
A PETSc Parallel BVP Code

Jason Boisvert

Abstract

Solutions to ordinary differential equations with boundary conditions (BVPs) are

often approximated by a numerical method. Typically, this method involves setting up

a large system of nonlinear equations for which the unknowns are discrete numerical

approximations of the solution to the BVP. This nonlinear system has the potential

to be large. Therefore, routines that parallelize both the generation and solution

of the nonlinear system could reduce the overall computational time. This report

describes a BVP code called PETSc BVP that contains parallel implementations of both

of these routines. The parallel scientific toolbox PETSc is used to create the code. The

report also describes the results of several numerical experiments used to show that for

certain problems, a reduction of overall computational time is achieved when multiple

processors are used to solve the problem.

1 Introduction

In this report, we consider software to numerically solve boundary value problems (BVPs)

that consist of a system of first order ODEs

u′ = f(x,u(x)), a ≤ x ≤ b, (1a)

and a system of two-point boundary conditions

0 = g(u(a),u(b)), (1b)

where u, f, and g are vectors of length d.

1

Typically, exact solutions to BVPs are unknown and therefore a numerical approximation

of the solution is often found instead. A common approach to finding the numerical solution

involves generating a large system of nonlinear equations. The unknowns to the system

of nonlinear equations are discrete numerical approximations of the solution to the BVP.

Popular BVP codes that use this approach are bvp4c [12], bvp5c [13], BVP SOLVER [16] and

COLNEW [6].

The size of the system of nonlinear equations depends on both the number of differential

solution components d and the number of descrite numerical approximations to the BVP.

For a BVP with a large d or a problem that requires many discrete points, the system of

nonlinear equations become large and therefore computational timely to both generate and

solve. These particular problems would benefit from a BVP code that parallelize the routines

used to accomplish these tasks. None of the above mention codes do this.

This report describes a BVP code that uses parallel implementations of the routines

that generate and solve the system of nonlinear equations. The toolkit PETSc [7] is used to

implement the BVP code and therefore the code is called PETSc BVP. The remainder of the

report can be divided into the following sections. Section 2 describes the method used by

PETSc BVP to solve BVPs of the form (1). Section 3 describes the parallel implementation of

the method. Section 4 describes several numerical experiments used to show a performance

increase when multiple processors are used. Section 5 describes some conclusions and future

work.

2 A MIRK method to solve BVP

In this section, we present a global approach to the numerical solution of BVPs that makes

use of mono-implicit Runge–Kutta (MIRK) formulas.

A global approach involves generating a system of generally nonlinear equations for which

the unknowns ui are numerical approximations of the solution values u(xi) at a mesh point

xi. A mesh consists of discrete points that partition the solution domain

a = x0 ≤ x1 ≤ · · · ≤ xN−1 ≤ xN = b.

2

Using MIRK formulas, the nonlinear equations for each subinterval [xi, xi+1], i = 0, . . . , N−

1, where hi+1 = xi+1 − xi, have the form

φi+1(ui,ui+1) = ui+1 − ui − hi+1

s∑
j=1

bjf(xi + cjhi+1,ui,j) = 0, (2a)

where φi+1 is a vector of length d and

ui,j = (1− vj)ui + vjui+1 + hi+1

j−1∑
k=1

aj,kf(xi + ckhi+1,ui,k) (2b)

In (2), j = 1, 2, . . . , s are the stages of the MIRK method. The coefficients, aj,k, bj, vj,

cj are defined by the MIRK method begin used. The coefficient cj = vj +
∑j−1

k=1 aj,k for

k = 1, 2, . . . , j − 1.

For each subinterval, equation (2a) represents d nonlinear equations. The solution point

ui,j is determined explicitly and therefore is not part of the overall system of equations.

In other words, the MIRK method is a semi-explicit method and therefore can be said to

use parameter condensation to eliminate the local unknowns for each subinterval from the

overall system of equations. Including the d boundary conditions, the entire system consists

of (N + 1)d non-linear equations and has the form

Φ(U) =



φ1(u0,u1)

φ2(u1,u2)
...

φN(uN−1,uN)

g(u(a),u(b))


= 0, (3)

where U = [uo,u1, . . . ,uN−1,uN]T is the vector of unknowns and Φ(U) is a residual function.

