j=1

aj

λ− λj
+

bj

λ− λj

. (50)
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Since λj = −λj and bj = aj = −aj , we can rewrite (50) as

W (L;λ) =
∞∑

j=1

νj

λ2 − λ2
j

, (51)

where λ2
j < 0 and νj = 2λjaj > 0.

The procedure to solve the magnetotelluric problem with a finite number of
data points for Dirichlet conditions is

(i) Use a truncation of (51) as an ansatz for a nonlinear least squares pro-
gramming routine.

(ii) Apply the inversion routine of section 8 to the resulting rational function.

To demonstrate the procedure we first solve a simple example that illustrates
the method, and then we show some results based upon synthetic frequency
response data.

11 A Homogeneous Layer

Suppose the Earth is composed of an infinitely conductive halfspace with a
uniformly conductive layer of thickness L and conductivity σ on top of the
halfspace. Then the response function of the Earth is easily seen from (9) to be

E′(L;λ)
E(L;λ)

=
√

σλ coth(λ
√

σL). (52)

To slightly simplify computations, we note that (41) contains the same infor-
mation if we divide (52) by λ2. Doing so gives

E′(L;λ)
λ2E(L;λ)

=
√

σ cosh(λ
√

σL)
λ sinh(λ

√
σL)

, (53)

which has poles at λn = iπn√
σL

, n ∈ Z. The residues are 1
L . Combining terms we

get
E′(L;λ)

λ2E(L;λ)
=

1
Lλ2

+
∞∑

i=1

2/L

λ2 + π2n2/σL2
(54)

Figure 1 shows some plots of the inversion procedure applied to truncations
of (54) for homogeneous layer 1000m thick with conductivity 1 S/m. The solid
line represents the model conductance, and the dots represent the conductance
determined by the inversion procedure.

This is an idealized result of the procedure because the poles and residues
used in the inversion are exactly equal to the poles and residues of the true
response function. More realistic results of the procedure are the plots in Fig-
ure 2. To create these figures the exact response function (52) has been sampled
at 58 frequencies that are practically measurable in exploratory magnetotelluric
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Figure 1: Plots of conductance versus position for exact spectral truncations of
order 15 (left) and 25 (right).

surveying.3 These data points were then interpolated with a spline curve, which
was sampled at a larger number of chosen frequencies. A nonlinear least squares
procedure was then used to fit a truncation of (51) to these datapoints.

12 Synthetic Example

As an example of a more physically realistic situation, we apply the full inversion
procedure for Dirichlet boundary conditions to an Earth that is composed of
a halfspace of conductivity 10 S/m, above which are three layers of specified
conductivity. The result is shown in Figure 3; the solid curve indicates the
model conductance.

13 Radiation Boundary Conditions

As previously mentioned the spectral properties of the general boundary condi-
tion are more complicated. There is no longer any guarantee that the spectrum
is simple, or that it lies on the imaginary axis. It is in fact quite easy to find
examples where the spectrum is degenerate. The one-parameter family of con-
ductivity profiles in the class D+ defined by

l1 =
4

17σB
, l2 =

25538
24259σB

, l3 =
6724

1427σB
,

σ1 =
289
452

σB , σ2 =
2036329
1519624

σB , σB = σB ,

3The sampled frequencies lie in the range 5Hz-32kHz.
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Figure 2: Plots of conductance versus position for truncations of order 15 (left)
and 25 (right). The order-15 truncation was fit to 210 data points, and the
order-25 truncation was fit to 240 data points.

Figure 3: A 20-term truncation fit to 350 data points sampled from a spline
curve generated by 58 data points.
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always has the degenerate spectrum, {−1/4,−1− i,−1− i,−1 + i,−1 + i}, for
any finite positive σB .

Numerical experiments suggests that the spectrum is typically simple. The
spectrum of a conductivity profile with l1 = 1, l2 = 2/5, l3 = 1/5, l4 = 3,
σ1 = 1/10, σ2 = 5, and σ3 = 1/2 is shown for various values of σB = 10k in
Figure 4.

