
A GPU implementation of massively parallel direction

splitting for the incompressible Navier–Stokes equations

CMPT 898 Final Report

Adam L. Preuss

Numerical Simulation Laboratory

Department of Computer Science

University of Saskatchewan

adam.preuss@usask.ca

April 29, 2013

Abstract

Guermond and Minev proposed a directional splitting algorithm to solve the incompressible Stokes

equations. Their algorithm applies the alternating direction implicit method to the viscosity term.

The pressure update uses a direction splitting method in order to enforce the incompressibility

constraint, as opposed to commonly used projection methods that require the solution of a Poisson

equation. The significant part of the algorithm is that all of its implicit equations can be trans-

formed into many independent tridiagonal systems; therefore, each step of the overall algorithm can

be solved in O(n) time, where there are n unknowns. The goal of this course project is to develop a

massively parallel GPU fluid solver for the incompressible Navier–Stokes equations using OpenCL

and the directional splitting algorithm. GPUs are well suited to massively parallel numerical prob-

lems because they have hundreds of small cores specialized for numerical computation. Therefore,

GPUs are applicable to solving many tridiagonal systems simultaneously. The non-linear term

of the momentum equation is solved using an explicit, semi-Lagrangian method. Numerical tests

verify solutions to the Navier–Stokes equation and show that simulations run in linear time with

respect to the number of discretized points in the domain. An OpenGL renderer was developed to

visualize simulations in two dimensions.

1 Introduction

The Navier–Stokes equations describe the velocity field inside a fluid, typically due to advection, vis-

cosity, body forces and pressure effects. The equations are applicable to two and three dimensional

problems and are used in a wide variety of scientific and engineering disciplines. Compressibility of

fluids is often negligible, thus an incompressibility constraint is often included as part of the equa-

tions. To date, most incompressible Navier–Stokes solution algorithms use projection techniques

based on Chorin’s method to solve the pressure update [2]. An overview of their many variants is

provided in [6]. These algorithms require the solution of a Poisson equation at each time step.

Guermond and Minev proposed a new algorithm to solve the incompressible Stokes equations,

using direction splitting techniques [4]. The equations can be split into viscosity, body force and

pressure terms (advection is part of the Navier–Stokes equations). The proposed algorithm uses

the alternating direction implicit (ADI) method to solve the viscosity term and uses forward Euler

to apply body forces [8]. The pressure update is solved using direction splitting which a relaxes the

incompressibility condition such that its application is transformed into many one dimensional sys-

tems of equations. These equations can be formulated as tridiagonal systems; therefore, each step

of the overall algorithm can be solved in O(n), where there are n unknowns. The direction splitting

approach better lends itself to parallel algorithms because the one dimensional systems are inde-

pendent, in contrast to projection methods that require the solution of a single higher-dimensional

Poisson equation. A massively parallel implementation of the direction splitting algorithm is pre-

sented in [5], using MPI. It showed excellent preliminary performance, solving 2 × 109 unknowns

on a distributed-memory cluster of 1024 processors.

The objective of this course project is to implement a GPU solver for the incompressible Navier-

Stokes equations based on the algorithm proposed by Guermond and Minev. GPUs are comprised

of hundreds of small cores specialized for numerical computation. They are therefore well suited

to the solution of many independent one dimensional differential equation systems. The ADI

method is applied to the viscosity term and a semi-Lagrangian method is applied to the advection

term of the Navier–Stokes equations [1]. Body forces are solved using forward Euler. Numerical

experiments show that the elapsed runtime of simulations to scale linearly, as theoretically predicted.

Additionally, an OpenGL renderer was written to visualize the simulations for both presentation

and visual verification.

Section 2 presents an overview of fluid simulation mathematical theory, including the traditional

projection method of solving the Navier–Stokes equations. Section 3 describes the implementation

1

of the new method, comparing and contrasting it to the projection method. Section 4 discusses

simulation results and the OpenGL renderer. Section 5 presents a progress overview and theory for

future work that has not yet been implemented.

2 Theoretical Background

This section introduces the incompressible Navier–Stokes equations and the traditional approach

to solving them. Understanding the traditional approach clarifies what makes the new algorithm

so much better suited to a massively parallel solver.

Mathematical notation will remain consistent through this report and is defined as follows. All

scalers are italicized lower-case letters, for example, the pressure p. Vectors are bold and lower-case

letters. Matrices are bold uppercase letters. The eigenvalue equation Ax = λx is an example that

demonstrates all three cases. The first component of a vector will be its matching lower case letter;

all other components will follow in lower case letters (for example, the two dimensional velocity

vector u = (u, v)T .) Superscripts refer to temporal discretization and subscripts refer to spatial

discretization points.

2.1 Navier–Stokes equations

The incompressible Navier–Stokes equations govern velocity inside a fluid. They are a system of

coupled nonlinear partial differential equations that are commonly written as:

ρ

(
∂u

∂t
+ u · ∇u

)
− µ∇2u +∇p = f in Ω× [0, T] (1)

∇ · u = 0 in Ω× [0, T] (2)

u|∂Ω = 0, u|t=0 = u0 in Ω

where t is time, u = u(t) is the velocity, µ is the viscosity, p = p(t) is the pressure, f = f(t,x) is a

smooth body force, T is the final time, and Ω is the domain. Velocity, pressure and body forces are

all functions of position; viscosity and density are constants. The nonlinear term u · ∇u is known

as the advection term. For simplicity, Dirichlet boundary conditions are assumed where the normal

velocity component is zero and the tangential component is prescribed.

Equation 1 is known as the momentum equation, which is most commonly solved using a method-

of-lines discretization method, starting with a specified initial condition and time. The momentum

equation is comprised of four different problems that can be separated into advection, viscosity,

2

body forces, and pressure update.