System (3) is typically solved using Newton’s method. This method begins with an

initial guess U0 of the solution to (3). After, the solution to the nonlinear equations can be

iteratively determined by evaluating

Uv = Uv−1 −Φ′(Uv−1)−1Φ(Uv−1),

where Uv is the solution for the vth iteration of the Newton’s method and Φ′(Uv−1) is the

Jacobian matrix

Φ′(Uv−1) =
∂Φ

∂U

∣∣∣∣
U=Uv−1

.

3

Iterations continue until some termination criteria is met. For example,

‖Φ(Uv)‖∞ < τ,

where τ << 1 .

In practice, the inverse of the Jacobian matrix is computationally expensive to evaluate.

A Newton direction δ is therefore determined for each iteration by solving the linear system

Φ′(Uv−1)δ = −Φ(Uv−1). (4)

The solution for the current iteration can then be determined by

Uv = Uv−1 + δ.

In the case of system (3), the linear equations form an almost-block diagonal (ABD) system

when solving (4) [5]. Therefore, a specialized ABD linear solver can be used to solve the

system and greatly reduce the overall computational time [2].

The Newton’s method presented above fails to converge for poor initial guesses [11]. In

practice, a modified Newton’s method is used that only applies a fraction λ, where 0 < λ ≤ 1,

of the Newton direction to the previous solution Uv−1, i.e.

Uv = Uv−1 + λδ.

The method used to determine λ distinguishes the Newton’s method and is also referred to

as a global convergence strategy. Typically, a damped Newton’s method is used for BVP

software [4]. However, this is only one of the many variations of Newton’s method that could

be applied to the nonlinear system (3).

Once a numerical solution is determined, the global error of the solution can be estimated

through a variety of ways. Typically, a method based on Richardson Extrapolation is used.

For a numerical solution uπ determined on mesh π, a new solution u2π is found by having

having the mesh. After, a GE estimate is given by

εg =

(
2p

2p − 1

)
max
i,j

|uπi,j − u2π
i,j |

1 + |uπi,j|
,

where uπi,j is the numerical approximation of the jth component of u for the mesh point xi

and p is the order of the MIRK method. The order of the method dictates the rate of the

4

convergence of the method to the exact solution as the mesh size increases. A few other

methods of global-error estimation have been applied to BVP codes and have been shown

to have performance improvements over Richardson extrapolation [9].

3 A parallel BVP code

This section describes a parallel BVP code created to solve problems of the form (1). The

toolkit PETSc version 3.2 [7] is used to implement the BVP code. This toolkit provides a va-

riety of data structures and routines that are typically used to solve partial-differential equa-

tions in parallel. The parallel routines found in PETSc are implemented with the pthreads

toolkit for shared memory computing and a message passing interface toolkit (MPI) for both

shared and distributed memory computing. The parallel BVP toolkit only uses the MPI im-

plementation of the routines found in PETSc. By doing so, the code can be run on both

shared and distributed memory computers.

The implementation of PETSc BVP focuses on the parallelization of two of the steps per-

formed during the numerical solution method described in Section 2. These steps include

the formation of the system of nonlinear equations (3) and the solution of the system of

nonlinear equations. It should be noted that PETSc BVP is still in the early stages of devel-

opment and therefore is missing many of the important features found in other BVP codes.

For example, PETSc BVP does not have the ability to estimate the error of the numerical

solution, e.g., using the method described at the end of Section 2. Instead, the user must

verify the solution by either using an exact solution or a reference solution. At this point,

the purpose of the current state of the implementation is simply to show the benefits of both

generating and solving the system of nonlinear equations in parallel.

3.1 Parallelization of the generation of the nonlinear equations

This section describes how the system of nonlinear equations (3) is evaluated in parallel. In

order to generate the system, it is assumed that the user provides a function that describes

the odes

5

PetscErrorCode odes(PetscReal x, PetscReal *u, PetscReal *f);

where the parameters correspond to (1a). The user can make use of PETSc error codes to

prevent further computation if an issue is detected. Also, it is not necessary for the user to

parallelize the function odes and therefore the method of parallelization used in PETSc BVP

can be abstracted from the user. The user-supplied function odes can then be passed to

PETSc BVP with the following function

PetscErrorCode setOdeFunction (BvdaeCtx *sol,

PetscErrorCode (*f)(PetscReal, PetscReal *, PetscReal *));

where sol is a data structure created for PETSc BVP and is initialized with the function

PetscErrorCode initBVDAE(BvdaeCtx *sol, PetscReal a,PetscReal b, PetscInt d);

where a and b are the boundary points and d is the number of differential solution compo-

nents. Similarly, the user must provide a function that describes the boundary conditions