Figure 4: The spectrum for a conductivity profile l1 = 1, l2 = 2/5, l3 = 1/5,
l4 = 3, σ1 = 1/10, σ2 = 5, and σ3 = 1/2 for σB = 10k. Click the figure to
view an animated version. The colouration of the spectra is solely to highlight
conjugate pairs.

This primarily horizontal movement of the individual eigenvalues appears to
be typical, based on numerical experiments.

The primary difficulty in trying to solve the magnetotelluric problem for
radiative boundary conditions lies in determining the correct ansatz for the
least squares procedure. It is readily seen that, in general, a spectral truncation
of the form (50) is not a response function for a discrete Earth. This is because,
as shown in Section 9, the denominator (or numerator) alone determines the
conductance. Spectral truncations of response functions can be constructed
that do not correspond to conductances. It is unclear how to approach the
radiative boundary condition using a rational ansatz.
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14 Inversion via the Electric Field

Despite the remark in Section 9 regarding the experimental difficulty of deter-
mining the internal electric field, it is interesting to consider the solution of the
magnetotelluric problem with radiative boundary conditions using the electric
field alone. We assume that the value of the internal electric field is known at a
finite set of frequencies {ωi}N

i=1. Because the electric field E(L;λ) is an entire
function, it is known that the sequence of interpolating polynomials on a finite
interval converges uniformly to E(L;λ) [8]. One is therefore motivated to form
an interpolating polynomial q(λ) that approximates the electric field, determine
the even and odd parts qe(λ) and qo(λ) of q(λ), and then take the ratio of the
even and odd parts to determine the conductance profile.

As noted in Table 2 the even and odd parts of the polynomial q(λ) satisfy the
same boundary conditions as a Dirichlet Earth, hence the method of Section 10
can be utilized by generating data from the ratio of qe(λ) to qo(λ).

The success of a such a procedure depends critically upon forming interpo-
lating polynomials of sufficiently high degree. The precise notion of sufficiently
high degree depends, in turn, on the frequency interval chosen. As a simple
example, consider again a homogeneous layer of depth L with constant conduc-
tivity σ. The electric field at the surface is

E(L;λ) = cosh(λ
√

σL) +
σB√

σ
sinh(λ

√
σL). (56)

Recalling that λ =
√

iωµ0 we can rewrite (56) as

E(L;λ) =
(

cosh(
√

ωµ0σ

2
L) +

σB√
σ

sinh(
√

ωµ0σ

2
L)
)

cos(
√

ωµ0σ

2
L)+

i

(
sinh(

√
ωµ0σ

2
L) +

σB√
σ

cosh(
√

ωµ0σ

2
L)
)

sin(
√

ωµ0σ

2
L). (57)

For sufficiently large ω cosh(
√

ωµ0σ
2 L) ≈ sinh(

√
ωµ0σ

2 L), so (57) can be rewrit-
ten as

E(L;λ) =
(

cosh(
√

ωµ0σ

2
L) +

σB√
σ

cosh(
√

ωµ0σ

2
L)
)

cos(
√

ωµ0σ

2
L)+

i

(
sinh(

√
ωµ0σ

2
L) +

σB√
σ

sinh(
√

ωµ0σ

2
L)
)

sin(
√

ωµ0σ

2
L). (58)

Rearrangement yields

E(L;λ) ≈ (1 +
σB√

σ
) cosh(λ

√
σL).