All fluids exhibit changes in density in response to compression (explaining, for instance, the

ability to hear underwater due to the propagation of sound waves), however, the compressibility of

many simulated liquids is negligible. Typically, simulated fluids are treated as incompressible by

adding an incompressibility constraint, shown in equation 2. The constraint forces velocity to be

divergence-free so that the fluid will remain at a constant density throughout the entire domain.

2.2 Operator splitting

Equation 1 is a linear combination of terms that can easily be split into multiple pieces, allowing

each one to be integrated separately at every timestep. Using first-order forward Euler, a solution

timestep might look something like:

un+1
1 = un −∆tu∇u (Advection)

un+1
2 = un+1

1 + ∆tµ∇2u (Viscosity)

un+1
3 = un+1

2 + ∆tf (Body force)

un+1 = un+1
3 + ∆t∇p (Pressure)

where ∆t is the stepsize, and un+1
1 , un+1

2 , and un+1
3 are intermediate steps. In general, any higher-

order numerical integration method can be used for each split component, but it is not often of

benefit because the above approach is a first order split. Section 3.4 discusses a second order

approach to solving the Navier–Stokes equations with direction splitting.

2.3 Grids

The domain is discretized on a uniform Eulerian grid storing velocity and pressure. The grid is

staggered to simplify finite volume calculations for spatial derivatives and to avoid skipping values

when computing finite differences, as discussed in section 2.4. It is aptly named a marker-and-

cell (MAC) grid [7]. All values are stored at cell centres with the exception of fluid velocities, which

are stored at cell borders. Each velocity component u = (u, v)
T

is staggered separately. Figure 1

shows two and three dimensional MAC grids, storing pressure and velocity values.

At many phases of the simulation, it is necessary to sample velocity and pressure at locations

that are not exactly lined up with their stored grid points. In such cases, velocity and pressure can

be calculated using bilinear interpolation, described in section 2.4. Two dimensional finite volume

3

Figure 1: MAC grids for two and three dimentions. Notice how the pressure points are located at
the cell centres and the velocity points are located on the cell borders. In this figure, the back three
velocity points are not shown on the three-dimensional cell, to avoid confusion.

calculations, required in later sections, are defined as follows:

∇pi+ 1
2 ,j

=
pi+1,j − pi,j

∆x
∇pi,j+ 1

2
=
pi,j+1 − pi,j

∆y

∇ui,j =
ui+ 1

2 ,j
+ ui− 1

2 ,j

∆x
∇vi,j =

vi,j+ 1
2

+ vi,j− 1
2

∆y

∇2pi,j =
pi−1,j − 2pi,j + pi+1,j

∆x
+
pi,j−1 − 2pi,j + pi,j+1

∆y

The three dimensional finite volume calculations are written as:

∇pi+ 1
2 ,j,k

=
pi+1,j,k − pi,j,k

∆x
∇pi,j+ 1

2 ,k
=
pi+1,j,k − pi,j,k

∆y
∇pi,j,k+ 1

2
=
pi,j,k+1 − pi,j,k

∆z

∇ui,j,k =
ui+ 1

2 ,j,k
+ ui− 1

2 ,j,k

∆x
∇vi,j,k =

vi+ 1
2 ,j,k

+ vi,j− 1
2 ,k

∆y
∇wi,j,k =

wi,j,k+ 1
2

+ wi,j,k− 1
2

∆z

∇2pi,j =
pi−1,j,k − 2pi,j,k + pi+1,j,k

∆x
+
pi,j−1,k − 2pi,j,k + pi,j+1,k

∆y
+
pi,j,k−1 − 2pi,j,k + pi,j,k+1

∆z

2.4 Advection

Advection is the transport of a quantity in a velocity vector field. The advection equation for an

arbitrary quantity q is written as follows:

∂q

∂t
= (u · ∇)q

The quantity q is advected in the divergence-free velocity field. This equation can be applied to

the nonlinear term in the Navier–Stokes equation. When solving the advection equation, note that

quantities should only be advected in a divergence-free velocity field. Such an approach applies

when advecting velocity as well. If one is integrating velocity with a higher order method, one must

4

take care not to update the velocity field until all stages have finished, otherwise, it will not be

divergence-free for all stages in the method.

Naively, the advection step can be calculated using central differences. In two dimensions, this

is written as:

qn+1 − qn

∆t
= u

qni+1,j − qni−1,j

∆x
+ v

qni,j+1 − qni,j−1

∆y

This method can produce poor results with turbulent flow. The method does not take into account

the value of the point at which the derivative is being calculated, (qni,j). A superior approach is

to use a method that is first order but does not experience the same inaccuracies due to skipping

values as centred differences.

Advection is calculated using a semi-Lagrangian approach that is guaranteed to be stable [10].

For every point on the grid, xp, trace back the trajectory of an imaginary particle in the velocity

field. The quantity at this traced position becomes the new value at xp. It is unlikely that the traced

position actually falls on a stored grid point, thus it is calculated using bi- or trilinear interpolation.

Bilinear interpolation for quantity qp at point xp where xp ∈ [xi, xi+1] and yp ∈ [yj , yj + 1] is

calculated as follows:

α =
xp − xi

∆x
β =

yp − yj
∆y

qp = (1− β) [(1− α)qi,j + αqi+1,j] + β [(1− α)qi,j+1 + αqi+1,j+1]

Trilinear interpolation is calculated as:

α =
xp − xi

∆x
β =

yp − yj
∆y

γ =
zp − zk

∆z

qp = (1− γ) {(1− β) [(1− α)qi,j,k+1 + αqi+1,j,k+1] + β [(1− α)qi,j+1,k+1 + αqi+1,j+1,k+1]}

+ γ {(1− β) [(1− α)qi,j,k + αqi+1,j,k] + β [(1− α)qi,j+1,k + αqi+1,j+1,k]}

A graphical representation of bilinear interpolation is shown in figure 2 where q is stored at

cell centres. The complete advection algorithm in two or three dimensions is as follows for each

coordinate:

• Let xp be the point at i, j or i, j, k.

