
A Problem-Solving Environment for the

Numerical Solution of Boundary Value

Problems

A Thesis Submitted to the

College of Graduate Studies and Research

in Partial Fulfillment of the Requirements

for the degree of Master of Science

in the Department of Computer Science

University of Saskatchewan

Saskatoon

By

Jason J. Boisvert

c©Jason J. Boisvert, January 2011. All rights reserved.

Permission to Use

In presenting this thesis in partial fulfilment of the requirements for a Postgraduate degree from

the University of Saskatchewan, I agree that the Libraries of this University may make it freely

available for inspection. I further agree that permission for copying of this thesis in any manner,

in whole or in part, for scholarly purposes may be granted by the professor or professors who

supervised my thesis work or, in their absence, by the Head of the Department or the Dean of

the College in which my thesis work was done. It is understood that any copying or publication

or use of this thesis or parts thereof for financial gain shall not be allowed without my written

permission. It is also understood that due recognition shall be given to me and to the University

of Saskatchewan in any scholarly use which may be made of any material in my thesis.

Requests for permission to copy or to make other use of material in this thesis in whole or part

should be addressed to:

Head of the Department of Computer Science

176 Thorvaldson Building

110 Science Place

University of Saskatchewan

Saskatoon, Saskatchewan

Canada

S7N 5C9

i

Abstract

Boundary value problems (BVPs) are systems of ordinary differential equations (ODEs) with

boundary conditions imposed at two or more distinct points. Such problems arise within mathe-

matical models in a wide variety of applications. Numerically solving BVPs for ODEs generally

requires the use of a series of complex numerical algorithms. Fortunately, when users are required

to solve a BVP, they have a variety of BVP software packages from which to choose. However, all

BVP software packages currently available implement a specific set of numerical algorithms and

therefore function quite differently from each other. Users must often try multiple software packages

on a BVP to find the one that solves their problem most effectively. This creates two problems for

users. First, they must learn how to specify the BVP for each software package. Second, because

each package solves a BVP with specific numerical algorithms, it becomes difficult to determine

why one BVP package outperforms another. With that in mind, this thesis offers two contributions.

First, this thesis describes the development of the BVP component to the fully featured problem-

solving environment (PSE) for the numerical solution of ODEs called pythODE. This software allows

users to select between multiple numerical algorithms to solve BVPs. As a consequence, they are

able to determine the numerical algorithms that are effective at each step of the solution process.

Users are also able to easily add new numerical algorithms to the PSE. The effect of adding a new

algorithm can be measured by making use of an automated test suite.

Second, the BVP component of pythODE is used to perform two research studies. In the first

study, four known global-error estimation algorithms are compared in pythODE. These algorithms

are based on the use of Richardson extrapolation, higher-order formulas, deferred corrections, and

a conditioning constant. Through numerical experimentation, the algorithms based on higher-

order formulas and deferred corrections are shown to be computationally faster than Richardson

extrapolation while having similar accuracy. In the second study, pythODE is used to solve a newly

developed one-dimensional model of the agglomerate in the catalyst layer of a proton exchange

membrane fuel cell.

ii

Acknowledgements

I thank Dr. Raymond J. Spiteri for giving me the opportunity to be a part of the Numerical

Simulation Laboratory. His guidance, insight, and financial support made this thesis possible. I

thank Dr. Paul H. Muir for his insight into the numerical solution of boundary value problems. His

many contributions toward this thesis are greatly appreciated. I thank Dr. Marc Secanell for his

contributions toward the multi-scale agglomerate model for proton exchange membrane fuel cells

used in this thesis. I thank Dr. Dwight Makaroff, Dr. Kevin Stanley, and Dr. Uri Ascher for their

contributions toward the final form of this thesis.

I thank the members of the Numerical Simulation Laboratory for sharing with me their enthu-

siasm for research and for the many insightful discussions about it.

Last but not least, I thank my partner Carla Gibson for her emotional support and patience. I

thank my parents Luc and Diane Boisvert. Without the endless support and encouragement of my

parents, this thesis would never have been written.

iii

Contents

Permission to Use i

Abstract ii

Acknowledgements iii

Contents iv

List of Tables vi

List of Figures vii

List of Abbreviations viii

1 Introduction 1
1.1 Structure of thesis . 4

2 Numerical Methods For BVPs 5
2.1 Existence and uniqueness of BVP solutions . 6
2.2 Conditioning of BVPs . 10
2.3 Initial value methods . 12
2.4 Global methods . 14
2.5 One-step methods . 17
2.6 Continuous solution methods . 18

2.6.1 An approach based on MIRK formulas . 18
2.6.2 Spline-collocation methods . 19

2.7 Mesh selection . 20
2.8 Solving nonlinear algebraic equations . 21
2.9 Summary . 24

3 A Problem-Solving Environment for BVPs 25
3.1 A review of BVP software packages based on global methods 25
3.2 Problem-solving environments . 28
3.3 The architecture of pythODE . 29
3.4 Design and architecture of the BVP component of pythODE 30
3.5 Using the BVP component of pythODE to solve Bratu’s problem 34
3.6 Summary . 38

4 Numerical Experiments and Applications 39
4.1 Global-error methods . 39

4.1.1 Richardson extrapolation . 39
4.1.2 Higher-order formulas . 40
4.1.3 Deferred corrections . 40
4.1.4 Conditioning constant based algorithm . 41
4.1.5 Adding the global-error estimation algorithms to pythODE 42
4.1.6 Test problems . 43
4.1.7 Numerical results . 44
4.1.8 Conclusions . 47

4.2 Multi-scale agglomerate model for PEMFCs . 48
4.2.1 Problem reformulation . 51

iv

4.2.2 Solving the agglomerate model with pythODE 53
4.2.3 Summary . 56

5 Conclusions And Future Work 57

Appendix: Tables of Global-Error Results for MIRK Formulas of Orders Two,
Four, and Six 59

v

List of Tables

4.1 Constants and design parameters for agglomerate model. 50
4.2 Parameter values of the agglomerate model. 54

1 Results for problem (4.4), MIRK order two. 60
2 Results for problem (4.5), MIRK order two. 60
3 Results for problem (4.6), MIRK order two. 61
4 Results for problem (4.4), MIRK order four. 61
5 Results for problem (4.5), MIRK order four. 62
6 Results for problem (4.6), MIRK order four. 62
7 Results for problem (4.4), MIRK order six. 63
8 Results for problem (4.5), MIRK order six. 63
9 Results for problem (4.6), MIRK order six. 64

vi

List of Figures

3.1 The layered architecture of pythODE. 30
3.2 Computational flow chart of global methods for the numerical solution of BVPs. . . 31
3.3 Instances of classes loaded by the primary solver class. 32
3.4 Using the BVP component of pythODE to solve Bratu’s problem. 36
3.5 pythODE is alerting the user that the dictionary entry ’Number of ODEs’ has not

been defined. 37
3.6 Creating a plot of the solution to Bratu’s problem. 37
3.7 Solution y1 to Bratu’s problem. 38

4.1 Relative execution time of the global error estimates as a function of tolerance for
problem (4.5) when using a second-order MIRK formula. 45

4.2 Relative execution time of the global error estimates as a function of tolerance for
problem (4.4) when using a fourth-order MIRK formula. 46

4.3 Relative execution time of the global error estimates as a function of tolerance for
problem (4.6) when using a sixth-order MIRK formula. 47

4.4 A two-dimensional cross-sectional view of a PEMFC. [30] 49
4.5 Agglomerate of the catalyst layer of a PEMFC. [31] 49
4.6 Concentration of oxygen [O2] in the agglomerate. 55
4.7 Ionic potential φm in the agglomerate. 55

vii

List of Abbreviations

BVP Boundary Value Problem
DAE Differential-Algebraic Equation
IVP Initial Value Problem
GUI Graphical User Interface
ODE Ordinary Differential Equation
MIRK Mono-Implicit Runge–Kutta
NAE Nonlinear Algebraic Equations
PEMFC Proton Exchange Membrane Fuel Cell
PSE Problem-Solving Environment

viii

Chapter 1

Introduction

Boundary value problems (BVPs) for ordinary differential equations (ODEs) are used as math-

ematical models in a wide variety of disciplines including biology, physics, and engineering. For

example, suppose one wishes to determine the deflection of a uniformly loaded beam with variable

stiffness and supported at both endpoints [4]. Letting x be the length of the beam, the deflection

between 1 ≤ x ≤ 2 can be described by the fourth-order ODE

x3y′′′′(x) + 6x2y′′′(x) + 6xy′′(x) = 1, 1 < x < 2, (1.1a)

where y(x) is the deflection of the beam at position x. To ensure that the deflection at both

endpoints is zero, the boundary conditions

y(1) = y′′(1) = y(2) = y′′(2) = 0, (1.1b)

are imposed.

The process of solving BVP (1.1) involves finding a function y(x), 1 ≤ x ≤ 2, that satisfies

both the system of ODEs and the boundary conditions. In general, exact solutions to BVPs are

typically not known. Therefore, researchers often apply numerical methods to a BVP in order to

approximate the solution. Practical implementations of numerical methods for the solution of BVPs

involve the employment of a sequence of complex numerical algorithms. A BVP software package

usually begins with the discretization of a system of ODEs. This process approximates the ODEs

by a system of (generally) nonlinear algebraic equations (NAEs). Next, a BVP software package

typically uses a form of Newton’s method to solve the NAEs; see Section 2.8 for a description of

Newton’s method. This results in solution approximations at discrete points, called mesh points,

in the problem domain. The software package must then estimate and adaptively control some

measure of the error in the numerical solution. Instead of implementing these numerical algorithms

themselves, most researchers rely on existing software to numerically solve a BVP.

At present, there exist numerous high-quality BVP software packages from which to choose.

Some of the more popular software packages include COLSYS [3], COLNEW [7], BVP SOLVER [35], and

TWPBVPC [13]. However, a dilemma arises when deciding which BVP software package to use. All the

1

BVP software packages mentioned above function quite differently from each other. For example,

the manner in which a user specifies the problem differs between the BVP software packages. Both

COLSYS and COLNEW allow ODEs to be specified as systems of m mixed-order ODEs in the form

y(d)(x) = f(x, z(y(x))), a < x < b, (1.2a)

where

y(d)(x) = [y(d1)
1 (x), . . . , y(dm)

m (x)], (1.2b)

f(x, z(y(x))) = [f1(x, z(y(x))), . . . , fm(x, z(y(x)))], (1.2c)

and

z(y(x)) = [y1(x), y(1)
1 (x), . . . , y(d1−1)

1 (x), . . . , ym(x), y(1)
m (x), . . . , y(dm−1)

m (x)], (1.2d)

along with appropriate boundary conditions. In many cases, a user must re-formulate the system

of ODEs so that it is consistent with (1.2). This often requires some algebraic manipulation. Using

(1.1) as an example, let

z(y(x)) =


y1(x)

y′1(x)

y′′1 (x)

y′′′1 (x)

 =


y(x)

y′(x)

y′′(x)

y′′′(x)

 .

The fourth-order ODE can then be specified as

y′′′′1 = f1(x, z(y(x))) =
1− 6x2y′′′1 (x)− 6xy′′1 (x)

x3
, 1 < x < 2.

In the case of other BVP software packages, such as BVP SOLVER and TWPBVPC, the ODEs must be

specified as a system of m first-order ODEs

y′(x) = f(x,y(x)), a < x < b.

A system of mixed-order ODEs can be converted to a system of first-order ODEs. Using (1.1) as

an example, let

y(x) =


y1(x)

y2(x)

y3(x)

y4(x)

 =


y(x)

y′(x)

y′′(x)

y′′′(x)

 .

