
Annals of Biomedical Engineering manuscript No.

(will be inserted by the editor)

Stiffness analysis of cardiac electrophysiological models

Raymond J. Spiteri · Ryan C. Dean

Received: date / Accepted: date

Abstract The electrophysiology in a cardiac cell can be modelled as a system of

ordinary differential equations. The efficient solution of these systems is important

because they must be solved many times as sub-problems of tissue- or organ-level

simulations of cardiac electrophysiology. The wide variety of existing cardiac cell models

encompasses many different properties, including the complexity of the model and the

degree of stiffness. Accordingly, no single numerical method can be expected to be the

most efficient for every model. In this paper, we study the stiffness properties of a range

of cardiac cell models and discuss the implications for their numerical solution. This

analysis allows us to select or design numerical methods that are highly effective for a

given model and hence outperform commonly used methods.
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1 Introduction

The electrophysiological behaviour in myocardial tissue can be modelled by means

of differential equations, often as a combination of ordinary and partial differential

equations. Ionic currents at the myocardial cell level are described by a model consisting

of ordinary differential equations (ODEs). These ionic currents are coupled via a model

consisting of partial differential equations (PDEs) to describe the flow of electricity

across the heart. A PDE model, such as the bidomain model, coupled with an ionic

model can be used to simulate the electrical activity in the heart. For a thorough

introduction, see [42] or [53].

Coupled ODE/PDE models are often solved separately via an algorithm called op-

erator splitting. In this algorithm, the solution process alternates between solving the

ODEs and the PDEs separately. In this context, the solution of each system is an im-

portant sub-problem of the overall solution process, each posing challenges to solving

the overall problem efficiently. One such challenge is that the ionic model is usually

a stiff, non-linear set of ODEs that must be solved for each node in the simulation.

Moreover, a fine spatial discretization is required to produce useful data [57], and so

another challenge is the magnitude of the system required for a realistic simulation.

Inefficiencies in solving the ionic model, for example, are magnified as simulations be-

come larger. The use of reduced, computationally inexpensive ionic models (e.g., [55])

illustrates the difficulty in efficiently performing simulations. In this study, we per-

form a systematic stiffness analysis of 37 verified ionic cell models from the CellML
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model repository [26] and show how this analysis can lead to application or design of

appropriate methods for their efficient numerical solution.

A wide range of ionic models exists. Many models are based upon the Hodgkin–

Huxley (HH) model for the giant squid axon [21]. The FitzHugh–Nagumo (FHN)

model [17,32], a simplification of the HH model with two ODEs, is often used as

an inexpensive ionic model, albeit usually in a form modified to more accurately model

cardiac action potentials; see, e.g., [2,24,43,56]. Modern models, on the other hand,

usually add detail to the HH model or subsequent models; e.g., the model of Iyer et

al. (2004) of human left-ventricular epicardial myocytes consists of 67 ODEs. There is

also variety in the type of cardiac cell modelled, including models of cells in the atria,

ventricles, sinoatrial node, and Purkinje fibres, as well as in the species being modelled,

e.g., human, canine, rabbit, etc.

The wide variety of ionic models has significant implications for efficiently obtaining

their numerical solution. The simplest models, such as FHN, are typically non-stiff [53].

In such cases, the use of a non-stiff numerical method is the most appropriate to obtain

a solution efficiently. Cell models more detailed than FHN tend to be stiff and require

the use of a stiff numerical method to obtain a solution efficiently [53]. However, stiffness

is a subtle effect and challenging to definitively characterize. The distinction between

stiff and non-stiff models is not clear cut in general; it depends on aspects such as the

range of the time scales involved and the accuracy required of the approximate solution.

We find there is a considerable difference in the degree of stiffness across the diversity

of ionic models even for typical accuracy requirements. For example, [28] demonstrates

the marked difference in the degree of stiffness between the models of Courtemanche

et al. [11] and Winslow et al. [59]. Both are stiff, detailed, second-generation models,

but the most well-suited numerical method is different in each case.
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In this study, we analyse the stiffness of a wide range of cardiac electrophysiological

models. We examine the eigenvalues of the Jacobian of the solutions over time for the

37 ionic cell models considered. These eigenvalues are often related to the stiffness of

the model [19], and in fact a stiff initial-value problem is sometimes defined in terms

of these eigenvalues, e.g., [25]. We show how this information can be used to select

or design an effective numerical method for specific ionic cell models. We give special

focus to numerical methods commonly used in cardiac electrophysiological simulations

and demonstrate the efficiency gains that are possible through the use of stiffness data.

The rest of this paper is organized as follows. In Section 2, we give a brief outline

of ionic cell models and an overview of the particular models used in this study. In

Section 3, we give a brief overview of the concept of stiffness. We also present the

extreme eigenvalue data generated for the models considered and discuss the implica-

tions for model stiffness. In Section 4, we use the eigenvalue data to select an effective

numerical method for the model of Pandit et al. [39] as well as to design effective type-

insensitive codes for several cell models. We compare the proposed numerical methods

in terms of efficiency to commonly used methods. Finally, in Section 5, we summarize

the conclusions reached based on our observations.

2 Cardiac electrophysiological models

2.1 Ionic current models

Small-scale processes that occur at the level of the individual cells in the heart can be

modelled using ODEs. Such models can be used to simulate the behaviour of electrical

activity in an isolated cell, or, when coupled with a PDE model, can be used to provide

the ionic current to tissue- or organ-level simulations. The simplest of these models
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are called first-generation models. A first-generation model contains enough detail to

reproduce an action potential, but it has a simplified description of the underlying

physiological details [53]. Some popular examples of first-generation models are the

FHN model and the 1991 Luo–Rudy model (LR) [27]. More complex models, called

second-generation models, contain all of the details included in first-generation models

and as many fine-scaled physiological details as possible [53]. Most modern models

can be classified as second-generation models because the most useful simulations tend

to require details on the finest level [53]. Although first-generation models have less

detail, their advantage is that they are computationally inexpensive relative to second-

generation models.

The heart consists of different types of excitable cells, each having their own prop-

erties [42]. As such, most models are suited to particular type of cell in the heart.