PetscErrorCode bc(PetscReal *ua, PetscReal *ub, PetscReal *g);

where ua is an array that holds the values for u(a) and ub is an array that holds the values of

u(b). The user-supplied function can then be passed to PETSc BVP by the following function

PetscErrorCode setBCFunction (BvdaeCtx *sol,

PetscErrorCode (*bc)(PetscReal *, PetscReal *, PetscReal *));

Because a variation of Newton’s method must be used to solve the nonlinear equations, an

initial guess for the solution components can be provided by the user as a function

PetscErrorCode guess(PetscReal x, PetscReal *u);

The user-supplied initial guess is passed to PETSc BVP by using the function

extern PetscErrorCode setInitialGuess(BvdaeCtx *sol,

PetscErrorCode (*guess)(PetscReal, PetscReal *));

6

Once a specification of the BVP is provided to PETSc BVP, the pattern of distribution

among P processors can be determined. This pattern determines how the mesh points,

nonlinear equations, and solution components are distributed among the different processors.

This pattern is determined by the size of the mesh provided to PETSc BVP by either the user

or through the following function

extern PetscErrorCode uniformMesh(BvdaeCtx *sol, PetscInt meshSize);

where meshSize is the size of the mesh, i.e., N + 1 points. By using the above function, a

uniform mesh is obtained. After a mesh is provided, we choose a distribution pattern that

distributes the mesh evenly among P processors. For example, the first processor is assigned

the first N+1
P

mesh points, the second processor is then assigned the next N+1
P

points. This

continues until all points are distributed among processors. If P does not divide the total

number of points evenly, the remainder of the mesh points are assigned to the last processor.

Once the pattern is determined, it is used to generate PETSc distributed arrays for the

solution components and the results of the residual function. These distributed arrays are

used by PETSc to provide a local array of size dMi, where Mi is the number of mesh points

assigned to processor i, for each processor. These local arrays are used to setup the system

of equations in parallel.

When setting up the nonlinear system, each processor is responsible for the generation

of Mi components of (3). In a similar fashion to the mesh points, the first processor is

responsible for the first Mi components of (3), the next processor is responsible for the

next Mi components and so on. The last processor is responsible for the evaluation of

the boundary conditions as well. Except for the boundary conditions, each component of

(3) requires d evaluations of the MIRK formula (2), i.e., one for each differential solution

component. For the evaluation of the MIRK formulas, users are able to choose between a

2nd, 4th, and 6th order MIRK method found in [14]. Users choose the order of the MIRK

method with the following

extern PetscErrorCode setMirkOrder (BvdaeCtx *sol, PetscInt p);

A larger MIRK order implies more stage computations and therefore the benefit of paral-

lelization may be greater.

7

Some communication between processors must occur when the system of equations is

generated. For example, a solution component must have access to ui+1 in order to evaluate

φi(ui,ui+1). Therefore the local array of dMi solution components for a processor does not

contain all the solution components required to generate Mi components of (3). Therefore,

PETSc allows the local array of each processor to contain a buffer of solution components

that have been assigned to other processors. In this case, we allow for a buffer of 2d solution

components. Unfortunately, in order to use the buffered local arrays provided by PETSc, the

total mesh size must be evenly divisible by 2∗d+1 . As a consequence, additional mesh points

are added when required. The buffered solution components are shared between processors

before (3) is generated. Also, the first processor shares the current solution of u(a) with the

last processor in order for the boundary conditions to be evaluated.

The system of nonlinear equations are generated every time an evaluation of the residual

function is required for the Newton’s method.

3.2 A Parallel Newton’s method

The parallel toolkit PETSc provides access to parallel implementations of different Newton

methods. By default, PETSc BVP determines a Newton direction through LU decomposition

and the parallel sparse direct solver MUMPS [1]. A cubic line search method is used as the

global convergence strategy [11]. PETSc also provides several parallel implementations of

inexact Newton-Krylov methods [7]. These methods use iterative methods to solve the

linear system (4). Users of PETSc BVP are free to apply the inexact methods to (3), however

users may have to try a variety of methods in order to determine a successful one for a

particular BVP.

Despite which Newton’s method is used, a Jacobian matrix must be evaluated. By

default, PETSc BVP uses a finite difference scheme that exploits matrix sparsity through the

use of matrix colouring [7]. Due to the sparse nature of the Jacobian matrix generated from

(3), only a small portion of the Jacobian matrix must be evaluated. It has been noticed that

this method is considerably faster than finite-difference scheme for a dense Jacobian matrix.