For large ω it is necessary to have high order polynomial interpolants to deter-
mine the even and odd parts of E(L;λ). For typical values of σ (≈ 1 S/m) and
L (≈ 1000 m) frequencies of 2 Hz or less are required for practical interpolation.
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15 Conclusion

An algebraic method of inversion for the one-dimensional magnetotelluric in-
verse problem has been demonstrated. Examination of the radiation boundary
conditions showed the existence of inversion methods based on measurements
of only the electric or magnetic field, although these methods appear to be of
solely theoretical interest. We have shown that the solutions in the class D+

obtained by the inversion procedure can be viewed as approximations to the
true physical conductance profile, which alleviates concerns over the class D+

being unphysical.
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17 Appendix 1: Standard Inversion Expressions

As is well known, the Euclidean algorithm generates two sequences that can be
used to form successive continued fraction approximations to a number x. These
sequences are the partial numerators {ai}i, where ai = bxc, and the remainders
{bi}i, where bi+1 = {ai}. The curly braces indicate that bi+1 is the fractional
part of ai. The continued fraction expansion for x is then

x =
1

a1 +
1

a2 +
1

. . .
+

1
an + bn+1

. (59)

The nth approximate Rn to x is formed by setting bn+1 = 0:

Rn =
1

a1 +
1

a2 +
1

. . .
+

1
an

. (60)

Note that this method can easily be applied to rational functions f(x) by
using the Euclidean algorithm for polynomial division.
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Proposition 5. Given a function f(x) and the sequence {ai}i of partial denom-
inators generated by the Euclidean algorithm, consider the recurrence relation

uj = ajuj−1 + uj−2, j ≥ 1 (61)

Let Pj, Qj be the unique solutions to (61) satisfying P−1 = 1, P0 = 0, Q−1 = 0,
and Q0 = 1, respectively. Then for any k ≥ 1

Rk =
Pk

Qk
(62)

Proof. The initial conditions imply R1 = 1/a1. Proceed by induction. Sup-
pose (62) holds for k = n. Then set an = an + 1/an+1 in the expression for Rn

to get Rn+1:

Rn+1 =
(an + 1/an+1)Pn−1 + Pn−2

(an + 1/an+1)Qn−1 + Qn−2

=
an+1(anPn−1 + Pn−2) + Pn−1

an+1(anQn−1 + Qn−2) + Qn−1

=
an+1Pn + Pn−1

an+1Qn + Qn−1

=
Pn+1

Qn+1

We can write (61) for Pn, Pn−1, Qn, and Qn−1 more compactly in terms of
2× 2 matrices [

Qn Pn

Qn−1 Pn−1

]
=
[
an 1
1 0

] [
an−1 1

1 0

]
· · ·
[
a1 1
1 0

]
. (63)

Given the known form of Rn, continued fraction forms of the ratios Pn/Qn,
Pn−1/Qn−1, Pn−1/Pn, and Qn−1/Qn can be developed by reading off the partial
denominators from (63) and the transpose of (63).

We can rewrite (45) as

T (λ2) =
[
`n+1 1

1 0

] [
λ2σn 1

1 0

] [
`n 1
1 0

]
· · ·
[
λ2σ1 1

1 0

] [
`1 1
1 0

] [
0 1
1 0

]
(64)

by inserting the identity matrix into T (λ2) after each matrix containing an `i

and using [
1 0
0 1

]
=
[
0 1
1 0

] [
0 1
1 0

]
. (65)

Equation (47) shows that we can express T (λ2) as

T (λ2) = E0

[
qo(λ2) qe(λ2)
po(λ2) pe(λ2)

]
, (66)
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and therefore the matrix form of Proposition (5) gives continued fraction ex-
pansions for the discrete Earth data:

qe

λqo
=

1

λ`1 +
1

λσ1 +
1

. . .
+

1
λ`n+1

,
po

λqo
=

1

λ`n+1 +
1

λσn +
1

. . .
+

1
λ`1

, (67)

pe

λpo
=

1

λ`1 +
1

λσ1 +
1

. . .
+

1
λσn

,
pe

λqe
=

1

λ`n+1 +
1

λσn +
1

. . .
+

1
λσ1

. (68)
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[21] M.G. Krĕın. On a generalization of investigations of Stieltjes. Doklady
Akad. Nauk SSSR (N.S.), 87:881–884, 1952.
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