Normally, the electrical activity in the heart is initiated by a spontaneous electrical

pulse emanating from specialized tissue called the sinoatrial node. From the sinoatrial

node, electricity spreads to the atrial myocardium [42]. From the atria, the activation

wave spreads to the atrioventricular node, the Purkinje fibres, and, finally, to the ven-

tricles. There are models for each of these regions of the heart. In particular, there are

numerous models of atrial and ventricular cells. On the other hand, there are relatively

few cell models for the atrioventricular node; see, e.g., [42], for a detailed list of dozens

of cardiac electrophysiological models classified in this way.

As an example of a first-generation model, we consider the LR model, sometimes

called the Luo–Rudy Phase 1 model. The LR model describes guinea pig ventricu-

lar tissue and consists of 8 ODEs. For an individual cardiac cell, we have that the
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transmembrane potential, Vm, satisfies [27]

dVm
dt

= −
1

Cm
(Iion + Ist), (1)

where Cm is the membrane capacitance, Iion is the total transmembrane ionic cur-

rent, and Ist is the stimulus current. The LR model contains six gating variables that

determine the flow of current. The evolution of each gating variable y is governed by

a nonlinear ODE involving rate parameters αy = αy(Vm) and βy = βy(Vm) in the

general form

dy

dt
=

y∞ − y

τy
, (2)

where

y∞ =
αy

αy + βy
and τy =

1

αy + βy
.

The range of each gating variable is [0, 1], representing the probability of a channel

being open or closed. When y = 0, all channels are completely closed, allowing no

current to flow. When y = 1, all channels are completely open, allowing current to

flow without being inhibited by the gate [42]. The remaining ODE in the LR model

describes calcium concentration in the cell:

d ([Ca]i)

dt
= −10−4Isi + 0.07 (10−4 − [Ca]i), (3)

where [Ca]i is the intracellular calcium concentration and Isi is the slow inward calcium

current [27]. The 6 gating equations of the form (2) are coupled with (1) and (3) to

form the complete LR model. Full details of the model can be found in [27].

As an example of a second-generation model, we mention the model of Winslow et

al. [59]. This model describes canine ventricular tissue and consists of 33 ODEs.
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2.2 Models used

In this study, we consider 37 different ionic models, including some that are variations of

a given model. This represents a wide variety of models in terms of type of cardiac cell,

species modelled, degree of stiffness, and level of detail. Model data were obtained from

the CellML model repository [26]. The CellML representation of models was used to

generate Matlab code via a Python script. To ensure the faithfulness of the code to the

model, two specific considerations were made. First, apart from one exception, we used

only models considered to be faithful to the published model according to CellML’s

curation guidelines, i.e., models marked with a gold star on the CellML website. The

exception was for the Puglisi–Bers model [41] because we already had reliable code as

part of other work [48]. Second, reference solutions were obtained with the generated

Matlab code and were verified to be the same as reference solutions obtained with

JSim [1], an independent software package capable of parsing CellML files.

A detailed formulation of all models is omitted for the sake of brevity. The reader

is instead referred to the original model papers or to the CellML repository, which

contains a concise formulation of each model. A summary of each of the models used

in this study is presented in Table 1 including, for each model, the name used for it in

this paper, a reference to the original paper, a brief description of the model, and the

number of ODEs in the model.

For each model, the set of default parameters in CellML was used. All models

contain adjustable parameters; e.g., the model of Pandit et al. (2001) has a parameter

that determines if the model should take into account the influence of diabetes. Because

adjusting parameters to the models requires intricate knowledge of each of the model

and increases the chance of human error, we did not vary any of these parameters
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Table 1 Summary of models used. Three variants (endocardial cell, epicardial cell, and M-cell)

exist for each of the models marked with an asterisk.

Model Reference ODEs Description

Beeler–Reuter (1977) [6] 8 Canine ventricular model

Bondarenko et al. (2004) [8] 41 Mouse ventricular model

Courtemanche et al. (1998) [11] 21 Human atrial model

Demir et al. (1994) [13] 27 Rabbit sinoatrial node model

Demir et al. (1999) [12] 29 Rabbit sinoatrial node model

DiFrancesco–Noble (1985) [14] 16 Mammal Purkinje fibre model

Dokos et al. (1996) [15] 18 Rabbit sinoatrial node model

Faber–Rudy (2000) [16] 19 Guinea pig ventricular model

FitzHugh–Nagumo (1961) [17,32] 2 Nerve membrane model

Fox et al. (2002) [18] 13 Canine ventricular model

Hilgemann–Noble (1987) [20] 15 Rabbit atrial model

Hund–Rudy (2004) [22] 29 Canine ventricular model

Jafri et al. (1998) [23] 31 Guinea pig ventricular model

Luo–Rudy (1991) [27] 8 Guinea pig ventricular model

Maleckar et al. (2008) [29] 30 Human atrial model

McAllister et al. (1975) [31] 10 Canine Purkinje fibre model

Noble (1962) [33] 4 Mammal Purkinje fibre model

Noble–Noble (1984) [34] 15 Rabbit sinoatrial node model

Noble et al. (1991) [35] 17 Guinea pig ventricular model

Noble et al. (1998) [36] 22 Guinea pig ventricular model

Nygren et al. (1998) [37] 29 Human atrial model

Pandit et al. (2001) [38] 26 Rat left-ventricular model

Pandit et al. (2003) [39] 26 Rat left-ventricular model

Puglisi–Bers (2001) [41] 17 Rabbit ventricular model

Sakmann et al. (2000)* [45] 21 Guinea pig ventricular model

Stewart et al. (2009) [51] 20 Human Purkinje fibre model

Ten Tusscher et al. (2004)* [54] 17 Human ventricular model

Ten Tusscher et al. (2006)* [55] 19 Human ventricular model

Wang–Sobie (2008) [58] 35 Neonatal mouse ventricular model

Winslow et al. (1999) [59] 33 Canine atrial model

Zhang et al. (2000) [61] 15 Rabbit sinoatrial node model
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unless separate CellML files were provided for variations on the same model. This was

the case for the model of Sakmann et al. (2000) and the two models of Ten Tusscher

et al. studied here. For these three models, endocardial, epicardial, and M-cell variants

of the model were in the CellML repository and thus included in this study.

3 Stiffness

We are concerned with the characterization of stiffness in various ionic cell models.