• Let x′p = xp−∆tui,j be the traced back point. In practise, a higher-order integration method

5

β

α

α

Figure 2: Example of bilinear interpolation.

is often used. The solver in this paper uses a second-order Runge–Kutta method as follows:

x′p = xp −∆tu(xp −
∆t

2
u(xp))

where u(x) is calculated using bi- or trilinear interpolation as explained above.

• Set qi,j or qi,j,k to be the interpolated value of q at x′p.

2.5 Body forces

Body forces are conceptually the simplest part of the fluid simulation because they are applied to

the entire liquid without any dependence on the liquid velocity or pressure. Generally, body forces

are constant, for example, gravity. However, body forces can be functions of time and position.

They cannot be functions of velocity because the body force update would become a nonlinear

ODE. The body force update can be written as:

un+1 = un + ∆tf(tn)

Forward Euler is an acceptable method for this update. If f is constant, then higher order methods

will be of no benefit. A higher order Runge–Kutta method can be used if f is not a constant

function.

6

2.6 Viscosity

Fluid viscosity is a measurement of a fluid’s resistivity to deformation. The equation for the velocity

term is written as:

∂u

∂t
= ν∇2u

A first order approach to the viscosity term can be written:

un+1
i,j,k = uni,j,k + ∆t

(
ui−1,j,k − 2ui,j,k + ui+1,j,k

∆x

)
+ ∆t

(
ui,j−1,k − 2ui,j,k + ui,j+1,k

∆y

)
+ ∆t

(
ui,j,k−1 − 2ui,j,k + ui,j,k+1

∆z

)

in three dimensions. The two dimensional equivalent is the same, neglecting the last term.

2.7 Projection method

The pressure update is probably the most complicated step. After the first three velocity updates

(advection, viscosity and body forces), the velocity field might no longer be a divergence-free field.

The projection method is what most algorithms use to enforce incompressibility, an idea first

introduced by Chorin[2]. Conceptually, it projects the velocity field back onto a divergence-free

space. Plugging the pressure update into the incompressibility condition ∇ ·un+1 = 0 yields a new

equation that can be solved for the pressure:

∇2p =
ρ

∆t
∇ · u (3)

Solving this equation can be broken down into steps. The following analysis pertains to two dimen-

sions, but is easily extended to three. First, one must compute the right-hand-side by calculating

divergence on the MAC grid for each grid point. This is done by using a finite volume method,

easy to calculate on the staggered MAC grid. Velocity values are prescribed at the edge of cells so

the divergence may be computed as:

∇ · ui,j =
∂ui,j
∂x

+
∂vi,j
∂y

=
ui+ 1

2 ,j
− ui− 1

2 ,j

∆x
+
vi,j+ 1

2
− vi,j− 1

2

∆y

7

p

i,j

p

i+1,j

p

i,j+1

p

i-1,j

p

i,j-1

p

i,j,k

p

i,j+1,k

p

i,j-1,k

p

i,j,k-1

p

i+1,j,k

p

i-1,j,k

p

i,j,k+1

Figure 3: Stencils of the Laplacian operator in two and three dimensions.

The finite difference stencil of the Laplacian is shown in figure 3, giving rise to a banded system.

The system is sparse, a tridiagonal system with a single band on either side. The system will be

symmetric, thus three vectors must be stored: one for the diagonal, one for the subdiagonal, and

one for the band.

∇2pi,j =
pi−1,j − 2pi,j + pi+1,j

∆x2
+
pi,j−1 − 2pi,j + pi,j+1

∆y2

2.8 Boundary conditions

Implementing boundary conditions is probably the most difficult part of fluid simulation. The

normal component of velocity to the solid boundary must be zero to prevent inflow and outflow.

The tangential components of the domain are specified as part of simulation parameters.

In two dimensions, boundaries are prescribed for tangential velocities on the left, right, bottom

and top. In three dimensions, there are two tangential directions for each face, thus twelve boundary

numbers must be prescribed.

Due to grid staggering, the tangential velocities on the boundary do not lie directly on grid

points. Instead, ghost points are stored outside the boundary and are calculated via averages. For

example, the bottom boundary ghost points of a two dimensional domain are calculated as follows:

ui,− 1
2

+ ui, 12
∆y

= ubottom

=⇒ ui,− 1
2

= 2ubottom − ui,− 1
2

8

3 Methods

This section introduces the direction splitting method and its implementation, highlighting how

it deviates from the traditional projection approach to solving the incompressible Navier–Stokes

equations.

3.1 Velocity update

The algorithm proposed by Guermond and Minev takes an improved approach (in comparison to

forward Euler) to the viscosity and body force updates by applying a direction splitting technique

proposed by Douglas [8]. It is a variant of Crank-Nicolson time stepping. It accomplishes the same

goal as the first three steps described in section 2.2.