Other BVP codes that allow a Jacobian to be evaluated for (3) by finite differences, pythODE

for example [8], should employ a similar finite-difference scheme.

8

4 Numerical Experiments

Numerical experiments were performed in order to validate the parallel implementation of

the numerical method and to show some speedup as the number of processors increase. For

the latter, speedup is shown for both large mesh sizes and large problem sizes.

Experiments were performed on a single machine using shared memory. The machine

consists of two 2.26 GHz Quad-Core Intel Xeon processors and 16 GB of DDR3 RAM. The

operating system is Mac OS X 10.7.2. As stated in the previous section, PETSc 3.2 is used

to build PETSc BVP along with the PETSc distribution of MPICH2 1.4.1p1 and gcc 4.2. The

software can be run on distributed machines. However, PETSc 3.2 must be used to build the

code due to changes in the naming conventions made from the previous version.

4.1 Method validation

The BVP code PETSc BVP comes bundled with several test problems that can be used to

validate the parallel implementation of the MIRK method described in Section 2. These

problems are especially useful for ensuring that PETSc BVP is properly built for a given

system. One such test problem is Bratu’s equation

u′′(x)− λ expu(x) = 0, 0 ≤ x ≤ 1,

with the boundary conditions

u(0) = u(1) = 0.

We solve the problem using PETSc BVP for λ = 1 and an initial guess of

u(x) = x− x2,

u′(x) = 1− 2x.

A uniform mesh of 10 points and a 4th order MIRK method is used to determine a solution.

Figure 1 shows the result of using PETSc BVP when solving the problem with one pro-

cessor. A solution is also found using the MATLAB BVP code bvp4c. Excellent agreement

between the two solutions is shown.

9

Figure 1: Solution to Bratu’s equation using PETSc BVP with one processor and bvp4c.

It is also important to ensure that the same solution is obtained despite the number of

processors used. Figure 2 shows the result of using PETSc BVP to solve Bratu’s equation as

the number of processors are varied. Excellent agreement between the solutions are shown.

4.2 Solving large mesh problems

For certain problems, BVP codes require a large mesh in order to determine a solution that

meets a user-supplied tolerance placed on the error of the numerical solution. In many cases,

these problems require a fine mesh to ensure the stability of the numerical method. These

problems are called stiff problems [3]. Examples of stiff problems can be found in [9]. The

authors use these problems to compare different global error estimation methods for BVP

codes.

For this experiment, we demonstrate the performance of PETSc BVP when solving a BVP

10

Figure 2: Solution to Bratu’s equation using PETSc BVP with different number of processors.

using a large mesh. A linear BVP

u′′(x) = u(x), 0 ≤ x ≤ 1, (6a)

with the boundary conditions

u(0) = 1, u(1) = 0, (6b)

is used for this experiment. An initial guess of

u(x) = 1− x,

u′(x) = −1,

is used. The problem is solved using 4th order MIRK formulas and a uniform mesh of size

5000 and 10000 points. Results are obtained for different number of processors.

Despite varying the number of mesh points, similar results are obtained. Figure 3 shows

the time in seconds as additional processors are used to solve the problem. The time is

11

Figure 3: Time in seconds required to solve (6) using PETSc BVP with different number of

processors.

obtained using MPI WCLOCK. The time required to determine a solution is reduced as the

number of processors increase. However, the amount that the time is reduced also decreases.

Figure 4 further illustrates this result by showing the speedup as the number of processors

increase. The speedup is defined as

si =
t1
ti
,

where si is the speedup for i processors and ti is the time required to determine a solution for

i processors. Figure 5 shows the change in efficiency as the number of processors increase.

The efficiency can be defined as

ei =
si
P
.

For i processors, ei is the efficiency for each processor. The efficiency is reduced as the

number of processors is increased. This is probably due to the increase in communication

time as the number of processors also increase.

For mesh sizes less than a thousand points, additional processors may result in a larger

time required to determine a solution. A sufficiently large mesh is required to offset the

communication cost created by more processors.

12

Figure 4: Speedup obtained when solving (6) using PETSc BVP with different number of

processors.

4.3 Solving large problems

BVPs that consist of a large system of ODEs and boundary conditions have considerably

more solution components than smaller problems and therefore require more computational

time to generate and solve the system of nonlinear equations (3). Large problems can benefit

greatly from parallelization. In this section, we show the benefit of using multiple processors

to solve one such problem.