Arguably, there is no universally accepted definition of stiffness. For example, Hairer

and Wanner state that “stiff equations are problems for which explicit methods don’t

work” [19, pg. 2]. Lambert [25] describes stiffness as a phenomenon rather than a prop-

erty because the concept of property implies the requirement of a precise mathematical

definition. In this paper, we say that a problem is stiff with respect to a given method

when stability requirements force the method to take a smaller step size than that

dictated by accuracy requirements. This is similar to the definition of stiffness used by

Ascher and Petzold [4]. This can be seen as a pragmatic definition because it frames

stiffness in terms of the associated computational consequences. Generally, the step

size required for a non-stiff method applied to a stiff problem is much smaller than

accuracy requirements dictate, resulting in a numerical solution that is much more

accurate (and hence more costly) than desired. For efficiency, we would like that a

step size be chosen based only the accuracy requirements. For example, second-order

methods have an error of O(∆t2). So for an error tolerance TOL of 10−4, a step size

∆t ≈ 10−2 might suffice. However suppose the method has a stability restriction of

∆t = 10−6; i.e., step sizes ∆t > 10−6 are unstable. Then the error produced would be
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around 10−12, much smaller than desired. Because ∆t is restricted by stability, there

is no way to stably increase ∆t to make the error match the tolerance more closely.

Despite the absence of a universally accepted definition, there is a large body of

knowledge regarding the suitability of particular methods for both stiff and non-stiff

problems. Numerical methods for the solution of ODEs can generally be put into two

groups, stiff and non-stiff. The placement of a particular method in a certain group is

based on the method’s relative performance on stiff and non-stiff problems. Consider,

for example, the forward Euler (FE) and backward Euler (BE) methods [4, ch. 3].

One step with FE is computationally inexpensive. So when the step size is dictated by

accuracy considerations, FE is more efficient than BE. However, FE has a relatively

small region of absolute stability [4, ch. 3]. An attempt to solve a stiff problem with

FE requires a small step size, and overall the numerical solution process is less efficient

than if we use a method with a larger stability region. Hence, FE is classified as a non-

stiff method. On the other hand, BE has a large stability region. Despite the fact that

each step of BE is more expensive than FE because a system of nonlinear equations

must generally be solved at each step, the overall performance trade-off is favourable:

the step size can be increased by more than enough to offset the extra cost per step.

Hence, BE is classified as a stiff method. This analysis illustrates that choosing the

proper type of method to solve the ODEs can be critical to achieve good performance.

Related to the stiffness of a general initial-value problem (IVP)

dy

dt
= f (t,y) , y(0) = y0, t ∈ [t0, tf ], (4)

are the eigenvalues of the Jacobian J = ∂f
∂y (t,y) over time. These eigenvalues can give

us an indication of a problem’s stiffness. In particular, eigenvalues with large negative

real parts are likely to lead to stiff problems on their corresponding time intervals.
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Problems that have eigenvalues with large imaginary parts also tend to be difficult

to solve by standard solvers, but the highly oscillatory nature of the solutions to the

associated linearized problem does not make the problems stiff according to the classical

description of stiffness. In Section 3.1, we compute the eigenvalues of the Jacobian over

time for each of the models introduced in Section 2.2 and discuss the implications for

stiffness. In Section 3.2, we discuss numerical experiments to illustrate our discussion

of stiffness.

3.1 Eigenvalue Data

For each model in Section 2.2, we found the eigenvalues of the Jacobian over time in

the following way. First, a reference solution was generated using Matlab’s ode15s [30].

This was done by lowering the error tolerances for successive approximations until two

approximations were identical for at least 10 significant digits at N∗ = 100 equally

spaced output points. Matlab code representing the derivative of each model was cre-

ated via automatic differentiation using AdiMat [7]. We found a value for the Jacobian

at every 1 ms of simulated time using the derivative code with the reference solution,

and we found the eigenvalues of each of these Jacobians with Matlab’s eig function.

The extreme values in the set of eigenvalues associated with a model are of partic-

ular interest because they offer a worst-case or extreme look at the stiffness properties.

The largest stable step size for the FE method is approximately two times the recipro-

cal of the extreme negative real eigenvalue. At each point in time considered, we found

the maximum and minimum values of both the real and complex parts of the eigenval-

ues. The extreme values across the solution interval of these minimum and maximum

values are reported in Tables 2 and 3 along with the percentage of time at least one pair
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of complex eigenvalues was present. As we can see, there is a wide range of behaviours

encompassed by these models, from models such as FHN and Beeler–Reuter that do

not have relatively large negative eigenvalues to models such as Wang–Sobie and that

of Maleckar et al. that have moderately large negative eigenvalues to the model of

Pandit et al. (2003) that has extremely large negative eigenvalues.

Although not apparent from these tables, we note that problems may not be stiff

everywhere in their respective intervals of integration. Accordingly it may be possible to

use different integration methods that are more appropriate on different time intervals.

We also note integration methods that use a constant step size are subject to the

constraints imposed by the worst-case behaviour of stiffness and hence tend to perform

poorly. Graphs of how the extreme eigenvalues vary over time for two models (Pandit

et al. (2003) and Winslow et al.) are given in Figures 1 and 2 below; graphs for the

remaining models can be found in [49].

3.2 Numerical Experiments

3.2.1 Overview

We now discuss numerical experiments to show how the data presented in Section 3.1

can be utilized. We focus on numerical experiments for 3 integration methods for ionic

cell models: FE, the Rush–Larsen (RL) [44] method, and the recently proposed second-

order generalization of RL (GRL2) [52]. The primary goal of these experiments is not

to find the most efficient numerical method possible but rather to illustrate how the

stiffness of particular models affects the performance of different numerical methods.

A secondary goal of these experiments is to demonstrate the suitability of numerical

methods to particular ionic models according to their degree of stiffness.
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Table 2 Extreme values of the eigenvalues for each model. The minimum real part of the set

of eigenvalues is denoted min(Re(λ)), and the maximum real part of the set of eigenvalues

is denoted max(Re(λ)). Similarly, the minimum and maximum imaginary parts are denoted

min(Im(λ)) and max(Im(λ)). The percentage of the solution interval in which there is at least

one pair of complex eigenvalues is also reported.