The velocity update algorithm is presented here for the sake of completeness. While it is easy

to parallelize because it only contains one-dimensional systems of ordinary differential equations,

it is unrelated to the projection method alternative that will be described later on. The velocity

update algorithm is as follows:

ξ∗ − un

∆t
− µ∇2un + un · ∇un +∇p∗ = fn+ 1

2

ηn+1 − ξ∗

∆t
− µ

2

∂

∂x2
(η∗ − un) = 0

ζn+1 − η∗

∆t
− µ

2

∂

∂y2
(ζ∗ − un) = 0

un+1 − ζ∗

∆t
− µ

2

∂

∂z2

(
nn+1 − un

)
= 0

where ξn+1, ηn+1, and ζn+1 are intermediate values, and p∗ is an intermediate pressure value

taken from the previous timestep. For the two-dimensional case, omit the last equation, and let

un+1 = ζn+1.

The nonlinear term is calculated using the semi-Lagrangian method, described in section 2.4.

Note that it is also an explicit method. It does not require the solution of a system of equations.

9

3.2 Pressure update

The pressure update uses a direction splitting technique as well. Consider a generalized version of

the pressure-solve given by equation 3:

∇u + ∆tAp = 0 (4)

where A is an operator. Note that the projection step from the above method can be recovered

by using A = −∇2. Guermond and Minev propose an alternative that is shown to have the same

convergence properties as the projection method, letting A = (1 − ∂
∂x2)(1 − ∂

∂y2)(1 − ∂
∂z2). The

problem has now been transformed into three one-dimensional partial differential equations:

(
1− ∂

∂x2

)
ψ = − 1

∆t
∇u (5)(

1− ∂

∂y2

)
ϕ = ψ (6)(

1− ∂

∂z2

)
p = ϕ (7)

where ψ and ϕ are intermediate values to store the solution for each split direction. For the

two-dimensional case, let A = (1− ∂
∂x2)(1− ∂

∂y2), omit equation 7, and let p = ϕ.

There are higher order variants of the method that change it from standard incremental form to

rotational incremental form by including additional terms to the pressure update. This is presented

in section 3.4.

3.3 Tridiagonal solver

The one dimensional systems that arise from direction splitting are tridiagonal systems. The system

is symmetric because finite differences are centred. The sub-diagonal values b are all identical

because the same finite difference stencil is applied at all locations on the domain. Almost all of the

diagonal elements a are identical for the same reason, with the exception of boundary conditions,

which are a special case: aα and aβ . The system and its solution are written as follows, using the

10

Thomas algorithm:

aα b 0

b a
. . .

. . .
. . .

. . .

. . . a b

0 b aβ

c′i =

b

aα
i = 0

b

a− c′i−1b
i = 1, 2, . . . , n− 2

d′i =

di

aα
i = 0

di − d′i−1b

a− c′i−1b
i = 1, 2, . . . , n− 2

di − d′i−1b

aβ − c′i−1b
i = n− 1

xi =

 d′i i = n− 1

d′i − c′ixi+1 i = n− 2, . . . , 0

3.4 Higher order scheme

The proposed method can be extended to a second order scheme, known as a rotational form. The

equations are written as follows:

p∗,n+ 1
2 = pn−

1
2 + ψn−

1
2

ρ

(
ξn+1 − un

∆t
+ un · ∇un

)
= µ∇2un −∇p∗,n− 1

2 + f(tn+ 1
2)

ρ

(
ηn+1 − ξn+1

∆t

)
=
µ

2

∂2

∂x2

(
ηn+1 − un

)
ρ

(
ζn+1 − ηn+1

∆t

)
=
µ

2

∂2

∂y2

(
ηn+1 − un

)
ρ

(
un+1 − ζn+1

∆t

)
=
µ

2

∂2

∂z2

(
ζn+1 − un

)
(

1− ∂2

∂x2

)(
1− ∂2

∂y2

)(
1− ∂2

∂z2

)
ψn+ 1

2 = − 1

∆t
∇un+1

pn+ 1
2 = pn−

1
2 + ψn+ 1

2 − χµ∇
(

1

2
(un+1 + un)

)

In this approach, χ is a parameter ranging from 0 to 1. Note that when χ = 0, the previous

method is recovered. All examples in this report choose χ = 0.5.

11

3.5 Algorithm overview in two dimensions

This section shows the complete derivation of the implementation for the method.

1. Store old values for u and v in ũ and ṽ. Update the boundary conditions for them as well.

ũi,j = ui,j ṽi,j = vi,j

ũ−1,j = unx,j = 0 ṽi,−1 = vi,ny
= 0

ũi,−1 = 2uS − ui,0 ṽ−1,j = 2vW − v0,j

ũi,ny
= 2uN − ui,ny−1 ṽnx,j = 2vE − vnx−1,j

2. Calculate temporary velocity values u∗i,j and v∗i,j via the momentum equation, using a pressure

prediction.

ρ

(
u∗i,j − ũi,j

∆t

)
= µ∇2ũi,j −∇ (pi,j + ψi,j)

=⇒ u∗i,j = ũi,j +
∆tµ

ρ
∇2ũi,j −

∆t

ρ
∇ (pi,j + ψi,j)

=⇒

u∗i,j = ũi,j +
∆tµ

ρ

[
ũi−1,j − 2ũi,j + ũi+1,j

∆x2
+
ũi,j−1 − 2ũi,j + ũi,j+1

∆y2

]
−∆t

ρ

[
(pi+1,j + ψi+1,j)− (pi,j + ψi,j)

∆x

]
v∗i,j = ṽi,j +

∆tµ

ρ

[
ṽi−1,j − 2ṽi,j + ṽi+1,j

∆x2
+
ṽi,j−1 − 2ṽi,j + ṽi,j+1

∆y2

]
−∆t

ρ

[
(pi,j+1 + ψi,j+1)− (pi,j + ψi,j)

∆y

]

3. Solve the x-direction of the ADI split. Note that the boundary conditions of u∗∗i,j and v∗∗i,j

are equivalent to those listed in step 1. Constant terms arising from the boundary conditions

may need to be moved to the right-hand side of the equations.