2

Next, the ODEs can be specified as a system of four first-order ODEs

y′1(x) = f1(x,y(x)) = y2(x), (1.3)

y′2(x) = f2(x,y(x)) = y3(x), (1.4)

y′3(x) = f3(x,y(x)) = y4(x), (1.5)

y′4(x) = f4(x,y(x)) =
1− 6x2y4(x)− 6xy3(x)

x3
. (1.6)

As well as having different problem specifications, all four packages mentioned use different

numerical algorithms to discretize and compute a numerical solution to the BVP. Both COLSYS

and COLNEW use a spline-collocation algorithm to return a piecewise polynomial as a solution; see

Section 2.6.2. However, the bases used to determine the piecewise polynomial are different. In

particular, both BVP SOLVER and TWPBVPC use an algorithm based on mono-implicit Runge–Kutta

(MIRK) formulas to generate a discrete solution; see Section 2.6.1. However, BVP SOLVER makes

the discrete solution a basis for a continuous solution. In contrast, TWPBVPC returns only a discrete

solution, and it couples the MIRK formulas with the use of deferred corrections; see Section 3.1.

Also, all the software packages mentioned above have different error-control strategies. An error-

control strategy generally involves choosing the mesh points in the interval a ≤ x ≤ b to compute a

numerical solution so that the norm of an estimate of the error is less than a user-supplied tolerance.

For example, both COLSYS and COLNEW choose the mesh points in order to minimize an estimate

of the amount by which numerical solution differs from the exact solution, whereas BVP SOLVER

chooses the mesh points in order to minimize an estimate of the amount by which the numerical

solution fails to satisfy the BVP. In contrast, TWPBVPC uses both an error estimate and a measure

of the conditioning of a BVP to choose the mesh points. The error-control strategy of each code is

described in Chapter 3.

Because each BVP software package functions so differently, users must often try multiple

software packages on a BVP to find the one that solves their problem most effectively. Also, users

may wish to use a BVP software package to verify a numerical solution obtained from another BVP

software package. Unfortunately, problems arise when attempting to use multiple BVP packages

to solve the same problem.

Using multiple BVP software packages requires the problem to be re-defined according to the

specification of each package. As a consequence, users must write new code for each package they

choose. This can prove to be a time-consuming task that requires users to learn the usage of each

software package.

When using a BVP software package as a numerical research tool, a different problems arises.

Each of the BVP software packages introduced above is built with the intention of using a single

approach to numerically solve a BVP. In other words, each package forces users to adopt the same

3

discretization algorithm, NAEs solution algorithm, and error-control algorithm on every BVP they

choose to solve. Therefore, if a user wishes to add new numerical algorithms for the purpose of

comparing different algorithms, often a considerable amount of existing code must be modified.

Ideally, a BVP software package should allow users to add additional numerical algorithms

without requiring them to modify a significant portion of existing code. Moreover, a BVP software

package should also allow users to select among different numerical algorithms to solve BVPs. At

present, there exist no known BVP software packages that have these features.

With that in mind, this thesis presents contributions in two forms:

1. This thesis describes the development of a BVP component to the problem-solving environ-

ment (PSE) called pythODE. This PSE offers users many features not presently available in

other BVP software packages. For example, users can directly specify many of the steps used

to numerically solve a BVP. If a numerical algorithm is not already present in the PSE, users

can easily add the algorithm without significant modification of existing code. Easy exten-

sion is made possible by the use of well-known object-oriented design principles [42]. Once an

algorithm is added, its performance can be easily compared against other similar algorithms

by means of an automated test suite.

2. The BVP component of pythODE is used to make two research contributions. First, pythODE is

used to compare the performance of four global-error estimation algorithms within a defect-

control BVP solver. These algorithms are based on the use of Richardson extrapolation,

higher-order formulas, deferred corrections, and a conditioning constant. Richardson ex-

trapolation is a widely used global-error estimation algorithm. Despite the Richardson ex-

trapolation algorithm having similar accuracy to both higher-order and deferred-correction

algorithms, the study shows that the algorithms based on higher-order formulas and deferred

corrections are computationally faster than Richardson extrapolation. Second, pythODE is

used to solve a newly developed one-dimensional model of the agglomerate in the catalyst

layer of a proton exchange membrane fuel cell (PEMFC). The method used to solve the model

will be integrated in the two-dimensional PEMFC simulator FCST [30]. By solving this par-

ticular problem, the usefulness of pythODE for solving real-world problems is demonstrated.

1.1 Structure of thesis

The remainder of the thesis is divided into the following chapters. The theory behind the numer-

ical solution of BVPs is described in Chapter 2. Existing BVP software packages and the newly

developed PSE pythODE are described in Chapter 3. The research contributions are described in

Chapter 4. Finally, conclusions and future work are described in Chapter 5.

4

Chapter 2

Numerical Methods For BVPs

This chapter offers a brief introduction to numerical methods for BVPs. Many of the concepts

introduced in this chapter are used throughout the thesis.

The chapter begins by describing the types of BVPs that are well-suited for numerical methods.

Section 2.1 describes well-known existence and uniqueness theorems for both linear and nonlinear

BVPs. Section 2.2 describes the concept of conditioning for BVPs. The remainder of this chapter

introduces various numerical methods used to approximate solutions to BVPs. The methods used

to solve the BVPs fall into two categories: initial value methods and global methods. Section

2.3 introduces initial value methods. Section 2.4 introduces global methods. Section 2.5 discusses

one-step methods that can be applied within the global-method framework. The final two sections

introduce two important numerical methods used in implementations for BVP software packages.

Section 2.7 introduces a common strategy used for mesh selection. Section 2.8 introduces Newton’s

method to solve systems of NAEs.

Throughout this chapter, first-order linear or nonlinear two-point BVPs are typically considered.

A linear two-point BVP consists of a system of first-order linear ODEs

y′(x) = A(x)y(x) + q(x), a < x < b, (2.1a)

where A : R→ Rm×m and q : R→ Rm, accompanied by a system of m linear two-point boundary

conditions

Bay(a) + Bby(b) = β, (2.1b)

where Ba,Bb are constant m×m matrices and β ∈ Rm. A nonlinear BVP consists of a system of

first-order nonlinear ODEs

y′(x) = f(x,y(x)), a < x < b, (2.2a)

where f : R× Rm → Rm, accompanied by a system m nonlinear two-point boundary conditions

g(y(a),y(b)) = 0, (2.2b)

where g : Rm × Rm → Rm.

5

2.1 Existence and uniqueness of BVP solutions

A discussion of the numerical solution of BVPs typically begins with a close look at the existence

and uniqueness of exact solutions.

Compared to BVPs, the concepts of existence and uniqueness are much better understood for

solutions to initial value problems (IVPs), i.e., a system of ODEs (2.1a) or (2.2a) subject to the

initial condition

y(a) = ya,

where ya ∈ Rm. As a consequence, it is reasonable to attempt to extend the understanding of IVPs

to the domain of BVPs. Therefore, an existence and uniqueness theorem for IVPs [4, Section 3.1]

is first introduced. This theorem, as well as many other theorems presented in this chapter, assume

that the ODE (2.2a) is Lipschitz continuous with respect to y; i.e., there exists a constant L such

that for all (x,y) and (x, z) in a given domain D such that

‖f(x,y)− f(x, z)‖ ≤ L‖y− z‖,

for some norm ‖.‖.

Theorem 2.1.1. Suppose that f(x,y) is continuous on D = {(x,y) : a ≤ x ≤ b, ‖y−ya‖ ≤ ρ} for

some ρ > 0, and suppose that f(x,y) is Lipschitz continuous with respect to y. If ‖f(x,y)‖ ≤M on

D and c = min(b− a, ρ/M), then the IVP has a unique solution for a ≤ x ≤ a+ c.

Using Theorem 2.1.1, it may be possible to determine a value of ya such that a solution to an

IVP exists for a ≤ x ≤ b that also satisfies the boundary conditions of a BVP with (2.1a) or (2.2a)

as the ODE. However, a few issues may arise. For example, it may be possible to have an ODE for

which the IVP has a solution, but the BVP does not. Also, there may be more than one IVP that

satisfies the boundary conditions.

Consider the linear BVP [8]

y′′(x) + y(x) = 0, 0 < x < b, (2.3a)

with boundary conditions

y(0) = 0, (2.3b)

y(b) = B, (2.3c)

for arbitrary b, B ∈ R.

For b 6= nπ, where n is an integer, a unique value of C can be found, and therefore a unique

6

solution

y(x) = C sinx,

exists. The constant C is chosen to satisfy the right boundary condition

C sin b = B. (2.4)

For b = nπ and B = 0, any value of C provides a solution. As a consequence, infinitely many

solutions exist. Finally, for b = nπ and B 6= 0, no solutions exist.

Even though a solution cannot be found that satisfies the boundary conditions for b = nπ and

B 6= 0, an IVP that satisfies the ODEs can still be found. For example, let the problem have the

initial conditions

y(0) = 0,

y′(0) = y′a.

The solution (2.1) satisfies the ODEs with C = y′a satisfying the initial conditions. Therefore, a

solution to the IVP exists for every y′a. The problem, however, is that a solution for the IVP cannot

be extended to the case where the boundary condition is b = nπ and B 6= 0.

The possibility of an infinite number of solutions suggests that the uniqueness part of Theorem

2.1.1 does not carry over to BVPs. The example (2.3) also shows that question of existence for

BVPs is not simple. Therefore, it is worthwhile to take a closer look at the uniqueness of solutions

for both linear and nonlinear BVPs.

Starting with linear BVPs (2.1), the ODE (2.1a) has a known general solution

y(x) = Y(x)s + yp(x), (2.6)

where Y(x) ∈ Rm×m is the fundamental solution to (2.1a) such that

Y(a) = I,

and yp(x) ∈ Rm is the particular solution defined as

yp(x) = Y(x)
∫ x

a

Y−1(t)q(t)dt.

The constant, s ∈ Rm, must be chosen so that (2.6) satisfies the boundary conditions (2.1b) [4,

Section 3.1.2]. In other words, s is a constant such that

Bay(a) + Bby(b) = Ba[Y(a)s + yp(a)] + Bb[Y(b)s + yp(b)] = β.

7

Solving for s results in

s = Q−1

(
β −BbY(b)

∫ b

a

Y−1(t)q(t)dt

)
, (2.7)

where

Q = BaI + BbY(b). (2.8)

Satisfying the boundary conditions depends on determining a value for s. Assuming that a

solution for (2.1a) can be found, then a solution for s strictly depends on the invertibility of Q.

The following uniqueness theorem then holds.

Theorem 2.1.2. Suppose A(x) and q(x) in the linear differential equations (2.1a) are continuous.

Then the BVP (2.1) has a unique solution if and only if the matrix Q is non-singular.

Unfortunately, solutions for first-order nonlinear BVPs (2.2) do not have a nicely defined general

solution such as (2.6). However, some conclusions about the uniqueness of a solution for nonlinear

BVPs can still be made.

Suppose there exists an IVP

w′ = f(x,w), x > a,

with the initial condition,

w(a) = s,

that satisfies the nonlinear boundary conditions (2.2b),

G(s) = g(s,w(b; s)) = 0. (2.10)

The system of equations in (2.10) consists of m NAEs for m boundary conditions. As is the

case for systems of NAEs, there may be no solution, one solution, or many solutions. Therefore,

the number of solutions to (2.10) is consistent with the number of solutions to the nonlinear BVP.

The following theorem is a consequence.

Theorem 2.1.3. Suppose that f(x,y) is continuous on D = {(x,y) : a ≤ x ≤ b, ‖y‖ < ∞} and

satisfies a uniform Lipschitz condition in y. Then the BVP (2.2) has as many solutions as there

are distinct roots s∗ of (2.10). For each s∗, a solution of the BVP is given by

y(x) = w(x; s∗).

Theorem 2.1.3 states that uniqueness of a solution cannot be guaranteed for a given nonlinear

BVP. However, it turns out that a strict uniqueness condition does not prevent the use of numerical

methods from finding solutions to BVPs. In fact, the solutions to BVPs need only be locally unique.