Model min(Re(λ)) max(Re(λ)) min(Im(λ)) max(Im(λ)) % Complex

Beeler–Reuter (1977) –8.20E+1 –3.968E–3 0.00E+0 0.00E+0 0

Bondarenko (2004) –8.49E+3 4.51E+0 –2.80E+0 2.80E+0 64

Courtemanche et al. (1998) –1.29E+2 1.87E–1 –4.50E+0 4.50E+0 82

Demir et al. (1994) –2.24E+4 4.57E+0 –7.35E+0 7.35E+0 100

Demir et al. (1999) –3.45E+4 4.81E+2 –6.50E+1 6.50E+1 66

DiFrancesco–Noble (1985) –2.62E+4 8.24E+1 –3.21E+0 3.21E+0 31

Dokos et al. (1996) –2.99E+4 2.49E–15 –6.39E+1 6.39E+1 100

Faber–Rudy (2000) –1.83E+2 1.36E–17 0.00E+0 0.00E+0 0

FitzHugh–Nagumo (1961) –4.38E–1 1.78E–1 –4.59E–2 4.59E–2 45

Fox et al. (2002) –4.38E+2 4.44E–2 –4.18E–1 4.18E–1 65

Hilgemann–Noble (1987) –2.86E+4 1.81E–14 –7.71E+1 7.71E+1 21

Hund (2004) –1.95E+2 2.69E–2 –1.57E–3 1.57E–3 4

Jafri et al. (1998) –1.12E+3 2.31E–7 –1.91E–2 1.91E–2 52

Luo–Rudy (1991) –1.51E+2 7.01E–2 –4.11E–2 4.11E–2 74

Maleckar et al. (2008) –4.16E+4 2.42E+2 –3.42E+2 3.42E+2 28

McAllister et al. (1975) –8.18E+1 –4.79E–4 –2.85E–2 2.85E–2 100

Noble (1962) –9.79E+3 –1.92E+0 0.00E+0 0.00E+0 0

Noble–Noble (1984) –6.56E+3 1.35E–15 –1.36E+1 1.36E+1 100

Noble et al. (1991) –3.88E+4 1.78E–12 0.00E+0 0.00E+0 0

Noble et al. (1998) –3.60E+4 –6.32E–7 –8.41E+0 8.41E+0 9

Nygren et al. (1998) –4.03E+4 1.22E–1 –3.88E+2 3.88E+2 22

Pandit et al. (2001) –8.89E+4 2.20E–14 0.00E+0 0.00E+0 0

Pandit et al. (2003) –3.90E+9 6.83E+0 –8.09E–5 8.09E–5 17

Puglisi–Bers (2001) –1.67E+1 1.29E+0 –1.52E–1 1.52E–1 35

Sakmann et al. (2000) – Endocardial –2.93E+4 6.02E–1 –5.21E+1 5.21E+1 100

Sakmann et al. (2000) – Epicardial –2.93E+4 3.59E+1 –5.24E+1 5.24E+1 100

Sakmann et al. (2000) – M-cell –2.93E+4 1.03E+2 –5.20E+1 5.20E+1 100

Stewart et al. (2009) –1.38E+2 3.34E+0 –1.56E+0 1.56E+0 92
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Table 3 Extreme values of the eigenvalues for each model. The minimum real part of the set

of eigenvalues is denoted min(Re(λ)), and the maximum real part of the set of eigenvalues

is denoted max(Re(λ)). Similarly, the minimum and maximum imaginary parts are denoted

min(Im(λ)) and max(Im(λ)). The percentage of the solution interval in which there is at least

one pair of complex eigenvalues is also reported.

Model min(Re(λ)) max(Re(λ)) min(Im(λ)) max(Im(λ)) % Complex

Ten Tusscher et al. (2004) – Endocardial –1.17E+3 1.16E–1 –4.67E+0 4.67E+0 17

Ten Tusscher et al. (2004) – Epicardial –1.17E+3 1.12E–1 –4.73E+0 4.73E+0 18

Ten Tusscher et al. (2004) – M-cell –1.16E+3 1.12E–1 –4.73E+0 4.73E+0 22

Ten Tusscher et al. (2006) – Endocardial –1.26E+3 1.94E–8 0.00E+0 0.00E+0 0

Ten Tusscher et al. (2006) – Epicardial –1.26E+3 1.92E–8 0.00E+0 0.00E+0 0

Ten Tusscher et al. (2006) – M-cell –1.26E+3 1.92E–8 0.00E+0 0.00E+0 0

Wang–Sobie (2008) –1.22E+2 1.23E+0 –1.23E+0 1.23E+0 46

Winslow et al. (1999) –1.84E+4 1.53E+0 –4.22E–1 4.22E–1 63

Zhang et al. (2000) –2.22E+4 1.29E+2 –1.00E+2 1.00E+2 89

For each numerical method, we aim to balance the requirements for accuracy and

efficiency. To quantify the error in a solution, we use the relative root mean square error

(RRMS) error of the transmembrane potential:

RRMS :=

√

√

√

√

1

N∗

∑N∗

i=1(Vi − V̂i)2
∑N∗

i=1 V̂
2
i

,

where Vi is the numerical approximation and V̂i is the reference solution at time ti

as described above. For each model and numerical method considered, we maximize

the step size while producing a solution that has less than 5% RRMS error. For each

combination of numerical method and model, we report the result for the step size

with the least execution time and less than 5% RRMS error.

We used constant step sizes in our experiments to reflect the typical use of the

cell models within a tissue-scale simulation. As mentioned, these simulations employ
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operator splitting, and constant equal step sizes are often used for integrating both the

PDEs and the ODEs. The use of variable step sizes for the integration of the ODEs

over long time intervals can generally be expected to be more efficient than the use

of constant steps [48] and hence would likely be more effective in a scenario where a

fully coupled (i.e., unsplit) integration approach is used; see e.g., [60]. In the context

of operator splitting, variable step sizes for the ODEs may be allowed provided they

remain below the (constant) step size used for the PDEs.

We placed two additional requirements on the step size. First, the maximum step

size allowed was equal to the length of time in which the stimulus current was applied.

The cases for which this maximum was reached are denoted with a dagger in Tables 4

and 5. Second, the step size was adjusted at up to three points in time in order to

resolve important events: the start of the application of stimulus current, the end of the

application of stimulus current, and the end point of the simulation. If the integration

were to step past one of these three points, the step size would be adjusted, for that

step only, to land on the point exactly. This was done mainly because a discontinuous

stimulus application can introduce errors that are avoidable if the points at which the

discontinuities occur are resolved.