ρ

(
u∗∗i,j − u∗i,j

∆t

)
=
µ

2

∂2

∂x2

(
u∗∗i,j − ũi,j

)
=⇒

(
1− µ∆t

2ρ

∂2

∂x2

)
u∗∗i,j = u∗i,j −

µ∆t

2ρ

∂2

∂x2
ũi,j

=⇒

u∗∗i,j −

µ∆t

2ρ∆x2

(
u∗∗i−1,j − 2u∗∗i,j + u∗∗i+1,j

)
= u∗i,j −

µ∆t

2ρ∆x2
(ũi−1,j − 2ũi,j + ũi+1,j)

v∗∗i,j −
µ∆t

2ρ∆x2

(
v∗∗i−1,j − 2v∗∗i,j + v∗∗i+1,j

)
= v∗i,j −

µ∆t

2ρ∆x2
(ṽi−1,j − 2ṽi,j + ṽi+1,j)

4. Solve the y-direction of the ADI split. The boundary conditions are still the same as listed

12

in step 1.

ρ

(
ui,j − u∗∗i,j

∆t

)
=
µ

2

∂2

∂y2
(ui,j − ũi,j)

=⇒
(

1− µ∆t

2ρ

∂2

∂y2

)
ui,j = u∗∗i,j −

µ∆t

2ρ

∂2

∂y2
ũi,j

=⇒

ui,j −

µ∆t

2ρ∆y2
(ui,j−1 − 2ui,j + ui,j+1) = u∗∗i,j −

µ∆t

2ρ∆y2
(ũi,j−1 − 2ũi,j + ũi,j+1)

vi,j −
µ∆t

2ρ∆y2
(vi,j−1 − 2vi,j + vi,j+1) = v∗∗i,j −

µ∆t

2ρ∆y2
(ṽi,j−1 − 2ṽi,j + ṽi,j+1)

5. Update the boundary condition for ui,j as in step 1. Then, solve the x-direction of the pressure

constraint.

(
1− ∂2

∂x2

)
ϕi,j = − 1

∆t
∇ui,j

=⇒ ϕi,j −
ϕi−1,j − 2ϕi,j + ϕi+1,j

∆x2
= − 1

∆t

(
ui,j − ui−1,j

∆x
+
vi,j − vi,j−1

∆y

)

6. Solve the y-direction of the pressure constraint.

(
1− ∂2

∂y2

)
ψi,j = φi,j

=⇒ ψi,j −
ψi−1,j − 2ψi,j + ψi+1,j

∆y2
= ϕi,j

7. Update the pressure based on the constraint.

pi,j = p̃i,j + ψi,j − χµ∇
(

1

2
(ui,j + ũi,j)

)
= p̃i,j + ψi,j −

χµ

2

(
(ui,j + ũi,j)− (ui−1,j + ũi−1,j)

∆x
+

(vi,j + ṽi,j)− (vi,j−1 + ṽi,j−1)

∆y

)

3.6 Algorithm overview in three dimensions

This section shows the implementation steps for a three dimensional domain. Some of the interme-

diate steps are left out because they have been described in the previous section.

1. Store old values for u, v and w in ũ, ṽ and w̃. Update the boundary conditions for them as

well. The subscript letters L, R, F, B, U and D stand for left, right, front, back, up and down

13

of the domain, respectively.

ũi,j,k = ui,j,k ṽi,j,k = vi,j,k w̃i,j,k = wi,j,k

ũ−1,j,k = unx,j,k = 0 ṽi,−1,k = vi,ny,k = 0 w̃i,j,−1 = wi,j,nz
= 0

ũi,−1,k = 2uU − ui,0,k ṽ−1,j,k = 2vL − v0,j,k w̃−1,j,k = 2wL − w0,j,k

ũi,ny,k = 2uD − ui,ny−1,k ṽnx,j,k = 2vR − vnx−1,j,k w̃nx,j,k = 2wR − wnx−1,j,k

ũi,j,−1 = 2uF − ui,j,0 ṽi,j,−1 = 2vF − vi,j,0 w̃i,−1,k = 2wU − wi,0,k

ũi,j,nz = 2uB − ui,j,nz−1 ṽi,j,nz = 2vB − vi,j,nz−1 w̃i,ny,k = 2wD − wi,nx−1,k

2. Calculate temporary velocity values u∗i,j,k, v∗i,j,k and w∗i,j,k via the momentum equation, using

a pressure prediction.

u∗i,j,k = ũi,j,k −
∆t

ρ

[
(pi+1,j,k + ψi+1,j,k)− (pi,j,k + ψi,j,k)

∆x

]
+

∆tµ

ρ

[
ũi−1,j,k − 2ũi,j,k + ũi+1,j,k

∆x2

]
+

∆tµ

ρ

[
ũi,j−1,k − 2ũi,j,k + ũi,j+1,k

∆y2

]
+

∆tµ

ρ

[
ũi,j,k−1 − 2ũi,j,k + ũi,j,k+1

∆z2

]
v∗i,j,k = ṽi,j,k −

∆t

ρ

[
(pi,j+1,k + ψi,j+1,k)− (pi,j,k + ψi,j,k)

∆x

]
+

∆tµ

ρ

[
ṽi−1,j,k − 2ṽi,j,k + ṽi+1,j,k

∆x2

]
+

∆tµ

ρ

[
ṽi,j−1,k − 2ṽi,j,k + ṽi,j+1,k

∆y2

]
+

∆tµ

ρ

[
ṽi,j,k−1 − 2ṽi,j,k + ṽi,j,k+1

∆z2

]
w∗i,j,k = w̃i,j,k −

∆t

ρ

[
(pi,j,k+1 + ψi,j,k+1)− (pi,j,k + ψi,j,k)