8

Geometrically, local uniqueness can be seen as meaning that there exists a region around a

solution y(x) to a BVP such that no other solution exists in that region [4]. For a solution y(x) to

a BVP, local uniqueness means that there exists a ρ > 0 such that

D = {z : z ∈ C[a, b], sup
a≤x≤b

‖z(x)− y(x)‖ ≤ ρ}, (2.11)

and y is the only member of D that is also a solution to the BVP. In (2.11), z ∈ C[a, b] denotes

that z(x) is continuous throughout [a, b].

Local uniqueness of a solution y(x) for a nonlinear BVP can be demonstrated by considering

another solution ŷ(x) that also satisfies the system of nonlinear ODEs (2.2a) [4, Section 3.3.4], i.e.,

ŷ′ = f(x, ŷ), a < x, (2.12)

such that ŷ(a) = ya + ε, where ε is small. Using a Taylor series, f(x, ŷ) can be expanded about y

to get

f(x, ŷ) = f(x,y) + A(x; y)(ŷ− y) +O(ε2),

where A(x; y) = ∂f
∂y is the Jacobian matrix associated with the nonlinear ODE (2.12) evaluated at

(x; y) and ε = ‖ŷ− y‖. Ignoring the term O(ε2), the system of nonlinear ODEs

z′ = A(x; y)z, (2.13a)

where

z = ŷ(x)− y(x),

can be defined.

Applying a similar treatment to the nonlinear boundary conditions (2.2b) results in

Baz(a) + Bbz(b) = 0, (2.13b)

where

Ba =
∂g(y(a),y(b))

∂y(a)
, Bb =

∂g(y(a),y(b))
∂y(b)

.

The BVP (2.13) is referred to as the variational problem. If a unique solution z(x) ≡ 0 exists

for the variational problem, then the solution y(x) is said to be isolated. It can be shown that

isolated solutions to the variational problem imply local uniqueness [4].

This section concludes with an example of a more explicit existence and uniqueness theorem for

9

second-order nonlinear BVPs of the form

y′′ = f(x, y, y′) a < x < b, (2.14a)

y(a) = Ba, y(b) = Bb. (2.14b)

Theorem 2.1.4. Suppose that f(x, y, y′) is continuous on D = {(x, y, y′) : a ≤ x ≤ b, −∞ < y <

∞, −∞ < y′ <∞} and satisfies a Lipschitz condition on D with respect to y and y′, so that there

exist constants, L,M , such that for any (x, y, y′) and (x, ŷ, ŷ′) in D,

|f(x, y, y′)− f(x, ŷ, ŷ′)| ≤ L|y − ŷ|+M |y′ − ŷ′|.

If

b− a < 4



1
(4L−M2)1/2

cos−1 M
2
√
L
, if 4L−M2 > 0,

1
(M2−4L)1/2

cosh−1 M
2
√
L
, if 4L−M2 < 0, L,M > 0,

1
M , if 4L−M2 = 0, M > 0,

∞, otherwise,

then the nonlinear BVP (2.14) has a unique solution.

A proof for this theorem can be found in Bailey et al. [8]. Interestingly enough, Theorem

2.1.4 implies that the uniqueness of a solution for many nonlinear BVPs depends on the size of the

solution interval [a, b].

2.2 Conditioning of BVPs

In this section, the type of BVPs that are well-suited for solution by numerical methods are de-

scribed. In particular, BVPs for which a small change to the ODEs or boundary conditions results

in a small change to the solution must be considered. A BVP that has this property is said to be

well-conditioned. Otherwise, the BVP is said to be ill-conditioned.

This property is important due to the error associated with numerical solutions to BVPs. De-

pending on the numerical method, a numerical solution ŷ(x) to the linear BVP (2.1) may exactly

satisfy the perturbed ODE

ŷ′ = A(x)ŷ + q(x) + r(x), a < x < b, (2.15a)

where r : R→ Rm, and the linear boundary conditions

Baŷ(a) + Bbŷ(b) = β + σ, (2.15b)

10

where σ ∈ Rm. If ŷ(x) is a reasonably good approximate solution to (2.1), then ‖r(x)‖ and ‖σ‖

are small. However, this may not imply that ŷ(x) is close to the exact solution y(x). A measure of

conditioning for linear BVPs that relates both ‖r(x)‖ and ‖σ‖ to the error in the numerical solution

can be determined. The following discussion can be extended to nonlinear BVPs by considering

the variational problem on small subdomains of the nonlinear BVP [4, Section 3.4].

Letting

e(x) = ŷ(x)− y(x),

then subtracting the original BVP (2.1) from the perturbed BVP (2.15) results in

e′(x) = ŷ′(x)− y′(x) = A(x)e(x) + r(x), a < x < b, (2.16a)

with boundary conditions

Bae(a) + Bbe(b) = σ. (2.16b)

Because (2.16) is linear, the general solution for the linear BVPs (2.6), with s defined in (2.7),

can be applied. However, the form of the solution can be furthered simplified by letting

Θ(x) = Y(x)Q−1,

where Y(x) is the fundamental solution and Q is defined in (2.8). Then the general solution can

be written as

e(x) = Θ(x)σ +
∫ b

a

G(x, t)r(t)dt, (2.17)

where G(x, t) is Green’s function [4],

G(x, t) =

 Θ(x)BaΘ(a)Θ−1(t), t ≤ x,

−Θ(x)BbΘ(b)Θ−1(t), t > x.

Taking norms of both sides of (2.17) and using the Cauchy–Schwartz inequality [4] results in

‖e(x)‖∞ ≤ κ1‖σ‖∞ + κ2‖r(x)‖∞, (2.18)

where

κ1 = ‖Y(x)Q−1‖∞,

and

κ2 = sup
a≤x≤b

∫ b

a

‖G(x, t)‖∞dt.

In (2.18), the L∞ norm, sometimes called a maximum norm, is used due to the common use of this

11

norm in numerical BVP software. For any vector v ∈ RN , the `∞ norm is defined as

‖v‖∞ = max
1≤i≤N

|vi| .

The measure of conditioning is called the conditioning constant κ, and it is given by

κ = max(κ1, κ2). (2.20)

When the conditioning constant is of moderate size, then the BVP is said to be well-conditioned.

Referring again to (2.18), the constant κ thus provides an upper bound for the norm of the error

associated with the perturbed solution,

‖e(x)‖∞ ≤ κ [‖σ‖∞ + ‖r(x)‖∞] . (2.21)

It is important to note that the conditioning constant only depends on the original BVP and not

the perturbed BVP. As a result, the conditioning constant provides a good measure of conditioning

that is independent of any numerical technique that may cause such perturbations. The well-

conditioned nature of a BVP and the local uniqueness of its desired solution are assumed in order

to numerically solve the problem.

2.3 Initial value methods

Initial value methods for BVPs are based on common techniques to numerically solve IVPs. Chapter

2 of Shampine et al. [33] describes numerical methods for IVPs in detail. Such methods can be

used to solve BVPs. The two most common algorithms that employ numerical methods for IVPs

are called simple shooting and multiple shooting.

The simplest way to solve BVPs with initial value methods is by simple shooting. For the BVP

(2.2), simple shooting involves finding a vector of initial values s such that

y(a; s) = s,

and

g(s,y(b; s)) = 0. (2.22)

In order to evaluate (2.22), the associated IVP must be numerically solved from x = a to x = b. To

determine s for nonlinear boundary conditions (2.22), practical implementations of simple shooting

usually combine Newton’s method with some numerical IVP method. In that case, an initial guess

for s is required.

12

From a theoretical viewpoint, the simplicity of simple shooting is attractive. For example, the

theory for solving IVPs is much better understood than for BVPs. As a consequence, it is convenient

to use simple shooting to extend theoretical results for IVPs to BVPs. In fact, the uniqueness

theorem for nonlinear BVPs described in Section 2.1 is an application of simple shooting.

However, simple shooting is not commonly used in practice. This is due to two major factors.

First, there is a possibility of encountering unstable IVPs during the use of simple shooting. An

IVP is unstable if a small change in the initial data, e.g., the initial condition, produces a large

change in the solution. Typically, IVPs with exponentially increasing solution components are

considered unstable [4, Section 3.3]. On the other hand, a well-conditioned BVP can have an

exponentially increasing solution component provided that an appropriate boundary condition at

the right endpoint is present. When using simple shooting on BVPs, unstable IVPs can occur even

when the BVP is well-conditioned [4, Section 4.1.3]. Second, the IVP arising from the application

of simple shooting may only be integrable on some domain [a, c], where c < b [4, Section 4.1.3].

Multiple shooting method attempts to address these issues. In this approach, the solution

domain is subdivided into smaller subdomains

a = x0 < · · · < xN = b. (2.23)

Then, a numerical method for IVPs can be used to solve an IVP on each subinterval

y′i = f(x,yi), xi−1 < x < xi,

yi(xi−1) = si−1,

for i = 1, 2, . . . , N , where si−1 is the initial condition for the IVP on the interval xi−1 < x < xi.

The result is a solution for each subinterval

y(x) = yi(x; si−1), xi−1 ≤ x ≤ xi, i = 1, 2, . . . , N.

The solutions of these systems of IVPs, one for each subinterval, must match at the shared

points of each subinterval and must satisfy the boundary conditions. Thus, a series of patching

conditions must be satisfied,

yi(xi; si−1) = si, xi−1 ≤ x ≤ xi, i = 1, 2, . . . , N − 1,

and

g(s0,yN (b; sN−1)).

The shooting vectors, si, for each subinterval are determined by solving a system of generally

13

NAEs consisting of the patching equations and boundary conditions. Similar to simple shooting, if

the BVP is nonlinear, then an IVP method is often combined with Newton’s method to determine

the final solution [33, Section 3.4].

Although multiple shooting attempts to address many of the problems of simple shooting, it is

still faced with the task of integrating unstable ODEs. As a consequence, multiple shooting requires

a large number of subintervals for BVPs that have exponentially increasing solution components

[4]. As a consequence, the method becomes inefficient when compared to global methods, which

form the topic of the next section.

2.4 Global methods

Global methods for solving BVPs generally consist of three steps. Each step is introduced by using

a simple global method, called a finite-difference method, to solve a specific second-order linear

BVP [4, Section 5.1.2]

y′′(x) + sin (x) y′(x) + y(x) = x, 0 < x < 1, (2.26a)

with separated two-point linear boundary conditions,

y(0) = 1, y(1) = 1. (2.26b)

The first step involves choosing a mesh

0 = x0 < x1 < · · · < xN = 1.

For simplicity, a uniform mesh is chosen; i.e., xi = ih, i = 0, 1, . . . , N , and h = 1/N .

The second step involves setting up a system of equations for which the unknowns are discrete

solution values yπ = {yi}Ni=0 at the mesh points, i.e., yi ≈ y(xi). The finite-difference method

discretizes the ODE by replacing the derivatives of (2.26a) with finite-difference approximations.

These approximations can be derived by recalling that y(xi +h) can be expanded by the use of the

Taylor series

y(xi + h) = y(xi) + hy′(xi) +
h2

2
y′′(xi) +

h3

6
y′′′(xi) +O(h4). (2.27)

In much the same way, y(xi − h), can be expanded to

y(xi − h) = y(xi)− hy′(xi) +
h2

2
y′′(xi)−

h3

6
y′′′(xi) +O(h4). (2.28)

A finite-difference approximation for the first-order derivative can now be determined by subtracting

14

(2.28) from (2.27) and re-arranging to get

y′(xi) =
y(xi+1)− y(xi−1)

2h
+O(h2), (2.29a)

where xi±1 = xi±h. A finite-difference approximation for second-order derivative can be determined

by substituting (2.29a) into (2.27) to get

y′′(xi) =
y(xi+1)− 2y(xi) + y(xi−1)

h2
+O(h2). (2.29b)

To obtain the system of equations for the unknowns, the derivatives of (2.26a) are replaced with

finite-difference approximations (2.29) at the internal mesh points

yi+1 − 2yi + yi−1

h2
+ sin(xi)

yi+1 − yi−1

2h
+ yi = xi, i = 1, 2, . . . , N − 1,

and the boundary conditions yield

y0 = 1, yN = 1.