3.2.2 Methods

The first method used in our experiments is the explicit first-order FE method. Applied

to the general IVP (4), one step of FE from (tn−1,yn−1) to (tn,yn) is given by

yn = yn−1 +∆tnf (tn−1,yn−1) ,

tn = tn−1 +∆tn,
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where yn ≈ y(tn) and tn = tn−1+∆tn. It is a popular method in practice mainly due

to the ease of implementation.

The second method is the RL method. The RL method advances the solution to

the gating equations (2) associated with HH variables using

yn = y∞ + (yn−1 − y∞)e
−

∆tn
τy ,

which represents the exact solution of (2) assuming all variables besides y are constant.

FE is then used to advance the solution of the remaining equations, including those as-

sociated with non-HH state variables and Markov-type models of currents. This method

is an effective stiff solver for the Luo–Rudy model [50]; i.e., the step size can be chosen

based on accuracy considerations. RL is generally one of the most popular methods

in practice due to its good stability properties and ease of implementation. However,

this method is only first-order accurate and thus suffers from the usual inefficiencies of

low-order methods when high accuracy is required.

The third method is the GRL2 method proposed by Sundnes et al. [52]. GRL2

decouples and linearizes the ODE system consisting of m ODEs around a point y = yn

at time t = tn to obtain

dyi
dt

= fi(yn) +
∂

∂yi
fi(yn)

(

yi − yn,i
)

, yi(tn) = yn,i, (5)

for i = 1, 2, . . . ,m, where the subscript i denotes component i of a vector. The exact

solution of (5) is given by

yi(t) = yn,i +
a

b

(

eb(t−tn) − 1
)

, i = 1, 2, . . . ,m, (6)

where a = fi(yn) and b = ∂fi(yn)/∂yi. The numerical solution yn+1 at time t = tn+1

is then obtained in two steps:
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1. Estimate the solution at time tn+1/2 with

yn+1/2,i = yn,i +
a

b

(

eb(∆tn/2) − 1
)

, i = 1, 2, . . . ,m.

2. Let ȳn+1/2 = yn+1/2 but with component i replaced by yn,i. For each i, compute

the numerical solution at time tn+1 from

yn+1,i = yn,i +
ā

b̄

(

eb̄∆tn − 1
)

, i = 1, 2, . . . ,m,

where ā = fi(ȳn+1/2), b̄ = ∂fi(ȳn+1/2)/∂yi and we have used the fact that

ȳn+1/2,i = yn,i.

GRL2 and RL treat the gating equations (2) in a similar manner. The main difference

is that GRL2 also treats the non-gating equations with an exponential formula based

on local linearization, whereas RL uses FE. GRL2 is verified to have second-order

accuracy in [3].

We note that care must be taken in the implementation of GRL2 to ensure effi-

ciency, in particular regarding the computation of the Jacobian ∂f/∂y because only

the diagonal elements are needed. For example, the finite-difference approximation of

∂fi(y)/∂yi is performed via

∂fi(y)/∂yi ≈
fi(y1, . . . , yi−1, yi + δ, yi+1, . . . , ym)− fi(y)

δ
,

where δ = 10−8 for double-precision calculations. Without careful implementation, this

could add another m full ODE right-hand side function evaluations per step, making

the method prohibitively expensive for all but the simplest models. Moreover, we note

that a full ODE right-hand-side function evaluation is not needed for each ∂fi(y)/∂yi.

Also in practice, if |∂fi(y)/∂yi| < δ, the limit as ∂fi(y)/∂yi → 0 is used instead of (6):

yi(t) = yi + a(t− tn), i = 1, . . . ,m.



18

We illustrate a specific implementation of GRL2 on the subsystem describing the

ryanodine-sensitive release channel from the model of Winslow et al. [59]. The ODEs

considered are

dPC1

dt
= −k+a [Ca2+]NssPC1

+ k−a PO1
,

dPO1

dt
= k+a [Ca2+]NssPC1

− k−a PO1
,−k+b [Ca2+]Mss PO1

+k−b PO2
− k+c PO1

+ k−c PC2
,

dPO2

dt
= k+b [Ca2+]Mss PO1

− k−b PO2
,

dPC2

dt
= k+c PO1

− k−c PC2
,

where the quantities M,N , and k±a,b,c are constants; their values can be found in [59].

For the purposes of this example, the subspace calcium concentration [Ca2+]ss is also

assumed to be constant.

One step of size ∆tn for GRL2 applied to this system starting from time tn and

state yn = (PC1,n, PO1,n, PO2,n, PC2,n)
T yields

PC1,n+1/2 = PC1,n +
−k+a [Ca2+]NssPC1,n + k−a PO1,n

−k+a [Ca2+]Nss

[

e−k+
a [Ca2+]Nss∆tn/2 − 1

]

,

with analogous expressions for PO1,n+1/2, PO2,n+1/2, PC2,n+1/2; then

PC1,n+1 = PC1,n +
−k+a [Ca2+]NssPC1,n + k−a PO1,n+1/2

−k+a [Ca2+]Nss

[

e−k+
a [Ca2+]Nss∆tn − 1

]

,

with analogous expressions for PO1,n+1, PO2,n+1, PC2,n+1.

For the results reported here for GRL2, we used a finely tuned version of the cell

model code. This code had the ability to return the value of the right-hand side of any

particular ODE in the system and would compute only the information required for

the individual ODE. This fine tuning was necessary for GRL2 to be competitive.
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3.2.3 Results

For each pair of a model given in Section 2.2 and a method given in Section 3.2.2,

we find a maximum step size to 3 significant digits subject to the conditions given in

Section 3.2.1. With this information, we performed an experiment to determine the

best execution time possible for combinations of a model with a method. All numerical

experiments were performed in Matlab on an iMac with 2.8 GHz Intel Core Duo pro-

cessor with 4 GB DDR SD RAM running at 667 MHz. Except for the model of Pandit

et al. (2003), we report the minimum of 100 runs of each combination of a method and

model. Because the model of Pandit et al. (2003) required significant run times with

the methods used, the execution time reported is the minimum of 10 runs. In all cases,

we ensured that the variance of the times recorded for a given combination was small.