∆x

]
+

∆tµ

ρ

[
w̃i−1,j,k − 2w̃i,j,k + w̃i+1,j,k

∆x2

]
+

∆tµ

ρ

[
w̃i,j−1,k − 2w̃i,j,k + w̃i,j+1,k

∆y2

]
+

∆tµ

ρ

[
w̃i,j,k−1 − 2w̃i,j,k + w̃i,j,k+1

∆z2

]

3. Solve the x-direction of the ADI split. Note that the boundary conditions of u∗∗i,j,k, v∗∗i,j,k and

w∗∗i,j,k are equivalent to those listed in step 1. Constant terms arising from the boundary

14

conditions may need to be moved to the right-hand side of the equations.

u∗∗i,j,k −

µ∆t

2ρ∆x2

(
u∗∗i−1,j,k − 2u∗∗i,j,k + u∗∗i+1,j,k

)
= u∗i,j,k −

µ∆t

2ρ∆x2
(ũi−1,j,k − 2ũi,j,k + ũi+1,j,k)

v∗∗i,j,k −
µ∆t

2ρ∆x2

(
v∗∗i−1,j,k − 2v∗∗i,j,k + v∗∗i+1,j,k

)
= v∗i,j,k −

µ∆t

2ρ∆x2
(ṽi−1,j,k − 2ṽi,j,k + ṽi+1,j,k)

w∗∗i,j,k −
µ∆t

2ρ∆x2

(
w∗∗i−1,j,k − 2w∗∗i,j,k + w∗∗i+1,j,k

)
= w∗i,j,k −

µ∆t

2ρ∆x2
(w̃i−1,j,k − 2w̃i,j,k + w̃i+1,j,k)

4. Solve the y-direction of the ADI split. The boundary conditions are still the same as listed

in step 1.

u∗∗∗i,j,k −

µ∆t

2ρ∆y2

(
u∗∗∗i,j−1,k − 2u∗∗∗i,j,k + u∗∗∗i,j+1,k

)
= u∗∗i,j,k −

µ∆t

2ρ∆y2
(ũi,j−1,k − 2ũi,j,k + ũi,j+1,k)

v∗∗∗i,j,k −
µ∆t

2ρ∆y2

(
v∗∗∗i,j−1,k − 2v∗∗∗i,j,k + v∗∗∗i,j+1,k

)
= v∗∗i,j,k −

µ∆t

2ρ∆y2
(ṽi,j−1,k − 2ṽi,j,k + ṽi,j+1,k)

w∗∗∗i,j,k −
µ∆t

2ρ∆y2

(
w∗∗∗i,j−1,k − 2w∗∗∗i,j,k + w∗∗∗i,j+1,k

)
= w∗∗i,j,k −

µ∆t

2ρ∆y2
(w̃i,j−1,k − 2w̃i,j,k + w̃i,j+1,k)

5. Solve the z-direction of the ADI split. The boundary conditions are still the same as listed in

step 1.

ui,j,k −

µ∆t

2ρ∆z2
(ui,j,k−1 − 2ui,j,k + ui,j,k+1) = u∗∗∗i,j,k −

µ∆t

2ρ∆z2
(ũi,j,k−1 − 2ũi,j,k + ũi,j,k+1)

vi,j,k −
µ∆t

2ρ∆z2
(vi,j,k−1 − 2vi,j,k + vi,j,k+1) = v∗∗∗i,j,k −

µ∆t

2ρ∆z2
(ṽi,j,k−1 − 2ṽi,j,k + ṽi,j,k+1)

wi,j,k −
µ∆t

2ρ∆z2
(wi,j,k−1 − 2wi,j,k + wi,j,k+1) = w∗∗∗i,j,k −

µ∆t

2ρ∆z2
(w̃i,j,k−1 − 2w̃i,j,k + w̃i,j,k+1)

6. Update the boundary condition for ui,j,k as in step 1. Then, solve the x-direction of the

pressure constraint.

ϕi,j,k −
ϕi−1,j,k − 2ϕi,j,k + ϕi+1,j

∆x2
= − 1

∆t

(
ui,j,k − ui−1,j,k

∆x
+
vi,j,k − vi,j−1,k

∆y
+
wi,j,k − wi,j,k−1

∆z

)

7. Solve the y-direction of the pressure constraint.

φi,j,k −
φi−1,j,k − 2φi,j,k + φi+1,j,k

∆y2
= ϕi,j,k

8. Solve the z-direction of the pressure constraint.

ψi,j,k −
ψi−1,j,k − 2ψi,j,k + ψi+1,j,k

∆z2
= φi,j,k

15

9. Update the pressure based on the constraint.

pi,j,k = p̃i,j,k + ψi,j,k

− χµ

2

[
(ui,j,k + ũi,j,k)− (ui−1,j + ũi−1,j)

∆x

]
− χµ

2

[
(vi,j,k + ṽi,j,k)− (vi,j−1 + ṽi,j−1)

∆y

]
− χµ

2

[
(wi,j,k + w̃i,j,k)− (wi,j,w−1 + w̃i,j,w−1)

∆z

]

4 Results

This section describes the required OpenCL kernels and results of the numerical experiments. With

the exception of the GPU kernels, the project is developed entirely in C++ because it is a fast and

versatile language. C++ interfaces directly with memory and low-level libraries, while at the same

time offering many complex data structures such as templates and polymorphic classes. The GPU

portion is written to use OpenCL, due to its ability to support a wide variety of processing units.