The result is a system of N + 1 linear equations

Ayπ = b, (2.30)

where

A =



a0 c0 0 0 0

b1 a1 c1 0 0

0 b2 a2 c2 0 . . . 0
... 0

.
...

...
...

. 0

0 0 bN−1 aN−1 cN−1

0 0 bN aN


,

ai = 1− 2
h2
, bi =

1
h2
− sin(xi)

2h
, ci =

1
h2

+
sin(xi)

2h
, i = 1, 2, . . . , N − 1, (2.31)

a0 = aN = 1, c0 = bN = 0,

and

yπ = (y0, y1, . . . , yN)T , b = (1, x1, . . . , xN−1, 1)T .

The final step involves solving (2.30) to determine a discrete numerical solution.

Although it has been shown that this method can be used to numerically solve the BVP (2.26),

15

little has been said about the performance of the method. Ideally, the size of the global error

|ei| = |y(xi)− yi|, i = 0, 1, . . . , N,

must approach zero as h approaches zero. This property is called convergence. This section is con-

cluded by showing that the finite-difference method described in this section is indeed convergent.

Convergence depends on two conditions.

First, the local truncation error must approach zero as h approaches zero. The local truncation

error is defined as

τ i[y] = Lπy(xi),

where Lπ is the differential operator. For this particular problem

Lπy(x) = Ψ(y(x))− x,

where Ψ(y(x)) represents the method used to numerically solve the BVP. In this case,

Ψ(y(x)) =
y(x+ h)− 2y(x) + y(x− h)

h2
+ sin(x)

y(x+ h)− y(x− h)
2h

+ y(x).

Considering the finite-difference methods used for the derivative, the maximum local truncation

error is

τ [y] = max
i=1,2,...,N−1

‖τi[y]‖ ≤ ch2, (2.32)

where C is some constant. From the inequality (2.32), it is clear that τ [y] approaches zero as h

approaches zero. As a consequence, this method is said to be consistent and of order two. In

general, a method is said to be of order p if the local truncation error is proportional to hp.

Second, the finite-difference method must be shown to be stable. A method is stable if for a

given mesh, there exists a stepsize h0, such that for all h < h0

‖yi‖ ≤ K max {‖y0‖, ‖yN‖, max
i=1,2,...,N−1

‖Ψ(yi)‖}, i = 1, 2, . . . , N − 1, (2.33)

and K is a constant [4]. In the case of this example, the inequality (2.33) holds as long as

‖A−1‖ ≤ K. (2.34)

Once consistency and stability are established for a numerical method, convergence follows

[4, Page 190]. Convergence for this particular finite-difference method can be shown as follows.

16

Applying the method Ψ to the global error ei, i = 1, 2, . . . , N − 1, results in

Ψ(ei) = Lπy(xi) = τ i[y], (2.35)

e0 = eN = 0.

Using (2.35), along with the inequalities (2.33) and (2.32), the inequality

|ei| ≤ Kτ [y] ≤ Kch2, i = 1, 2, . . . , N − 1,

can be obtained. Therefore, as h approaches zero so does the global error, and thus the numerical

method is convergent.

2.5 One-step methods

The finite-difference method from the previous section requires a tridiagonal system of linear equa-

tions to be solved. A one-step method has the form

yi+1 − yi
hi

= Ψ(yi,yi+1;xi, hi),

where hi = xi+1−xi. These methods compute a discrete solution y0,y1, . . . ,yN at the mesh points

defined by (2.23). Because the discretization on subinterval i only depends on the unknowns i and

i+1, implementations of one-step methods can take advantage of the structure of the corresponding

matrix A to solve the system of equations more efficiently than those from the finite-difference

method [5].

This section begins by using a one-step method, called the trapezoidal rule, to solve linear BVPs

[5, Section 8.1]. Afterward, the trapezoidal rule is extended to nonlinear BVPs.

The trapezoidal rule is obtained by defining

Ψ(yi,yi+1;xi, hi) =
1
2

[f(xi,yi) + f(xi+1,yi+1)], i = 0, 1, . . . , N − 1.

Applying the trapezoidal rule to the linear BVP (2.1) results in the system of linear equations

[
− 1
hi

I− 1
2
A(xi)

]
yi +

[
1
hi

I− 1
2
A(xi+1)

]
yi+1 =

1
2

[q(xi) + q(xi+1)] , i = 0, 1, . . . , N − 1.

17

Re-writing the linear equations in matrix form results in



S0 R0 0 0

0 S1 R1 0 . . . 0
... 0

.
...

...
...

. 0

0 0 SN−1 RN−1

Ba 0 0 Bb





y0

y1

...

...

yN−1

yN


=



v0

v1

...

...

vN−1

β


,

where

Si = − 2
hi

I−A(xi), Ri =
2
hi
−A(xi+1), vi = q(xi) + q(xi+1), i = 0, 1, . . . , N − 1.

The structure of the matrix is independent of the BVP and is referred to as a bordered almost-

block-diagonal matrix [4].

Using the trapezoidal rule for nonlinear BVPs results in a system of NAEs. The system can be

solved numerically by applying Newton’s method.

2.6 Continuous solution methods

The methods described in the previous section return discrete numerical solutions to BVPs. In this

section, methods that return a (continuous) piecewise polynomial as the numerical solution to the

BVP (2.2) are described.

In particular, two higher-order one-step methods are described in this section. First, a contin-

uous mono-implicit Runge–Kutta (MIRK) approach for first-order system of ODEs is described in

Section 2.6.1. Second, spline-collocation methods for mixed-order ODE systems are described in

Section 2.6.2.

2.6.1 An approach based on MIRK formulas

In this section, a method based on MIRK discretization formulas is described. This method can be

applied to the BVP (2.2) [9]. This method determines numerical approximations yi to the solution

values y(xi) at each of the points in the mesh (2.23).

The MIRK discretization formulas have the form

ϕi+1(yi,yi+1) = yi+1 − yi − hi
s∑
j=1

bjf(xi + cjhi,Yj) = 0, i = 0, 1, . . . , N − 1, (2.36)

18

where

Yj = (1− vj)yi + vjyi+1 + hi

j−1∑
k=1

aj,kf(xi + ckhi,Yk), j = 1, 2, . . . , s, (2.37)

are the stages of the MIRK method.

The coefficients, vj , bj , aj,k, j = 1, 2, . . . , s, k = 1, 2, . . . , j − 1, define the MIRK method, and

cj = vj+
j−1∑
k=1

aj,k. A system of NAEs is generated that consists of equations (2.36) and the boundary

conditions (2.2b). The values yi are determined by solving the system of NAEs.

Once the yi values are determined, a piecewise polynomial, S(x) ∈ C1[a, b], can be generated

by using a continuous MIRK formula. On the subinterval [xi, xi+1], S(x) takes the form

S(xi + θhi) = yi + hi

s∗∑
j=1

bj(θ)f(xi + cjhi,Yj), 0 ≤ θ ≤ 1,

where s∗ ≥ s. The polynomials bj(θ) are defined by the particular continuous MIRK method used.

Because s∗ ≥ s, additional stages may be required to determine S(x). The additional stages have

the form of (2.37).

The coefficients for both discrete and continuous MIRK formulas of order two, four, and six

can be found in Muir [24]. These particular MIRK formulas have an important property worth

discussing.

The MIRK formulas [24] perform equally well when the solution modes of the ODEs are either

increasing or decreasing. These formulas are called symmetric formulas. Unlike initial value meth-

ods, for which there is a well-defined direction of integration, global methods have no preferred

direction of integration. This is particularly important for BVPs because information about the

solution comes from more than one point, unlike IVPs [33, Section 3.4].

Also, MIRK methods have a distinguishing property when compared to other implicit Runge–

Kutta methods. Unlike many implicit methods, MIRK methods allow the stage computations to be

evaluated explicitly. On the other hand, general implicit methods require the stages to be evaluated

implicitly. There are two standard approaches when dealing with this issue. The simplest approach

is to determine the stages as part of the system of NAEs. An alternative approach is that the

implicit stages can be expressed in terms of yi and yi+1. This is often referred to as parameter

condensation [5, Section 8.3].

2.6.2 Spline-collocation methods

In the previous section, a method that solves systems of first-order ODEs with two-point boundary

conditions is presented. Recall that although these methods can be used to solve higher-order

ODEs, the system of mixed-order ODEs must first be converted to a system of first-order ODEs.

This results in a larger system of ODEs with additional dependent variables. It is possible to derive

19

a class of Runge–Kutta methods designed to handle higher-order ODEs directly. MIRK methods

for second-order ODEs are an example of one such class [25].

In this section, a class of methods called spline-collocation methods [4, Section 5.6.3] that

directly solve mixed-order ODEs (1.2a) with appropriate boundary conditions is described. A

spline-collocation method produces an approximation to the solution of a BVP in the form of a

piecewise polynomial

S(x) =
M∑
j=1

αjφj(x), a ≤ x ≤ b, (2.38)

where αj are unknown coefficients and φj(x) are linearly independent basis functions. The param-

eter M is the number of free coefficients given by

M = Nkm+m∗,

where k is the number of collocation points in each subinterval, m∗ =
∑m
i=1 di with di defined in

(1.2a), and N is the number of subintervals of the mesh that partitions [a, b].

A suggested basis φj(x) is the B-splines basis [4, Section 5.6.3]. However, it should be noted

that other basis functions have shown improvements over B-splines [7].

For a given BVP, the parameters αj are determined by requiring S(x) to satisfy them∗ boundary

conditions and k ×N collocation conditions

S(d)(xij)− f(xij , z(y)) = 0, i = 1, 2, . . . , N, j = 1, 2, . . . , N, (2.39)

where xij = xi + hicj are the collocation points and 0 ≤ c1 ≤ · · · ≤ ck ≤ 1.

Software implementations of collocation methods, e.g., COLSYS, use Gauss points for {cj}kj=1.

For a method that has s stages, these points are chosen such that the order of the method satisfies

p = 2s [3, Section 2.6.1]. Similar to the MIRK methods presented in the previous section, methods

that use Gauss points are symmetric.

If the BVP is linear, then the linear boundary conditions and (2.39) form a system of linear

equations. The variables αj from (2.38) can then be determined by solving a linear system with

a coefficient matrix A ∈ RM×M called the collocation matrix. However, if the BVP is nonlinear,

then Newton’s method must be applied to the system of equations.

2.7 Mesh selection

Once a numerical solution is determined, a measure of defect, i.e., the amount by which the numer-

ical solution fails to satisfy the original system of ODEs, or a measure of error can be associated

20

with each subinterval of a mesh (2.23). An example of a measure of error on each subinterval is

ei = max
xi−1≤x<xi

‖y(x)− S(x)‖, i = 1, 2, . . . , N.

Often, the goal of a mesh selection strategy is to determine a mesh such that for each subinterval

of the mesh, an estimate of ei is less than a user-supplied tolerance. For the purpose of efficiency

however, a mesh selection strategy often attempts to find a mesh such that an estimate of the error

for each subinterval is as close to the user-supplied tolerance as possible. By doing so, the process

of determining a numerical solution can use the least number of mesh points possible. In contrast,

if a mesh selection strategy determines a mesh such that the estimated error for each subinterval is

well below the user-supplied tolerance, a numerical solution would exceed the required accuracy at

the cost of additional mesh points and therefore additional computational time. The mesh selection

strategy can therefore greatly affect the overall performance of a BVP software implementation.