Results for FE, RL, and GRL2 are presented in Tables 4 and 5. The non-standard

methods RL and GRL2 generally outperform FE. Of the models considered, RL is the

most efficient in 18 cases, GRL2 is the most efficient in 15 cases, and FE is the most

efficient in 4 cases. GRL2 can usually take a larger step than RL, which can in turn

usually take a larger step than FE. However, GRL2 generally has a higher cost per step

than RL, which in turn has a higher cost per step than FE. We see that generally the

increases in acceptable step sizes for GRL2 and RL are large enough to more than offset

the added cost per step when compared with FE. The situation for GRL2 compared

with RL is less clear, with each being the most efficient on roughly an equal number of

models. These results support the findings in [52] for the competitiveness of GRL2 as

a method for the integration of cell models, albeit at the expense of a more involved

implementation. FE was the most efficient method on four models: FHN, Noble (1962),

Pandit et al. (2001), and Pandit et al. (2003). In these cases, despite the increase in
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maximum step size, RL and GRL2 significantly underperform compared to FE due to

their higher costs per step.

We repeated the experiments using a tighter tolerance of 1% RRMS error. As can be

expected, except for the cases when the largest allowable step size was not constrained

by accuracy, the execution times were slightly higher. The only changes to the relative

rankings of the methods for a given model were that FE became the most efficient

on 3 more models, those of DiFrancesco–Noble, Maleckar et al,, and the endocardial

variant of Sakmann et al. (2000). We also performed experiments with other explicit or

implicit-explicit Runge–Kutta methods with more stages and/or higher order. However,

as could have been anticipated based on the stiffness characteristics of the models and

previous investigations [48], all of these method generally underperformed relative to

FE and hence are not reported here. Full details can be found in [49].

4 Using stiffness data

4.1 Stiff Solvers

The model of Pandit et al. (2003) is an example of highly stiff model that cannot be

integrated efficiently by any of the methods considered here thus far. These methods

require between about 11 and 25 hours of execution time to integrate this model. As

can be seen from Tables 2 and 3, there exists a negative real eigenvalue that is some

5 orders of magnitude larger than any of the other models considered here. Moreover,

from Figure 1 we see that this large negative eigenvalue is present for most of the

solution interval. Classical non-stiff methods, such as explicit Runge–Kutta methods

including FE, are unlikely to perform well on such a model under normal accuracy

requirements. The results presented in Section 3.2.3 demonstrate clearly that the non-
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Table 4 Step size, in milliseconds, and execution time, in seconds, of the three numerical

methods using the largest step size with less than 5% RRMS error.

Model FE RL GRL2

∆t Time ∆t Time ∆t Time

Beeler–Reuter (1977) 2.53E–2 5.19E–2 8.49E–1 9.83E–3 8.58E–1 3.09E–2

Bondarenko et al. (2004) 2.13E–4 3.81E+0 2.50E–4 4.13E+0 1.40E–2 1.85E+0

Courtemanche et al. (1998) 1.94E–2 4.27E+0 3.45E–1 4.79E–1 9.95E–1 2.07E–1

Demir et al. (1994) 5.95E–2 1.74E–2 1.53E–1 7.48E–3 2.86E–1 6.76E–2

Demir et al. (1999) 5.97E–2 2.13E–2 9.66E–2 1.71E–2 2.49E–1 8.24E–2

DiFrancesco–Noble (1985) 7.85E–2 8.59E–2 6.62E–1 7.66E–2 9.99E–1 2.67E–1

Dokos et al. (1996) 7.30E–2 3.44E–2 7.64E–1 3.37E–3 9.99E–1 8.35E–2

Faber–Rudy (2000) 1.12E–2 1.69E–1 9.51E–1 4.60E–3 6.35E–1 1.38E–1

FitzHugh–Nagumo (1961) 5.00E–1† 3.93E–3 N/A N/A 5.00E–1† 3.19E–2

Fox et al. (2002) 4.60E–3 4.11E–1 6.37E–1 3.11E–2 7.74E–1 7.70E–2

Hilgemann–Noble (1987) 6.25E–2 1.69E–1 8.06E–2 9.56E–2 9.96E–2 6.23E–2

Hund–Rudy (2004) 1.11E–2 1.75E–1 4.17E–2 5.35E–2 6.20E–1 4.26E–1

Jafri et al. (1998) 5.77E–4 6.18E+0 5.89E–4 4.42E+0 1.59E–3 8.38E+0

Luo–Rudy (1991) 1.34E–2 3.61E–1 2.50E–1 6.94E–2 1.00E+0† 2.31E–2

Maleckar et al. (2008) 5.02E–2 1.09E–1 7.50E–1 9.44E–2 8.21E–1 3.84E–1

McAllister et al. (1975) 2.46E–2 1.21E–1 7.06E–1 6.00E–2 2.63E–1 2.32E–1

Noble (1962) 2.03E–1 7.63E–3 9.41E–2 8.82E–2 2.22E–1 7.89E–2

Noble–Noble (1984) 2.04E–1 1.82E–1 2.73E–1 1.20E–1 1.00E+0† 4.99E–2

standard methods RL and GRL2 are also not sufficiently stable to integrate such a

model efficiently. For this model, FE in fact outperforms RL and GRL2 because they

face similar extreme restrictions on their largest stable step sizes while being more

expensive per step.
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Table 5 Step size, in milliseconds, and execution time, in seconds, of the three numerical

methods using the largest step size with less than 5% RRMS error.

Model FE RL GRL2

∆t Time ∆t Time ∆t Time

Noble et al. (1991) 5.15E–2 3.00E–2 1.53E–1 1.21E–2 6.25E–1 9.31E–3

Noble et al. (1998) 5.58E–2 5.25E–2 1.57E–1 1.50E–2 5.43E–1 2.67E–2

Nygren et al. (1998) 5.36E–2 1.02E–1 8.88E–2 8.68E–2 9.81E–1 3.65E–2

Pandit et al. (2001) 2.91E–4 8.85E+0 2.91E–4 1.01E+1 4.98E–4 2.56E+1

Pandit et al. (2003) 1.04E–7 4.20E+4 1.04E–7 8.37E+4 9.28E–7 8.93E+4

Puglisi–Bers (2001) 1.08E–2 4.43E–1 4.30E–1 8.35E–2 6.24E–1 4.18E–1

Sakmann et al. (2000) – Endocardial 6.90E–2 4.73E–2 2.36E–1 1.80E–2 9.71E–1 1.03E–2