4.1 Kernels

The fluid solver is implemented in OpenCL. Once initial conditions have been set, all computations

are performed on the GPU; the only time it is necessary to transfer GPU memory back to main

memory is when output is stored to disk.

Small concurrent OpenCL programs that run on the GPU are called kernels. A separate kernel

is run for each point on a two or three dimensional grid. Modern GPUs have several hundred cores

that each run a kernel. The OpenCL model is shown in figure 4. Computation units are divided

into work groups that can be synchronized.

A GPU can run several hundred instances of a kernel in parallel, one for each core. In the

OpenCL model, it is not possible to have synchronized kernels across an work groups, because the

domain can be much larger than the number of GPU cores. Thus, the fluid simulator requires

several kernels for each simulation step. They are as follows for a two dimensional simulation.

These kernels pertain to the steps listen in section 3.5.

• Apply velocity boundary conditions to the domain as described in step 1.

• Apply step 2 which solves the momentum equation. This kernel also applies the nonlinear

term and body forces. Additionally, this kernel sets the right-hand side of the x-direction

16

Core 0 Core 4

Core 1 Core 5

Core 2 Core 6

Core 3 Core 7

Local Memory

Workgroup 0

Core 0 Core 4

Core 1 Core 5

Core 2 Core 6

Core 3 Core 7

Local Memory

Workgroup 1

Core 0 Core 4

Core 1 Core 5

Core 2 Core 6

Core 3 Core 7

Local Memory

Workgroup 2

Core 0 Core 4

Core 1 Core 5

Core 2 Core 6

Core 3 Core 7

Local Memory

Workgroup 3

Global Memory

Figure 4: Description of the OpenCL model. Each work group has access to a small amount of
a local memory that is much faster to access than global memory. Synchronization is possible
between cores in a work groups but not between work groups.

split in step 3 because the right-hand side only depends ui,j∗ from the momentum equation.

• Solve tridiagonal systems for u and v in the x-direction. The kernel domain size is now ny.

• Compute the right-hand side for the y-direction split used in step 4. This must be a separate

kernel because the previous kernels solve u∗∗i,j in the x-direction and those values are required

in the y-direction.

• Solve tridiagonal systems for u and v in the y-direction. The kernel domain size is now nx.

Additionally, compute the right-hand side of the x-direction pressure update because it does

not depend on u∗∗i,j at all.

• Solve the tridiagonal system for pressure in the x-direction in step 5.

• Solve the tridiagonal system for pressure in the y-direction in step 6. There is no right-hand

side to compute.

• Apply the pressure correction as described in step 7.

Three dimensional simulations require additional kernels to account for the additional dimension

in the direction split. The complete set of kernels pertaining to section 3.6 are:

• Apply velocity boundary conditions to the domain as described in step 1.

17

• Apply step 2 which solves the momentum equation. This kernel also applies the nonlinear

term and body forces. Additionally, this kernel sets the right-hand side of the x-direction

split in step 3 because the right-hand side only depends ui,j∗ from the momentum equation.

• Solve tridiagonal systems for u, v and w in the x-direction. The kernel domain size is now

ny × nz.

• Compute the right-hand side for the y-direction split used in step 4. This must be a separate

kernel because the previous kernels solve u∗∗i,j,k in the x-direction and those values are required

in the y-direction.

• Solve tridiagonal systems for u, v and w in the y-direction. The kernel domain size is now

nx × nz.

• Compute the right-hand side for the z-direction split used in step 5.

• Solve tridiagonal systems for u, v and w in the z-direction. The kernel domain size is now

nx×ny. Additionally, compute the right-hand side of the x-direction pressure update because

it does not depend on u∗∗∗i,j,k at all.

• Solve the tridiagonal system for pressure in the x-direction in step 6.

• Solve the tridiagonal system for pressure in the y-direction in step 7. There is no right-hand

side to compute.

• Solve the tridiagonal system for pressure in the z-direction in step 8. There is no right-hand

side to compute.

• Apply the pressure correction as described in step 9.

4.2 Scaling

Numerical experiments are conducted on a single core of a distributed memory cluster with a GPU.

The GPU specifications are:

• NVIDIA Corporation, Tesla M2075

• 14 cores, 1147MHz, 5375MB

• Max work group size: 1024

• Local mem: 48kB

18

Number of Unknowns Runtime (s)
4.0× 103 0.64
1.6× 104 2.54
6.6× 104 8.20
2.6× 105 38.23
1.0× 106 266.05
4.1× 106 3096.28

Table 1: Timing results of the simulation. These results were run 3 times each, taking the minimum
time per run.

Figure 5: Logarithmic plot of the fluid simulation runtimes from the above table. Notice how the
scaling is linear.

Table 1 shows runtimes for a lid-driven cavity as it is scaled up to its maximum allowable problem

size (limited by the GPU memory). The simulations are run for 1000 steps. Figure 5 shows linear

scaling, as predicted because tridiagonal systems are solved O(n). The Reynold’s number does not

affect these results because all systems are solved directly with a constant stepsize.

4.3 Renderer

A renderer was developed in OpenGL to display results of the fluid simulations in two-dimensions (a

three dimensional version is part of future work). The renderer animates the simulations. Figure 6

shows the steady-state solution of a lid-driven cavity with top and bottom boundaries prescribed in

the same direction. Figure 7 shows the steady-state solution where the top boundary is prescribed

and the rest are zero.

The renderer draws traces in the velocity field by advecting particles in the domain. The traces

19

Figure 6: Steady state solution where top and bottom boundaries are prescribed in opposite direc-
tions. The left and right boundaries are both set to zero.