There exist a number of mesh selection strategies; one popular strategy is called equidistribution

[3, Section 9.1.1]. The equidistribution algorithm requires an estimate of the error of a numerical

solution for each subinterval of the mesh upon which the numerical solution is based. The estimate

of the error is then used to suggest a new mesh such that the estimated error for each subinterval

on the new mesh is approximately equal to the user-supplied tolerance. This may involve adding or

deleting mesh points as well as redistributing the points already in the mesh. Because an estimate

of the error is used, several attempts at equidistribution, along with finding a discrete solution for

each attempt, take place before a satisfactory mesh is found.

2.8 Solving nonlinear algebraic equations

Once a mesh is chosen, a discrete numerical solution must be determined. In order to determine a

discrete solution, many of the methods described in the previous sections require a system of NAEs

to be solved.

Using the MIRK method as an example, a discrete solution is evaluated by solving the system

of (N + 1)m equations

Φ(Y) ≡


ϕ1(y0,y1)

...

ϕN (yN−1,yN)

g(y0,yN)

 = 0, (2.40)

where Y = [y0, . . . ,yN] is the discrete solution vector and

ϕi = yi − yi+1 + hiΨ(yi,yi+1;xi, hi),

21

where Ψ is based on a MIRK method. The function Φ(Y) is often called the residual function [19].

Unlike the situation for systems of linear equations, there is no known method, even in principle,

to determine an exact solution to a given system of NAEs. Instead, a numerical algorithm must be

used to approximate a solution. Software implementations of global methods for BVPs often rely

on a form of Newton’s method for this task. In this section, Newton’s method is briefly described.

Newton’s method approximates a solution to (2.40) by iteratively evaluating

Yν = Yν−1 −Φ′(Yν−1)−1Φ(Yν−1), ν = 1, 2, . . . ,

where Yν is the solution after the νth Newton iteration, Y0 is a user-supplied initial guess, and

Φ′(Yν−1) =
∂Φ
∂Y

∣∣∣∣
Y=Yν−1

is the Jacobian matrix evaluated at Yν−1.

In practice, the inverse of the Jacobian matrix is not computed explicitly. Instead, the linear

system

Φ′(Yν−1)δν = −Φ(Yν−1), (2.41)

is solved [19]. Then the next Newton iterate Yν is determined from

Yν = Yν−1 + δν ,

where δν is often known as the Newton direction for the νth Newton iteration.

Newton iterations continue until a termination criterion is met. For a variety of applications,

many different termination criteria exist [19]. BVP software packages often use the scaled termi-

nation criterion

‖δν‖ ≤ tol ‖Yν + 1‖∞, (2.42)

where tol is a user-supplied accuracy tolerance.

Newton’s method is said to converge when condition (2.42) is satisfied. In practice, successful

convergence is largely dependent on the user-supplied initial guess. In many cases, a poor initial

guess leads to a Newton direction that overshoots the actual solution. For example, the function

F (x) = tan−1(x),

has a root x = 0. Applying Newton’s method with an initial guess of x = 10, results in a sequence

of values for x

10,−138, 2.9× 104,−1.5× 109, 9.9× 1017.

22

It becomes quickly apparent that Newton’s method is not converging to the solution [19].

The problem of overshooting can often be solved by only applying a fraction of a Newton

direction, i.e.,

δ̂ = λδν , 0 ≤ λ ≤ 1,

where λ is known as the damping factor. A Newton iteration with λ = 1 is referred to as an

undamped Newton iteration. The method used to determine the damping factor is referred to as

the global-convergence method. Employing such a method reduces the importance of the quality of

the initial guess on the overall success of Newton’s method. Therefore, this section concludes with

a description of one such global-convergence method, called damped Newton’s method, often used

by BVP software packages [4, Chapter 8].

The damped Newton’s method determines a damping factor such that the natural criterion

function

g(λ) =
1
2

∥∥Φ′(Yν−1)−1Φ(Yν−1 + λδν)
∥∥2
,

satisfies the condition

g(λ) ≤ (1− 2λσ) g0, (2.43)

where

g0 = g(0) =
1
2
‖δν‖2,

and σ = 0.01. Condition (2.43) ensures that any damping factor used to evaluate Yν results in a

reduction in the size of the residual.

A damping factor that satisfies condition (2.43) is determined iteratively, for each Newton

iteration, by the use of a quadratic interpolating polynomial of the natural criterion function. The

interpolating polynomial has a minimum at

λη =
λ2
η−1g0

(2λη−1 − 1)g0 + g(λη−1)
, (2.44)

where λη is the ηth damping factor of the global-convergence method [4, Section 8.1.1]. In practice

however, (2.44) may result in a damping factor that differs too much from the previous damping

factor λη−1. With that in mind, the damping factor for global-convergence iteration η is chosen as

λη := max (τλη−1, λη) ,

where τ = 0.1. The global-convergence iterations continue until an appropriate damping factor is

found or λη < λmin. The value λmin is the smallest allowable damping factor. At that point, the

global-convergence method is deemed to have failed. A suggested value for λmin is 0.01 [4].

Overall, the damped Newton’s method can be computationally expensive. A system of linear

23

equations must be solved every iteration of the global-convergence method. To reduce the number

of these iterations, an estimate of the initial damping factor λ0 can be made as close to the desired

damping factor as possible. In order to do so, the information from previous Newton iterates can

be used by letting

λ̃η =
‖δν−1‖

‖δν −Φ′(Yν−2)−1Φ(Yν−1)‖
λη−1,

and set the initial damping factor to

λη,0 = max
(
λmin,min

(
λ̃η, 1

))
.

2.9 Summary

In Chapter 2, certain BVPs that are well-suited for solution with numerical methods are described.

In particular, numerical methods should be only applied to BVPs that are well-conditioned and

have a locally unique solution.

In order to approximate a solution to a BVP, either an initial value method or a global method

can be used. For initial value methods, simple shooting is desirable from a theoretical perspective.

However, the method is rarely used in practice due to practical concerns. Multiple shooting over-

comes many of these concerns. However, even multiple shooting can be problematic for certain

BVPs. With that in mind, global methods are used for many numerical BVP software packages.

A simple finite-difference scheme, introduced in Section 2.5, is an example of a global method.

However, the scheme is not well-suited as a general BVP solver . In contrast, both MIRK schemes

and collocation schemes, introduced in Section 2.6, are better-suited to handle a greater variety of

BVPs. The chapter concludes with a discussion of mesh selection and Newton’s method to solve

NAEs. Both of these algorithms are vital to both the efficiency and robustness of a numerical BVP

software package. Many of the numerical concepts introduced in this chapter are used in the BVP

component of pythODE, which is the subject of the next chapter.

24

Chapter 3

A Problem-Solving Environment for BVPs

This chapter introduces a problem-solving environment dedicated to the numerical solution of

ODEs called pythODE. The PSE consists of a BVP component and an IVP component.

The BVP component of pythODE is one of the primary contributions of this thesis. This compo-

nent allows users to specify how each step of the numerical solution process of a BVP is performed.

Therefore, the BVP component consists of a collection of numerical algorithms from which users

can choose. Most of these algorithms are commonly found in other BVP software packages. How-

ever, they have been written in such a way to allow them to fit within the modularized framework

of the PSE.

The IVP component is being developed in parallel to the BVP component of pythODE. However,

because IVPs are not the focus of this thesis, the IVP component is not considered further.

The remainder of this chapter can be divided into the following sections. Section 3.1 describes

existing BVP software packages. Section 3.2 introduces the features behind modern PSEs. Section

3.3 describes the architecture of pythODE. Section 3.4 describes the BVP component of pythODE.

Section 3.5 demonstrates how to solve Bratu’s problem with the BVP component of pythODE.

3.1 A review of BVP software packages based on global

methods

In this section, some existing BVP software packages that use global methods to numerically solve

BVPs are reviewed. The software packages are categorized according to the method of error control

that is used.

This section begins with BVP software packages that attempt to return a continuous approxi-

mate solution, S(x), such that some norm of the global error

e(x) = y(x)− S(x), a ≤ x ≤ b, (3.1)

where y(x) is the exact solution, is less than a user-specified tolerance. Such packages are said to

employ global-error control. Of course, the exact solution of a given BVP is generally not known.

25

Therefore, these BVP software packages must estimate the global error. All the global-error BVP

software packages mentioned in this section use Richardson extrapolation to estimate global error

[4, Section 5.5.2]. Also, these software packages choose a mesh such that the error is equidistributed

across the entire mesh.

The global-error control software package COLSYS is one of the earliest BVP software packages to

use global methods to numerically solve BVPs. The software uses a B-spline collocation algorithm

to produce a piecewise polynomial to represent the numerical solution of the BVP [3]. A later

version of COLSYS, called COLNEW, replaces the B-Splines with a monomial representation [26]. This

modification results in an improvement in the performance of COLNEW over COLSYS [7]. Additional

modifications were made to COLNEW to extend the problem class of BVPs into the realm of boundary

value differential-algebraic equations (DAEs) [6]. The resulting software package, called COLDAE

[6], demonstrates the effectiveness of applying techniques for the numerical solution of BVPs to

boundary value DAEs.

The language Fortran 77 was used to create COLSYS, COLNEW, and COLDAE. This language lacks

features such as user-defined data types, dynamic memory allocation, and default parameters for

functions. As a result, the interfaces for all three BVP software packages are complex. They each

require users to enter over 15 function parameters to use the primary solver routine.

The next two software packages attempt to return a numerical solution such that a measure

of the local truncation error on each subinterval is less than a user-supplied tolerance. The BVP

software packages TWPBVP and TWPBVPC [13] use MIRK discretization formulas to return a discrete

numerical solution to the BVP. Both software packages use a deferred-correction approach based

on the use of higher-order MIRK formulas [14] in order to return a more accurate solution than the

solution obtained from using the discretization formulas alone. The deferred-correction approach

also yields estimates of the local truncation error. These software packages return only a discrete

solution approximation defined at the mesh points that partition the problem domain. The software

package TWPBVPC uses a novel approach to mesh selection that involves estimating the conditioning

of the BVP when selecting a new mesh [12]. The software then uses a combination of local truncation

error and a conditioning constant estimate for mesh selection. As a consequence, TWPBVPC is able

to solve challenging problems using fewer mesh points than TWPBVP [21]. Both TWPBVP and TWPBVPC

use a local refinement algorithm to determine each new mesh [21].

The language Fortran 77 was also used to create TWPBVP and TWPBVPC. The interface for both

of these software packages are complex; users must enter 40 parameters to use the primary solver

routine.

26

The remaining software packages mentioned in this section use a backwards-error approach to

error control [34]. This involves estimating the maximum of a norm of the defect

r(x) = S′(x)− f(x,S(x)),

where S(x) is again the continuous numerical solution and where the ODEs is the first-order system

y′ = f(x,y(x)). A C1-continuous numerical solution is required in order for such BVP software

packages to compute the defect at several points between mesh points [17] and thereby return an

estimation of the defect. These BVP software packages are said to employ defect-control.

In a similar sense to the other types of BVP software packages, defect-control software packages

return a solution only if the norm of the defect is less than a user-specified tolerance. There is a

clear benefit to controlling the defect rather than the global error. Defect-control software packages

are able to estimate the norm of the defect more directly, even under circumstances for which

the global-error estimate is not valid. There is however a significant disadvantage to using defect

control. The defect is only indirectly related to the global error. Therefore, it is possible for a

defect-control software package to return a solution that satisfies the user-specified tolerance for

the norm of the defect while the global-error norm remains large. In the most extreme cases,

a defect-control software package may return a solution to a BVP that has no solution. These

solutions have been called pseudo-solutions [34].

Both the defect-control software packages MIRKDC and BVP SOLVER use a continuous MIRK

approach. A discrete solution is determined by MIRK formulas and then forms the basis for the

continuous numerical solution. One of the primary differences between the two software packages is

the interface. The interface for MIRKDC is considerably more complicated than that of BVP SOLVER.