Sakmann et al. (2000) – Epicardial 6.90E–2 5.11E–2 2.36E–1 1.80E–2 9.71E–1 1.03E–2

Sakmann et al. (2000) – M-cell 6.86E–2 5.12E–2 2.36E–1 1.80E–2 9.71E–1 1.03E–2

Stewart et al. (2009) 1.50E–2 4.35E–1 1.62E–1 5.60E–2 3.58E–2 8.61E–2

Ten Tusscher et al. (2004) – Endocardial 1.78E–3 1.75E+0 1.00E+0† 5.43E–3 1.00E+0† 1.30E–2

Ten Tusscher et al. (2004) – Epicardial 1.78E–3 1.75E+0 1.00E–1† 5.43E–3 1.00E+0† 1.30E–2

Ten Tusscher et al. (2004) – M-cell 1.76E–3 1.25E+0 2.80E–1 1.29E–2 9.81E–1 2.84E–2

Ten Tusscher et al. (2006) – Endocardial 1.62E–3 1.33E+0 1.52E–1 6.41E–2 7.80E–1 9.27E–3

Ten Tusscher et al. (2006) – Epicardial 2.14E–3 9.79E–1 2.80E–1 3.64E–2 8.39E–1 7.06E–3

Ten Tusscher et al. (2006) – M-cell 2.14E–3 9.79E–1 2.05E–1 4.17E–2 7.77E–1 9.27E–3

Wang–Sobie (2008) 1.66E–2 5.95E–2 5.26E–2 2.19E–2 4.97E–1 1.61E–2

Winslow et al. (1999) 1.07E–4 1.70E+1 2.80E–4 8.84E+0 1.34E–3 2.26E+0

Zhang et al. (2000) 9.90E–2 5.19E–2 1.00E+0† 7.69E–3 1.00E+0† 1.85E–1

The eigenvalue data indicate that solvers suited to stiff problems are ideal for this

model. The simplest example of a stiff solver is the backward Euler (BE) method. BE
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Fig. 1 Extreme eigenvalues of the model of Pandit et al. (2003).

is the one-stage, first-order implicit Runge–Kutta method given by

yn = yn−1 +∆tnf (tn,yn) , (7)

tn = tn−1 +∆tn.

BE is an implicit method because the unknown yn appears on both sides of (7), and

hence the set of nonlinear algebraic equations defined by (7) must be solved at each

step to obtain the solution at time tn. In general, these equations are solved using

Newton’s method or one of its variants [4, p.145]. Using the notation introduced in

this paper, an outline of the BE algorithm used in our study is as follows:

Input: ODE right-hand side f(t,y) and Jacobian J(t,y), initial time t0, final time

tf , initial condition y0, time step ∆t, error tolerance TOL

Output: A matrix of approximate solution vectors y

t = t0;
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y(1, :) = y0;

Compute the number of steps needed, nsteps;

for n = 1 to nsteps do

Compute the initial guess with one step of FE: y
(0)
n+1 = yn +∆t f(tn,yn);

Initialize iteration counter ν = 1;

Initialize error e = TOL+ 1.0;

while e > TOL and ν < νmax do

Compute Newton iterate for (7): y
(ν)
n+1 = y

(ν−1)
n+1 −J−1(tn,y

(ν−1)
n+1 )f(tn,y

(ν−1)
n+1 );

e = ‖y
(ν)
n+1 − y

(ν−1)
n+1 ‖∞;

ν = ν + 1;

end while

if ν = νmax then

Exit with failure;

end if

Save solution vector y(n+ 1, :) = y
(ν)
n+1;

Update time t = t+∆t;

end for

In our implementation, we use νmax = 10.

We performed the following experiment to compare BE to the 3 other methods used

thus far in this study. As in Section 3.2, we determined the best execution time for BE

when solving the model of Pandit et al. (2003) subject to the conditions on the RRMS

error and stimulus duration described previously. The software we used was based on

the code available at [9] but with the following 3 significant enhancements. First, the

code was generalized to solving systems of equations. Second, the code was generalized
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to use Matlab’s numjac function to compute partial derivatives. Third, the original

Newton solver was re-written using material from [5]. The initial guess for yn used at

the start of each step was provided by a FE step, and the Jacobian is recalculated and

factored at each Newton iteration. The BE method was deemed to have converged at

a given step when the norm of the difference between successive iterates was less than

10−5. It is difficult to make many categorical statements about poor convergence of a

Newton iteration; the classical causes range from an insufficiently accurate initial guess

to an ill-conditioned iteration matrix. Our code lacks a few state-of-the-art options, in

particular, a lack of step-size control, globalized Newton iterations, and the ability to

freeze the Jacobian between iterations and/or time steps, all of which can potentially

aid convergence and/or improve efficiency. Accordingly, despite these enhancements,

a more sophisticated BE code should be able to produce even better results in some

cases than those that we report below.

We find that BE takes less than 20 seconds to integrate this model, almost 2300

times faster than the most efficient and almost 4500 times faster than the least efficient

of the methods considered. These results confirm what could have been inferred from

the eigenvalue data: we need a stiff solver in order to obtain a solution of the model of

Pandit et al. (2003) efficiently. Further efficiency gains for this model may be possible

through the use of higher-order stiff solvers or other non-standard methods as in,

e.g., [48]; such considerations are however beyond the scope of this study.

In order to investigate the efficacy of BE to other models in our study, we repeated

the above experiment with the models of Courtemanche et al., Faber et al., Noble

(1962), Noble et al. (1998), and Winslow et al. The stiffness data for these models

encompasses a wide of behavior and none of the original methods tested (FE, RL, and

GRL2) is most efficient on all models. We found that for all 5 additional models at
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both 5% and 1% RRMS error levels, BE was always slower than the fastest method

we used in our original study.

There can be expected to be a trade-off between model stiffness and error tolerance

in any given simulation. In general, as the tolerance is lowered, the model must be

increasingly stiff over significant portions of the interval of integration to benefit from

a fully implicit solver such as BE with constant step sizes applied to the entire interval

of integration. Cell models often do not appear to be highly stiff over much of their

intervals of integration; rather they are mildly stiff in localized regions. This observation

suggests that the use a combination of stiff and non-stiff solvers (i.e., a type-insensitive

solver) may be an attractive approach for many cell models.