Figure 7: Steady state solution where the top boundary is prescribed and the rest are zero.

are integrated over many timesteps using forward Euler. Figure 8 shows a system with opposing

boundaries where top and bottom boundaries are in opposite directions.

4.4 Verification and Validation

The OpenCL kernels and c++ source together comprise of just under 3000 lines of code. Therefore,

some form of incremental testing is necessary to locate bugs. Unit testing is the first step in

verification to ensure the fluid solver is functioning correctly. A small test suite was written to

evaluate key numerical functions. Some examples of units tests include testing interpolation of

the grid, tridiagonal solvers, and finite difference calculations. Knowledge that these components

function correctly allows development to run much more efficiently, narrowing the search domain

for possible bugs in the code.

The domain is either a two dimensional rectangle or a three dimensional rectangular prism.

Depending on boundary conditions, it can therefore exhibit some form of symmetry. For instance,

a two dimensional simulation with equal top and bottom boundary conditions will have the top

and bottom half of the domain be “mirrors“ of each other and shown in Figure 7. Such symmetry

20

Figure 8: Four frames of a simulation approaching a steady state, where top and bottom boundaries
are prescribed in opposite directions.

is crucial to detecting problems that provide reasonable solutions but have hidden “off by one”

errors. Additionally, all problems will exhibit rotational symmetry, another method to verify that

the fluid simulator is functioning correctly.

The driven cavity is a problem commonly used to evaluate numerical methods for fluid simula-

tion. Numerical experiments are shown to graphically match results described in [3].

5 Progress overview and future work

The direction splitting algorithm for the incompressible Navier–Stokes equations was implemented

for GPU using OpenCL. It solves the advection term using a semi-Lagrangian method, the viscosity

term using ADI splitting, body forces using forward Euler and the pressure update using a relax-

ation of the incompressibility constraint. Numerical simulation shows the runtime to scale linearly.

Therefore, the primary goal of this project has been accomplished. Additionally, a renderer has

been developed using OpenGL to display the velocity field as it changes over time.

The following sections discuss future directions for the fluid solver.

21

5.1 CFL Condition

The Navier–Stokes equations are used to update velocities inside the liquid. The simulation steps

are limited by the Courant-Friedrichs-Lewy (CFL) condition, which guarantees that numerical

solutions to the simulation will converge [1]. The condition is written as follows:

∆t = C

[
∆x

max(u)
+

∆y

max(v)

]

where C is is the Courrant number, ∆x and ∆y refer to grid cell size, and u and v are the fluid

velocity values. In parallel, the problem reduces to finding the maximum value in a dataset, which

can easily be solved by dividing the dataset into a number of sub-domains, having each parallel

worker find the maximum value within its domain, and then repeating the processes until the overall

maximum has been reached.

5.2 Level sets

It is often interesting to model the movement of a liquid in air, perhaps with solid boundaries at the

edge or in the middle of the domain, thus introducing free surface and solid boundary conditions.

The interface between liquid and air can be modelled using a concept known as a level set. Each cell

in the MAC grid is assigned a value φ(x): an implicit surface function whose value is equal to the

signed distance between cells centres and the nearest point on the surface. Cells with φ < 0 contain

liquid; cells with φ > 0 contain air. The interface between the two is taken to be where φ = 0. A

more detailed study of level sets is presented in [9]. To represent a dynamic free surface, the entire

level set must be advected according to the velocity field at each timestep. That is, we must solve

the advection equation ∂φ
∂t + (u · ∇)u = 0 to update the free surface. The level set must then be

recomputed because the advection integration does not preserve signed distances to surfaces. Level

sets can easily be computed in parallel, noting that at any given step, the maximum distance the

free surface can move is limited by the CFL condition. Thus, the level set can computed on a series

of local domains.

References

[1] Bridson, R. Fluid simulation for computer graphics. A K Peters, Wellesley, 2007.

22

[2] Chorin, A. J. Numerical solution of the navier–stokes equations. Math Comp 22 (1968),

745–762.

[3] Guermond, J.-L., Migeon, C., Pineau, G., and Quartapelle, L. Start-up flows in a

three-dimensional rectangular driven cavity of aspect ratio 1:1:2 at Re = 1000. J Fluid Mech

450 (January 2002), 169–199.

[4] Guermond, J.-L., and Minev, P. A new class of fractional step techniques for the incom-

pressible Navier-Stokes equations using direction splitting. Comptes Rendus Mathematique

348, 9-10 (2010), 581–585.

[5] Guermond, J.-L., and Minev, P. A new class of massively parallel direction splitting for

the incompressible Navier-Stokes equations. Comput Methods Appl Mech Engrg 200, 23-24

(2011), 2083–2093.

[6] Guermond, J.-L., Minev, P., and Shen, J. An overview of projection methods for incom-

pressible flows. Comput Methods Appl Mech Engrg 195 (2006), 6011–6045.

[7] Harlow, F. H., and Welch, J. E. Numerical calculation of time-dependent viscous incom-

pressible flow of fluid with free surface. Phys. Fluids 8, 12 (1965), 2182–2189.

[8] Jim Douglas, J. Alternating direction methods for three space variables. Numerische Math-

ematik 4, 1 (1962), 41–63.

[9] Osher, S. J., and Fedkiw, R. P. Level Set Methods and Dynamic Implicit Surfaces, vol. 153

of Applied mathematical sciences. Springer-Verlag, Berlin, 2003.

[10] Stam, J. Stable fluids. In Proceedings of the 26th annual conference on Computer graphics

and interactive techniques (New York, NY, USA, 1999), SIGGRAPH ’99, ACM Press/Addison-

Wesley Publishing Co., pp. 121–128.

23