This is primarily a consequence of the implementation languages. The package MIRKDC is written in

Fortran 77, whereas, BVP SOLVER is written in Fortran 90/95 and therefore has a simpler interface

due to the use of default parameters, dynamic memory allocation, and user-defined data types. In

the case of BVP SOLVER, users must use only a four-parameter initialization function and a three-

parameter solver function. The software package BVP SOLVER also includes several features not

found in MIRKDC. For example, BVP SOLVER provides users with an optional a posteriori global-

error estimate through the use of Richardson extrapolation [4].

The final two BVP software packages discussed in this section are written in Matlab. The

software package bvp4c also uses a fourth-order MIRK continuous approach to determine a discrete

and continuous solution. Because bvp4c is written in Matlab, it comes bundled with a simple

interface that can be used in conjunction with the many numerical algorithms found in Matlab.

However, users are unable to choose which numerical algorithms are used within bvp4c.

The other Matlab BVP software package is called bvp5c; it attempts to control both the global

error and the defect. The software bvp5c uses a four-point, fifth-order Labatto formula to determine

27

a continuous numerical solution to the BVP [20]. Similar to the other software packages mentioned,

bvp5c controls the defect. However, as a consequence of the particular four-point Labatto formula,

the scaled defect has the same order of convergence as the true error. Therefore, the true error

asymptotically approaches the scaled defect [20]. As a consequence, when the norm of the defect

is less than a user-supplied tolerance, so is an appropriately scaled norm of the global error.

3.2 Problem-solving environments

In order for a software package to be considered a PSE, it must have a specific set of features

[28]. For example, a PSE should allow users to enter problems by using a language familiar to

the problem domain. The language of the PSE is therefore said to be domain-specific. Also, a

PSE should allow for the automatic selection of algorithms used to solve a problem, making the

actual act of setting up to solve a problem as simple as possible. However, a PSE should still

remain flexible by providing users with the ability to choose between different algorithms to solve

a problem. Finally, a PSE should be expandable. Users should be able to easily add their own

algorithms to the software package existing catalogue of numerical algorithms.

Software packages that are also PSEs are a powerful tool for a wide range of users. For example,

users who have little programming experience are still able to use a PSE to solve problems. They

simply enter the problem into the PSE in the domain-specific language with which they are already

familiar. If a user has little knowledge of the methods used to solve the problem, they can use

a PSE to determine a solution without being forced to extensively study the solution methods.

Finally, users can easily develop and compare the performance of various solution methods on a

given class of problems within a PSE.

Today, there exists a variety of PSEs for a wide range of problems. Widely used PSEs for

general-purpose numerical computations include MATLAB [40], Mathematica [39], and MAPLE [40].

PSEs for a more specific problem class include COMSOL [38] for the numerical solution of PDEs and

pythNon [37] for the numerical solution to systems of NAEs.

In regards to BVPs, none of the previously discussed BVP software packages can be considered

a PSE. Ideally, a PSE dedicated to numerical solution of BVPs should allow users to select how

each component of the solution procedure is performed. For example, users should be able to select

which discretization algorithm, error-control algorithm, and nonlinear solution algorithm is used to

solve a BVP. The remainder of this chapter describes a software package that offers the features of

a PSE to the user.

28

3.3 The architecture of pythODE

This section describes the architecture of pythODE. The pythODE PSE is designed using a layered

architecture [15]; see Figure 3.1. Software packages built with a layered architecture consist of

components that can be neatly divided into layers. An individual layer depends only on itself or

the layers below it [15, Chapter 4]. The two bottom layers of pythODE are described in this section.

The BVP component of the top layer is the subject of the next section.

The bottom layer consists of Python, the language used to write the vast majority of the modules

for pythODE. Python is a popular high-level language used in a wide variety of software applications.

Similar to Java, software written in Python runs on top of a virtual machine that is available for

many popular operating systems, including Windows, Mac OS X, and Linux. The virtual machine is

used to execute source code written in Python in an interpreter-based manner. However, the code

can be compiled before execution to increase performance. Despite the increase in speed, the code

still runs more slowly than code written with fully compiled languages such as Fortran or C/C++.

However, the use of a virtual machine greatly adds to the portability of software written in Python.

There are a variety of other languages from which to choose from to create a PSE. Recall from

the previous section, most BVP software packages are written in Fortran and a few are written in

Matlab. However, Python lacks high-quality BVP software written in the Python language itself.

There have, however, been successful attempts at creating Python interfaces for existing Fortran

BVP software [10]. However, although the user interfaces have been greatly improved, the BVP

software packages are still used in the same manner as the original software. Therefore, they fall

short of what a PSE should be. In other words, although the software usability has been greatly

increased, the software still lacks flexibility and expandability. Instead, high-level features of the

Python programming language are used to create a BVP software package that is consistent with

the definition of a PSE, given in the previous section.

The middle layer contains Scipy [23] . The library Scipy consists of multiple routines and

data types commonly used in scientific computing. Many of the data types, such as the multi-

dimensional array object used throughout pythODE, were imported from Numpy [2], the package

originally designed to allow Python to perform basic scientific computing. However, Scipy adds

many additional modules that broaden Python’s usefulness in scientific computing. Many of the

Scipy modules consist of high-performance Fortran routines interfaced with Python through the

use of F2py [27], a tool that automatically builds interfaces between the two languages. For ex-

ample, the linear-algebra routines used in Scipy are originally from the Fortran high-performance

linear-algebra library LAPACK [1].

29

pythODE

Scipy

Python

Figure 3.1: The layered architecture of pythODE.

3.4 Design and architecture of the BVP component of pythODE

At present, the BVP component of pythODE solves systems of first-order ODEs

y′ = f(x,y(x)), a < x < b, (3.2a)

where f : R × Rm → Rm and y : R → Rm. The software allows for non-separated, two-point

boundary conditions

g(y(a),y(b)) = 0, (3.2b)

where g : Rm × Rm → Rm.

The remainder of this section describes the design and architecture of the BVP component of

pythODE.

The BVP component of pythODE is designed with the goal of completely modularizing the in-

dividual numerical algorithms used to solve a BVP. Fortunately, the computational flow of global

methods can be neatly divided into individual numerical algorithms. See Figure 3.2 for the com-

putational flow chart. The BVP component of pythODE allows user to select which algorithm they

wish to use for each stage of the numerical solution process.

30

ODEs

Solution

Initial
Guess

Initial
Mesh

Apply
Discretization

Formulas

Apply
Newton's
Method

Estimate
Error or

Maximum Defect

Mesh
Selection

Boundary
Conditions

User-Supplied
Tolerance
Satisfied?

Yes

No

Figure 3.2: Computational flow chart of global methods for the numerical solution of BVPs.

31

Well-known object-oriented principles are used to achieve the goal of modularization. Each

individual numerical algorithm is implemented as a separate class. Each class is required to imple-

ment class methods from an abstract class of the numerical algorithm category. By doing so, easy

expansion of the PSE without modification of existing code is supported. For example, users who

wish to add an error-estimation algorithm can create child class to an abstract error-estimation

class. In Figure 3.3 , a BVP solver class loads class instances of all numerical algorithms selected

by the user.

Solver
Class

Mesh
Selection

Discretization
Formulas

NAE Solver

Error/Defect
Estimation

Error/Defect
Weights

Figure 3.3: Instances of classes loaded by the primary solver class.

Of course, once users add a new numerical algorithm to the BVP component of pythODE,

they may wish to compare the performance of their algorithm against several existing algorithms.

Usually, this involves using the algorithm to solve several test problems. Determining which BVPs

are good candidates for test problems often proves to be difficult. The problem must require enough

computational time to provide a usable measure of performance. However, instead of forcing users

to search for test problems, the BVP component of pythODE comes packaged with an automated

test suite that consists of a large collection of well-known BVPs. As a consequence, once users

implement a new algorithm, they are able to compare the performance of their numerical algorithm

immediately against other existing algorithms.

This section concludes by describing each category of the numerical algorithms found in Figure

3.3 and how they relate to rest of the BVP component of pythODE. Users are able to choose which

algorithms they wish to use for each category. If they do not, the BVP component of pythODE

selects a default algorithm.

32

• Mesh Selection: Users have the option to choose from different mesh-selection algorithms.

The default behaviour of the BVP component of pythODE uses two mesh-selection algorithms.

The primary mesh-selection algorithm is one that uses information about either the error or

the problem to determine a mesh that meets a user-supplied error tolerance. A secondary

mesh-selection algorithm is used if adequate information is unavailable for the primary mesh-

selection algorithm, e.g., the lack of a useful error estimate. By default, the BVP component

of pythODE uses mesh equidistribution as the primary mesh-selection algorithm and simply

doubles the mesh as the secondary mesh-selection algorithm.

• Discretization Formulas: Users are able to select the discretization algorithms used to

numerically solve a BVP. In many cases, the discretization algorithm is part of a continu-

ous algorithm, and therefore this algorithm also provides interpolation formulas required for

the continuous solution. If the algorithm does not provide a continuous solution, the BVP

component of pythODE provides users with interpolation options to make the solution con-

tinuous. At present, pythODE uses a continuous fourth-order MIRK approach as the default

discretization algorithm to solve BVPs.

• NAE Solver: The BVP component of pythODE uses pythNon to solve the systems of NAEs

generated by the discretization formulas. Because pythNon modularizes the numerical rou-

tines used to solve systems of NAEs. Users have the ability to customize how the NAE solver

functions within the BVP component of pythODE.

For the purpose of this thesis, several modifications were made to pythNon to make the NAE

solver more consistent with NAE solvers found in other BVP software packages. For example,

a damped Newton’s algorithm was added to pythNon. Also, because most discretization

formulas result in almost-block-diagonal Jacobian matrices, an algorithm to evaluate and

store these types of Jacobian matrices was added.

• Error/Defect Estimation: Users can either estimate the defect or global error. Currently,

there are four different algorithms implemented to estimate the global error. These algorithms

are based on Richardson extrapolation, higher-order formulas, deferred corrections, and a

conditioning constant; see Section 4.1. Once the error is estimated, it can be used for both

a termination criterion and mesh selection. By default, the BVP component of pythODE

estimates a measure of the defect.

• Error/Defect Weights: Every known BVP software package reports a estimate of either

the relative error or the maximum relative defect. The weights used to scale either the error or

the maximum defect differ among BVP software. Therefore, the BVP component of pythODE

allows users to select the weights they wish to use. The default weights depend on whether

33

an estimate of the error or maximum defect is being used. If the error is being estimated,

then the BVP component of pythODE uses

‖y(x)− S(x)‖∞
1 + ‖S(x)‖∞

, a ≤ x ≤ b.

If the maximum defect is being estimated, then the BVP component of pythODE uses

‖S′(x)− f(x,S(x))‖∞
1 + ‖f(x,S(x)‖∞

, a ≤ x ≤ b.

The relative estimate of both the error and the maximum defect are slightly modified from

the one used in BVP SOLVER [35].

3.5 Using the BVP component of pythODE to solve Bratu’s

problem

In this section, the user interface of the BVP component of pythODE is demonstrated by solving a

simple BVP.

The BVP component of pythODE is used to solve Bratu’s problem,

y′′(x) + λ exp(y(x)) = 0, 0 < x < 1,

where λ = 1, subject to the boundary conditions,

y(0) = y(1) = 0.

This particular problem occurs in a model of spontaneous combustion within a slab [33]. To be

consistent with the BVP component of pythODE problem class (3.2), the problem must first be

reformulated. This involves letting

y1(x) = y(x),

y2(x) = y′(x),

and then defining Bratu’s problem as a system of first-order ODEs

f1 = y2(x),

f2 = −λ exp(y1(x)).

The boundary conditions become

g1 = y1(0),

g2 = y1(1).

34

An initial guess

y1 = x(1− x),

y2 = 1− 2x,

is also used [33]. After this quick reformulation, the problem can now be entered into a Python

text file; see Figure 3.4. The parts of the text file are described below.