A Raman fiber laser consists of a double-clade laser that launches a high-powered pump

light into a fiber tube. The steady state of a nth order Raman fiber laser can be simulated

through a series 2n+ 2 ODEs and boundary conditions [10]. We start with the forward and

backward-propagating pump fields. Let P+
0 be the forward-propagating pump field and P−0

be the backward propagating pump field. These can be described by two first-order ODEs

dP+
0 (z)

dz
= P+

0 (z)

[
−a0 −

w0

w1

γ1[P+
1 (z) + P−0 (z)]

]
, 0 ≤ z ≤ L

dP−0 (z)

dz
= −P−0 (z)

[
−a0 −

w0

w1

γ1[P+
1 (z) + P−0 (z)]

]
,

where ai is the intrinsic loss of the host glass at various filed wavelengths, w0 is the frequency

at the pumps, and wi is the frequency of the ith Stokes field. The parameter γi = 4.89 ×

13

Figure 5: Efficiency when solving (6) using PETSc BVP with different number of processors.

10−14/(λi/Aeff) is a Raman-gain coefficient, where λi is the wave length of the ith Stokes

field and Aeff is the effective core area. The parameter L is the fiber length. The forward-

propagating Stokes fields P+
i and backward-propagating Stokes field P−i are given by the

ODEs

dP+
i (z)

dz
= P+

i (z)

[
−ai + γi[P

+
i−1(z) + P−i−1(z)]− γi+1

wi
wi+1

[P+
i+1(z) + P−i+1(z)]

]
,

dP−i (z)

dz
= −P−i (z)

[
−ai + γi[P

+
i−1(z) + P−i−1(z)]− γi+1

wi
wi+1

[P+
i+1(z) + P−i+1(z)]

]
,

for i = 1, 2, . . . , n and 0 ≤ z ≤ L. The nth forward-propagating and backward-propagating

stokes field is given by

dP+
n (z)

dz
= P+

n (z)
[
−an + γn[P+

n−1(z) + P−n−1(z)]
]
,

dP−n (z)

dz
= −P−n (z)

[
−an + γn[P+

n−1(z) + P−n−1(z)]
]
,

for 0 ≤ z ≤ L. The boundary conditions are given by

P+
0 (0) = Plaunch +R0P

−
0 (0),

P+
i (0) = P−i (0), i = 1, 2, . . . n,

14

Figure 6: Time in seconds required to solve a nth order Raman fiber laser model using

PETSc BVP with different number of processors.

P−i (L) = P+
i (L), i = 0, 2, . . . n− 1,

P−n (L) = RNP
+
n (L),

where R0 is the reflectivity of the pump light at input, Rn is the reflectivity of the nth Stokes

mode at output, and Plaunch is the launched pump power.

The model is solved with PETSc BVP using the parameters L = 1km, a0 = 1.7dB/km,

ai = 1.0dB/km for i = 1, 2, . . . , n, and γi = 5.20× 10−3(m ·W)−1 for i = 0, 1, . . . , n. We let

w0 = w1 = · · · = wn. For the boundary conditions, we use Plaunch = 3.3W, R0 = 0.95, and

Rn = 0.10. These parameters were used for some of the simulations performed in [10]. A

constant initial guess of

P+
i (z) =

1

2
,

P−i (z) =
1

2
,

is used. The problem is solved for n = 5 with 100 mesh points, n = 10 with 135 mesh

points, and n = 15 with 130 mesh points. They mesh points vary due to the requirement

that 2 ∗ d + 1 must divide the size of the mesh evenly; see Section 3.1. A 4th order MIRK

method is used for all cases.

15

Figure 7: Speedup obtained when solving a nth order Raman fiber laser model using

PETSc BVP with different number of processors.

Figure 6 shows the time in seconds required to solve the Raman fiber laser model as

the number of processors increase. For all three values of n, more time is required to solve

the problem using two processor as opposed to one. This is likely due to the benefit of

two processors being unable to offset the initialization cost of PETSc for multiple processors,

e.g., initializing MPI and creating local distributive arrays. However, additional experiments

must be performed to find the exact reason. For processors greater than two, however, a

reduction of time is seen when compared to one processor. Figure 7 further illustrates this

point by displaying the speedup. Figure 8 displays the change in efficiency as the number of

processors grow. For all values of n, the efficiency is reduced as the number of processors is

increased. Again, this is probably due to the increase in communication time as the number

of processors increase.

5 Conclusions and future work

The numerical experiments show that a reduction of time can be achieved by parallelizing

both the generation and solution of the system on nonlinear equations (3). However, the

16

Figure 8: Efficiency when solving a nth order Raman fiber laser model using PETSc BVP with

different number of processors.

problem must either require enough mesh points or the problem must be large enough to

offset the communication cost between processors.