4.2 Type-insensitive methods

As discussed in Section 3, obtaining a solution efficiently for a given ODE requires the

right type of method, i.e., stiff or non-stiff, and determining the right type of method

can be challenging. It is also possible that an ODE is stiff in some intervals of the

integration and non-stiff in others. To address these problems, type-insensitive solvers

have been proposed. A type-insensitive solver consists of both a stiff and a non-stiff

solver and a mechanism to automatically determine which method is more appropriate

to use at every step. Often a type-insensitive solver estimates the largest step size that

can be taken by both the stiff and non-stiff methods after analysing constraints due to

stability and accuracy. This strategy can be seen in [40,46]. Another frequently used

technique is to determine the stiffness of the ODE by estimating a Lipschitz constant

for the problem, e.g., [10,47].
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A significant cost when using a type-insensitive solver for an arbitrary ODE is

determining whether and, if applicable, in which solution interval the ODE is stiff.

There is also a risk that the type-insensitive solver selects the wrong method. In this

case, the efficiency of the solution process is hindered by both the inappropriate choice

of method as well as the cost to make the decision to use it. However, using data

such as those presented in Figure 2, one can mitigate both the cost of determining

stiffness as well as the risk of selecting the wrong method. With these data, it is

relatively clear where each individual problem is stiff. Accordingly a type-insensitive

solver can be hard-coded to always use the right type of method at each point in the

solution interval, thus all but eliminating the additional costs associated with stiffness

determination and risk of choosing the less-effective method.
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Fig. 2 Extreme eigenvalues of the model of Winslow et al.
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As a concrete example, we look at the model of Winslow et al. The plot of the

extreme eigenvalues over time in Figure 2 demonstrates that the degree of stiffness

over time varies considerably over the solution interval. As a simple characterization,

we consider the problem to be stiff in the interval [0, 50] and non-stiff in [50, 300]. Using

this information, we design a set of simple type-insensitive solvers as follows: Apply RL,

GRL2, or BE on [0, 50] and FE on [50, 300]. We constructed type-insensitive solvers

based on a similar analysis of the extreme eigenvalues of the models of Jafri et al.,

Bondarenko et al., and Pandit et al. (2001); see [49] for the complete figures. We note

that practical type-insensitive software for realistic simulations is likely to require an

automatic method for choosing the appropriate solver; see, e.g., [47]. However, a full

discussion of this issue is beyond the scope of this study.

We performed an experiment as described in the previous section to compare this

type-insensitive method to the other 3 methods discussed in this study. For each model

in this experiment we have two step sizes to consider, one for each method. Accordingly

we found the pair of step sizes that minimized execution time while producing a solution

with less than 5% RRMS error and present the results in Table 6. We find that the

type-insensitive method that combines BE with FE is always the best performing,

with improvements ranging from 10% to 10 times faster than the next most efficient

single method; recall Tables 4–5 for the results of the single methods. Similar results

hold at 1% RRMS error. The type-insensitive methods presented here are mainly for

proof-of-concept; further use of these eigenvalue data or more elaborate type-insensitive

strategies could lead to more efficient type-insensitive methods.
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Table 6 Stiffness intervals and execution time, in seconds, of type-insensitive methods.

Model Stiff Interval Non-stiff Interval RL-FE GRL2-FE BE-FE

Time

Bondarenko et al. (2004) [0 10] [10 75] 6.72E–1 5.90E–1 2.64E–1

Jafri et al. (1998) [0 50] [50 300] 8.47E–1 9.11E–1 5.38E–1

Pandit et al. (2001) [105 125] [0 105]; [125 250] 9.86E+0 1.42E+1 7.81E+0

Winslow et al. (1999) [0 50] [50 300] 1.07E+0 7.18E–1 2.30E–1

5 Conclusions

In this paper, we examined the eigenvalues of the Jacobian of a variety of cardiac

electrophysiological models. In particular, we examined the consequences for stiffness

that arise from these eigenvalues and demonstrated how numerical methods could be

selected or designed to overcome stiffness.

The extremes of these eigenvalues were presented in Section 3.1. The wide range

of cardiac electrophysiological models led to considerable differences in the eigenvalues

from one model to another. One can infer from these data that there is a large variation

in the stiffness properties among the models. At one extreme is the non-stiff FitzHugh–

Nagumo model; at the other is the highly stiff model of Pandit et al. (2003). The data

suggest that most cell models are moderately stiff for the typical accuracies required.

Numerical experiments with 3 integration methods (FE, RL, and GRL2) for cell

models were discussed in Section 3.2. The non-standard methods GRL2 and RL were

found to outperform FE on 33 of the 37 models considered. Individually, each of RL

and GRL2 was the most efficient method on roughly an equal number of models.

This observation lends support to the effectiveness of the recently proposed GRL2
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method, albeit at the cost of a non-trivial implementation. With its good stability,

RL seems to generally strike a good balance between efficient integration and ease

of implementation. Nonetheless, these methods did not perform satisfactorily on all

models. In particular, FE, RL, and GRL2 all face severe step-size restrictions due to

stiffness for the models of Winslow et al. and Pandit et al. (2003).

In the cases where FE, RL, and GRL2 produce a solution inefficiently due to step-

size restrictions, eigenvalue data can be used to give insight into the cause as well as

potential solutions. In Section 4.1, we observed that the model of Pandit et al. (2003) is

highly stiff for most of the solution interval. This suggests the use of a stiff solver, such

as BE. BE is not commonly used by researchers in cell modelling; however the data

and experiments presented here make a compelling case for its use on such models. We

compared the solution with BE to the 3 other methods in this study and found that

BE was able to produce a solution with at most 5% RRMS error almost 2300 times

faster than the next most efficient method (FE). In Section 4.2, we observed that the

model of Winslow et al. is stiff only in a portion of the overall solution interval. The

same was true for the models of Bondarenko et al., Jafri et al., and Pandit et al. (2001).

As a way to improve efficiency, we proposed the use of a type-insensitive method that

uses different numerical methods in the stiff and non-stiff sub-intervals. Specifically

we combined RL, GRL2, and BE as stiff solvers with FE as the non-stiff solver. The

BE-FE type-insensitive solver was able to produce an acceptable solution from about

10% to 10 times times faster than the next most efficient standard method. We note

that the goal of our studies was to demonstrate how the eigenvalue data can be used to

improve the efficiency of the integration rather than to lay claim to the most efficient

method for a given model.
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