As with most Python text files, it begins with importing the required modules. In this case, the

Solver module of the BVP component of pythODE is imported. In Figure 3.4, the Solver module

is renamed BVPSolver for the purpose of clarity. If a user wishes to access a function or class

located within the Solver module, the name BVPSolver must be placed in front of the function

or class name, separated by a dot. Next, the functions for the ODEs, boundary conditions, and

initial-guess are defined. Although the initial guess is defined as a function, the BVP component

of pythODE allows it to be specified in several forms. For example, a vector of values for both

y1, y2 can be used. Each function defined in Figure 3.4 returns a Scipy array. The index of the

array begins at 0, therefore note that f1 ≡ f[0], etc. The BVP component of pythODE imports

Scipy functions, such as exp and zeros; see Figure 3.4. As a consequence, users are not required

to import any Scipy modules. Instead, Scipy functions can be accessed in a similar way as other

pythODE functions.

Up until this point, the functions for the ODES, boundary conditions, and initial guess have

been described to the BVP component of pythODE in much the same way as many other BVP

software packages. However, the function names have not been passed to the BVP component

of pythODE. Also, none of the additional information about the BVP has been provided, e.g., the

boundary points, the number of ODEs, etc. Most BVP software packages accomplish this task

through function parameters. Instead, the BVP component of pythODE uses a Python dictionary

to allow users to define the BVP; see Figure 3.4. A dictionary is an array that links keywords to

various values of any data type, including function references. One benefit to using a dictionary is

that dictionary keys can be in plain text. Therefore, information about the BVP can be sent to

pythODE in as transparent a manner as possible. The pythNon PSE uses a similar interface.

Once the information about the BVP is entered into the dictionary, it can be passed to the

solver class of the BVP component of pythODE; see Figure 3.4. This is accomplished by including

the dictionary as the only required parameter for the solver constructor. Afterward, the primary

solve method can be run without requiring any further information from the user.

The code in Figure 3.4 shows the minimum amount of information pythODE requires to numeri-

cally solve a BVP. It should be noted that the user is free to enter additional options into pythODE,

e.g., the discretization formulas used to solve the BVP, an error tolerance, etc. If a user does not

enter these options, the BVP component of pythODE uses default options. For example, because a

user-supplied tolerance was not provided, the BVP component of pythODE uses a tolerance of 10−4.

35

Import the BVP component of pythODE

import pythODE.BVP.Solver as BVPSolver

Define functions

def ODEFunction(x,y,f):

Define Lambda for Bratu’s problem

BratuLambda = 1.0

Define the ODE function

f[0] = y[1]

f[1] = -BratuLambda*BVPSolver.exp(y[0])

return f

def BCFunction(ya,yb,g):

Define the boundary condition function

g[0] = ya[0]

g[1] = yb[0]

return g

def guessFunction(x):

Define the initial-guess function

y = BVPSolver.zeros(2) # Returns a size 2 array of zeros

y[0] = x*(1.0-x)

y[1] = 1.0-2.0*x

return y

Define a Python dictionary for pythODE

BVPinfo = {} # Initialize a python dictionary

BVPinfo[’ODE’] = ODEFunction # Pass the name of the ODE function

BVPinfo[’BC’] = BCFunction # Pass the name of the boundary condition function

BVPinfo[’Initial guess’] = guessFunction # Pass the name of the initial-guess function

BVPinfo[’Number of ODEs’] = 2 # The number of ODEs

BVPinfo[’Boundary points’] = [0.0,1.0] # The location of the boundary points

Solve the BVP

sol = BVPSolver.solver(BVPinfo) # Pass the dictionary into the constructor

SolvedBVPinfo = sol.solve() # Solve the BVP

Figure 3.4: Using the BVP component of pythODE to solve Bratu’s problem.

36

If a required item of information is not provided to pythODE, the PSE returns an error message

alerting the user; see Figure 3.5.

bvp error --> problem dictionary error --> missing value --> Number of ODEs

Figure 3.5: pythODE is alerting the user that the dictionary entry ’Number of ODEs’ has
not been defined.

The PSE returns a Python dictionary, called SolvedBVPinfo in Figure 3.4, filled with informa-

tion about the numerical solution. A variety of useful information about the numerical solution is

stored in the solution dictionary, e.g., an estimate of the error associated with the numerical solu-

tion. The solution dictionary also provides a means for the user to access the continuous numerical

solution through the dictionary entry Evaluate.

The continuous solution can be used to generate a plot of y1(x) for 0 ≤ x ≤ 1. In Figure 3.6, the

function linspace is used to generate 30 equally spaced discrete points between 0 and 1. Next, the

function eval is used to generate a solution at those 30 points. The y1 component of the solution

is stored in an array called yArray. The Python graphing module matplotlib [41] can then be

used to plot a graph of the solution for y1.

The resulting graph is shown in Figure 3.7. It should be noted that this is one of two possible

solutions to Bratu’s problem. The other solution can be obtained by multiplying both components

of the initial guess by a factor of five [33].

Get the function for the continuous numerical solution

eval = SolvedBVPinfo[’Evaluate’]

Get the values for x required for a plot, store in an array

xArray = BVPSolver.linspace(0,1,30)

yArray = BVPSolver.zeros(30) # Initialize a solution an array of zeros

for i in range(0,30):

solution = eval(mesh[i]) # eval function returns a numerical solution for y

Next, fill the solution vector with a numerical solution for y

yArray[i] = solution[0]

Use the solution to create a graph

import matplotlib.pyplot as plt # Import matplotlib

plt.plot(xArray,yArray) # Generate the plot of the solution y as a function of x

plt.show() # Show the plot

Figure 3.6: Creating a plot of the solution to Bratu’s problem.

37

0 0.2 0.4 0.6 0.8 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

x

y
1

Figure 3.7: Solution y1 to Bratu’s problem.

3.6 Summary

In this chapter, the BVP component of pythODE is described. Through careful design decisions,

the software package contains all the desired features of a PSE described in Section 3.2. For

example, the PSE offers a considerable amount of flexibility to the users. This is accomplished by

modularizing the individual numerical algorithms used to solve a BVP. As a consequence, users

can essentially design their own global method. The PSE is also highly expandable. By using

object-oriented programming principles, researchers can easily add new numerical algorithms to the

software. Finally, the PSE is easy to use. The software takes advantage of the Python dictionary

to allow users to describe the BVP in plain text. To further simplify the interface, the PSE offers

a default numerical method for the solution of BVPs; see Section 3.4. In the end, users are only

required to enter five items of information, all associated with the mathematical formulation of the

problem, in order to numerically solve a BVP.

38

Chapter 4

Numerical Experiments and Applications

The BVP component of pythODE is used as a software platform for two investigations. In

Section 4.1, the BVP component of pythODE is used to perform a comparison of the performance

of four global-error estimation algorithms chosen from the literature [36]. In Section 4.2, pythODE

is used to solve a newly developed model of the agglomerate of a proton exchange membrane fuel

cell (PEMFC).

4.1 Global-error methods

For many BVP software packages, the estimation of the global error is a critical step in the numerical

solution process. The software packages COLSYS and COLNEW use an estimation of the global error

to assess the accuracy of the numerical solution. For many problems, BVP software packages must

typically estimate the global error many times before an acceptable numerical solution is obtained.

Recall that the BVP software packages MIRKDC, BVP SOLVER, and bvp4c estimate the defect

instead of the global error. In general, users often have a better understanding of global error than

the defect. Therefore, it is beneficial for defect-control BVP software packages to provide the users

with an optional an a posteriori global-error estimate.

There are a number of different algorithms that can be used to estimate the global error effec-

tively. Although there have been studies of different methods to estimate the error for global-error

BVP software packages ([29], [36]), few studies have extended the results to defect-control BVP

software. With that in mind, the BVP component of pythODE can be used as a platform to compare

the performance of four known algorithms for estimating the global error in defect-control BVP

software packages. These algorithms are based on the use of Richardson extrapolation, higher-order

formulas, deferred corrections, and a conditioning constant. Each global-error estimation algorithm

is described below.

4.1.1 Richardson extrapolation

Many BVP software packages use Richardson extrapolation to estimate the global error [4]. This

algorithm starts with a discrete numerical solution Yh for a given mesh. Next, the software deter-

39

mines a more accurate numerical solution Yh/2 by halving each subinterval of the original mesh.

Then, an estimate of the norm of the global error, eRE , is given by

eRE =
∥∥∥∥ 2p

2p − 1
(
Yh −Yh/2

)∥∥∥∥
∞
,

where p is the order of the discretization formula.

A system of NAEs must be solved to determine a solution to Yh/2. This requires the use of

Newton’s method. The original solution Yh, extended to the new mesh through a continuous MIRK

approach, proves to be an effective initial guess. With that in mind, it is assumed that only one

undamped Newton iteration is required to return a solution Yh/2 that is sufficiently close to the

exact solution of the NAEs [9].

4.1.2 Higher-order formulas

Higher-order formulas can be used to determine a more accurate numerical solution with the same

mesh as for the original solution. Specifically, the global error can be estimated by

eHO = ‖Yp −Yq‖∞,

where Yp is the original discrete solution of order p and Yq is the more accurate discrete solution

of order q > p. If symmetric MIRK formulas are used, q = p+ 2.

A benefit to using a higher-order formula is that the Jacobian matrix evaluated for the original

solution proves to be an adequate approximation of the Jacobian matrix required to solve the system

of higher-order equations with Newton’s method [9]. Therefore, the computationally expensive task

of re-evaluating the Jacobian matrix for the error estimation can be avoided [9]. Also, similar to

Richardson extrapolation, the original solution Yp proves to be an effective initial guess for Newton’s

method. Therefore, one undamped Newton iteration is used to determine the higher-order solution.

4.1.3 Deferred corrections

The higher-order algorithm requires a system of NAEs generated by a higher-order discretization

formula to be solved on the same mesh as the original solution. Alternatively, a more accurate

solution can be obtained by solving a system of NAEs that corrects for some of the truncation

error associated with the original discretization through the use of deferred corrections. A deferred-

correction approach exists for MIRK formulas [14]. In this approach, the first correction is given

by [14]

Φp(Yp+2) = −Φp+2(Yp), (4.1)

40

where Φp is the system of NAEs generated by a MIRK formula of order p. In (4.1), Φp+2 is the

system of NAEs associated with the higher-order formula, Yp is the discrete solution associated

with Φp, and Yp+2 is the discrete numerical solution associated with Φp+2. In order to determine

Yp+2, Newton’s method is applied to the system

Φp(z) + Φp+2(Yp) = 0, (4.2)

where z is the unknown. Once z is determined, Yp+2 is assigned the value of z. A global-error

estimate of the form

eDC = ‖Yp −Yp+2‖∞,

can then be obtained.

An advantage of this approach is that the system of equations (4.2) has the same Jacobian

matrix, evaluated at Yp, as the original solution. Therefore, the Jacobian matrix does not have to

be re-evaluated in order to apply Newton’s method on (4.2). Similar to the previous algorithms, Yp

proves to be an effective initial guess for Newton’s method. Thus, one undamped Newton iteration

can be used to determine the higher-order solution.

4.1.4 Conditioning constant based algorithm

In Chapter 2, an expression (2.17) for the global error e(x) of a linear BVP (2.1) is described.

Recall from Section 2.2 that the general solution can be used to define a conditioning constant κ.

In this section, a form of κ that can be easily computed for the purposes of global-error estimation

is described.

Most BVP software packages use a scaled norm for global-error estimation. In order to be

consistent with those software packages, diagonal weight matrices W1(x), W2, W3(x) ∈ RN×N

are applied to (2.17) resulting in

W−1
3 (x)e(x) = (W−1

3 (x)ΘW2)(W−1
2 σ) +

∫ b

a

(W−1
3 (x)G(x, t)W1(t))(W−1

1 (t)r(t))dt.