This report is concluded with several suggestion for future work:

• The BVP code PETSc BVP is missing many components of a fully featured BVP code

such as BVP SOLVER and bvp4c. In particular, a global error estimation method and

an efficient mesh selection method should be added to the code. An efficient mesh

selection method attempts to distribute mesh points in way that ensures the error on

each subinterval is less than a user-supplied tolerance, e.g., mesh equidistribution [4].

PETSc should also be used to parallelize these routines.

• The numerical experiments described in this report should be performed on a dis-

tributed memory cluster. By doing so, the cost of inter-node communication can be

compared to the cost of the processor communication on a shared memory machine.

• By default, PETSc uses the parallel sparse direct solver MUMPS to determine the Newton

direction. However, this solver does not take advantage of the known ABD sparsity

structure of the Jacobian matrix of (3). Instead, additional improvements of time may

17

be achieved by using a parallel direct solver that is optimized for the solution of ABD

matrices. RSCALE is an example of one such solver [15].

References

[1] Miumps, April 2012. http://graal.ens-lyon.fr/MUMPS/.

[2] P. Amodio, J. R. Cash, G. Roussos, R. W. Wright, G. Fairweather, I. Gladwell, G. L.

Kraut, and M. Paprzycki. Almost block diagonal linear systems: sequential and paral-

lel solution techniques, and applications. Numerical Linear Algebra with Applications,

7(5):275–317, 2000.

[3] U. Ascher. On numerical differential algebraic problems with application to semicon-

ductor device simulation. SIAM J. Numer. Anal., 26(3):517–538, 1989.

[4] U. M. Ascher, R. M. M. Mattheij, and R. D. Russell. Numerical solution of boundary

value problems for ordinary differential equations, volume 13 of Classics in Applied

Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia,

PA, 1995. Corrected reprint of the 1988 original.

[5] U. M. Ascher and L. R. Petzold. Computer methods for ordinary differential equations

and differential-algebraic equations. Society for Industrial and Applied Mathematics

(SIAM), Philadelphia, PA, 1998.

[6] G. Bader and U. Ascher. A new basis implementation for a mixed order boundary value

ODE solver. SIAM J. Sci. Statist. Comput., 8(4):483–500, 1987.

[7] S. Balay, J. Brown, K. Buschelman, V. Eijkhout, W. D. Gropp, D. Kaushik, M. G.

Knepley, L. C. McInnes, B. F. Smith, and H. Zhang. PETSc users manual. Technical

Report ANL-95/11 - Revision 3.2, Argonne National Laboratory, 2011.

[8] J. J. Boisvert. A problem-solving environment for the numerical solution of boundary

value problems, 2010.

18

[9] J. J. Boisvert, P. H. Muir, and R. J. Spiteri. A numerical study of global error estimation

schemes for defect control bvode codes. Saint Mary’s University, Dept. of Math. and

Comp. Sci. Technical Report Series,cs.smu.ca/tech reports/, 2009.

[10] S. D. Jackson and P. H. Muir. Theory and numerical simulation of nth-order cascaded

raman fiber lasers. J. Opt. Soc. Am. B, 18(9):1297–1306, Sep 2001.

[11] C. T. Kelley. Iterative methods for linear and nonlinear equations, volume 16 of Fron-

tiers in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM),

Philadelphia, PA, 1995. With separately available software.

[12] J. Kierzenka and L. F. Shampine. A BVP solver based on residual control and the

MATLAB PSE. ACM Trans. Math. Software, 27(3):299–316, 2001.

[13] J. Kierzenka and L. F. Shampine. A BVP solver that controls residual and error.

JNAIAM J. Numer. Anal. Ind. Appl. Math., 3(1-2):27–41, 2008.

[14] P. H. Muir. Optimal discrete and continuous mono-implicit Runge–Kutta schemes for

BVODEs. Adv. Comput. Math., 10(2):135–167, 1999.

[15] P. H. Muir, R. N. Pancer, and K. R. Jackson. PMIRKDC: a parallel mono-implicit

Runge-Kutta code with defect control for boundary value ODEs. Parallel Comput.,

29(6):711–741, 2003.

[16] L. F. Shampine, P. H. Muir, and H. Xu. A user-friendly Fortran BVP solver. JNAIAM

J. Numer. Anal. Ind. Appl. Math., 1(2):201–217, 2006.

19