Taking the norms of both sides results in

‖e(x)‖W3 ≤ κmax(‖‖σ‖W2 , r(x)‖W1), (4.3)

where

‖e(x)‖W3 = max
a≤x≤b

‖W−1
3 (x)e(x)‖∞, ‖σ‖W2 = ‖W−1

2 σ‖∞, ‖r(x)‖W1 = max
a≤x≤b

‖W−1
1 (x)r(x)‖∞,

41

and

κ = max
a≤x≤b

(∫ b

a

‖W−1
3 (x)G(x, t)W1(t)‖∞dt+ ‖W−1

3 (x)ΘW2‖∞

)
.

When compared to the conditioning constant (2.20), this particular κ is better suited for nu-

merical computations because for a sufficiently fine mesh,

κ ≈

∥∥∥∥∥U−1
3

∂Φ(Y)
∂Y

−1

U12

∥∥∥∥∥
∞

,

where U12 = diag{W1(x1), . . . ,W1(xN),W2} and U3 = diag{W3(x0), . . . ,W3(xN)} [34]. There-

fore, κ can be quickly estimated by making use of the factored Jacobian matrix ∂Φ(Y)/∂Y already

evaluated by the numerical method used to determine a solution to the BVP. The computation

of κ can be made even more efficient by making use of the Higham–Tisseur algorithm [18] for the

estimation of the matrix norm.

After evaluating the conditioning constant, an estimate for the bound of the global error is given

by

eCO = κmax(‖σ‖W2).

It is worth noting that this algorithm is especially convenient for defect-control BVP software

packages. These packages determine the norm of the defect during the numerical solution process

of the BVP. As a consequence, the only additional cost to this global-error estimation algorithm is

estimating the conditioning constant.

4.1.5 Adding the global-error estimation algorithms to pythODE

For the purpose of this thesis, the global-error estimation algorithms based on Richardson extrap-

olation, higher-order formulas, and deferred corrections were implemented as Python modules and

added to the BVP component of pythODE. The algorithms are similar to that of the Fortran 95

implementation of all three algorithms used in BVP SOLVER [9]. However, they have been slightly

modified to fit within the modularized framework of pythODE.

On the other hand, the global-error estimation algorithm based on a conditioning constant was

added to the BVP component of pythODE by creating a Python to Fortran interface for an existing

Fortran implementation of the algorithm [34]. As a consequence, it is believed that the module

performs better than one created purely in Python [10]. However, when using the Fortran module

within pythODE, additional computational time must be spent converting a Scipy data type that

holds the factored Jacobian matrix into a Fortran array.

42

4.1.6 Test problems

This section describes three test problems used to compare of both the accuracy and runtime of the

different global-error estimation algorithms. Each test problems is solved by using a MIRK formula

of order two, four, and six with defect control. The global-error estimate is used as an a posteriori

error estimate. A range of tolerance values 10−4, 10−5, . . . , 10−8 is used to solve the problem.

1. The first problem [11] is

εy′′(x) + (y′(x))2 = 1, 0 < x < 1, (4.4a)

subject to the boundary conditions

y(0) = 1 + ε ln cosh
(
−0.745

ε

)
, y(1) = 1 + ε ln cosh

(
0.255
ε

)
, (4.4b)

with the an exact solution

y(x) = 1 + ε ln cosh
(
x− 0.745

ε

)
.

An initial guess of y(x) ≡ 1, y′(x) ≡ 0 is used. To help achieve measurable timings, the value

of ε for each MIRK order used was varied. For MIRK order two, four and six, ε = 0.08, 0.03,

and 0.025 respectively. To further help achieve measurable timings, the problem was solved

20 times.

2. The second problem [11] is

εy′′(x) = y(x) + y(x)2 − exp
(
−2x√
x

)
, 0 < x < 1, (4.5a)

subject to the boundary conditions

y(0) = 1, y(1) = exp
(
−1√
ε

)
, (4.5b)

with an exact solution

y(x) = exp
(
−x√
ε

)
.

An initial guess of y(x) ≡ 1/2 and y′(x) ≡ 0 is used. Similar to the first problem, the value

of ε for each MIRK order was varied to help achieve measurable timings. For MIRK order

two, ε = 10−2. For MIRK order four and six, ε = 10−5. The problem is solved 10 times.

43

3. The third problem [4, Example 1.20] is

εf ′′′′(x) + f(x)f ′′′(x) + g(x)g′(x) = 0, 0 < x < 1, (4.6a)

subject to the boundary conditions

f(0) = f(1) = f ′(0) = f ′(1) = 0, g(0) = Ω0, g(1) = Ω1. (4.6b)

An exact solution for this problem is not known. A reference solution is generated by the

BVP component of pythODE using a sixth-order MIRK formula and a tolerance of 10−12. For

the numerical experiment, Ω0 = −1 and Ω1 = 1. The initial guess g(x) = 2x− 1, g′(x) = 2,

and f(x) ≡ f ′(x) ≡ f ′′(x) ≡ f ′′′(x) ≡ 0 is used. The value of ε is allowed to vary with the

order of MIRK formula to help achieve measurable timings. For MIRK order two, ε = 0.1.

For MIRK order four and six, ε = 0.01. This problem is solved 20 times.

4.1.7 Numerical results

This section describes the results of the numerical experiments. All computations were performed

using a 2.6 GHz Intel Core 2 Duo with 4 GB DDR2 RAM running at 667 MHz. The operating

system was Mac OS X 10.5. The pythODE PSE was run using python 2.5. The times, in seconds,

reported are cumulative over all runs. Below, the results are described based on the order of the

MIRK formula used to solve the test problems. For select test problems, relative execution time of

the global-error estimation algorithms for MIRK order two, four, and six are shown in Figures 4.2,

4.2, and 4.3 respectively. Relative execution time refers to the percent of the overall solution time

dedicated to the global-error estimation algorithm. Detailed tables of the results can be found in

the Appendix.

Results for second-order MIRK formula

When using a second-order MIRK formula, the results for all test problems show excellent agreement

between the true global error and eRE , eHO, and eDC . There is only a negligible difference between

eHO and eDC . The algorithm based on a conditioning constant, however, gives a substantial over-

estimate of the global error by several orders of magnitude.

For test problem (4.4), Richardson extrapolation costs between 25% and 28%. In contrast,

both the higher-order and deferred-correction algorithms cost between 4% and 6%. The cost of the

algorithm based on the conditioning constant is around 3%. For test problem (4.5), Richardson

extrapolation costs between 24% and 28%; see Figure 4.1. Both the higher-order and deferred-

correction algorithms cost between 4% and 8%. The cost of the algorithm based on a conditioning

constant is around 3%. Finally, for test problem (4.6), Richardson extrapolation costs between

44

37% and 42%. In contrast, both the higher-order and deferred-correction algorithms cost between

1% and 3%. The algorithm based on the conditioning constant cost around 6%. In this case,

the algorithm based on conditioning constant is slower than both the higher-order and deferred-

correction algorithms due to the additional computational time required to convert a large Scipy

data structure, which holds a factored Jacobian matrix, into a Fortran array.

4 4.5 5 5.5 6 6.5 7 7.5 8
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

−log
10

(defect tolerance)

R
el

at
iv

e
Ex

ec
ut

io
n

Ti
m

e
(%

)

Richardson Extrapolation
Higher−Order Formula
Deferred−Correction Approach
Conditioning Constant

Figure 4.1: Relative execution time of the global error estimates as a function of tolerance
for problem (4.5) when using a second-order MIRK formula.

Results for fourth-order MIRK formula

Similar accuracy results are achieved when using a fourth-order MIRK formula. There is excellent

agreement between the true global error and eRE , eHO, and eDC . There is only a negligible differ-

ence between eHO and eDC . The algorithm based on a conditioning constant gives a substantial

over-estimate of the global error by several orders of magnitude.

For test problem (4.4), Richardson extrapolation costs between 11% and 23%; see Figure 4.2.

In contrast, both the higher-order and deferred-correction algorithms cost between 3% and 8%.

The cost of the algorithm based on a conditioning constant is around 1%. For test problem (4.5),

Richardson extrapolation cost between 6% and 12%. Both the higher-order and deferred-correction

algorithms cost between 2% and 4%. The cost of the algorithm based on a conditioning constant

45

is around 1%. Finally, for test problem (4.6), Richardson extrapolation costs between 31% and

39%. In contrast, both higher-order and deferred-correction algorithms cost between 2% and 3%.

In this case, the algorithm based on a conditioning constant cost around 5% due to the additional

computational time required to convert a large Scipy data structure to a Fortran array.

4 4.5 5 5.5 6 6.5 7 7.5 8
0

0.05

0.1

0.15

0.2

0.25

−log
10

(defect tolerance)

R
el

at
iv

e
Ex

ec
ut

io
n

Ti
m

e
(%

)

Richardson Extrapolation
Higher−Order Formula
Deferred−Correction Approach
Conditioning Constant

Figure 4.2: Relative execution time of the global error estimates as a function of tolerance
for problem (4.4) when using a fourth-order MIRK formula.

Results for sixth-order MIRK formula

Similar accuracy results are achieved when using a sixth-order MIRK formula. There is excellent

agreement between the true error and eRE , eHO, and eDC . There is only a negligible difference

between eHO and eDC . The algorithm based on a conditioning constant gives a substantial over-

estimate of the global error by several orders of magnitude.

For test problem (4.4), Richardson extrapolation costs between 7% and 14%. Both the higher-

order and deferred-correction algorithms cost between 3% and 6%. The cost of the algorithm based

on a conditioning constant is around 1%. For test problem (4.5), Richardson extrapolation costs

between 6% and 8%. Both the higher-order and deferred-correction algorithms cost between 2%

and 3%. The cost of the algorithm based on a conditioning constant is negligible. Finally, for test

problem (4.6), Richardson extrapolation costs between 25% and 29%; see Figure 4.3. In contrast,

46

both the higher-order and deferred-correction algorithms cost between 2% and 4%. The algorithm

based on the conditioning constant costs around 3%.

4 4.5 5 5.5 6 6.5 7 7.5 8
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

−log
10

(defect tolerance)

R
el

at
iv

e
Ex

ec
ut

io
n

Ti
m

e
(%

)

Richardson Extrapolation
Higher−Order Formula
Deferred−Correction Approach
Conditioning Constant

Figure 4.3: Relative execution time of the global error estimates as a function of tolerance
for problem (4.6) when using a sixth-order MIRK formula.

4.1.8 Conclusions

Several conclusions can be made from the results of the numerical experiments:

1. If a factored Jacobian is available, an a posteriori global-error estimate for defect control

BVP software packages should be based on either a higher-order or a deferred-correction

algorithm as opposed to Richardson extrapolation. In fact, our results indicate that global-

error estimation based on higher-order formulas slightly outperforms deferred corrections.

2. These results may also be applicable to global-error control software packages that use

Richardson extrapolation, e.g., COLSYS. Instead of using Richardson extrapolation, an im-

provement in the performance of these software packages may be obtained by either imple-

menting a higher-order or deferred-correction approach to global-error estimation.

3. The algorithm based on the conditioning constant provides a poor estimate of the global error

because the estimate of the conditioning constant does not provide a tight upper bound in

47

(4.3) [9]. However, if desired a better estimate of the conditioning constant may be obtained

by using
‖y(x)− S(x)‖W3

max(‖r(x)‖W1 , ‖δ‖W2)
≤ κ,

where either eHO or eDC is used to estimate ‖y(x)− S(x)‖W3 .

Similar conclusions are made for a BVP SOLVER implementation of the same global-error estima-

tion algorithms [9].

4.2 Multi-scale agglomerate model for PEMFCs

In this section, the ability of the BVP component of pythODE to solve a complex real-world BVP is

demonstrated. The problem consists of a newly developed model of the agglomerate located inside

of a proton exchange membrane fuel cell (PEMFC).

A PEMFC uses hydrogen to produce electrical energy with water vapour as the primary by-

product. The low environmental impact makes PEMFCs a desirable alternative to conventional

combustion engines for automobiles [22].

The design of a PEMFC facilitates a series of electrochemical reactions. In the simplest sense,

a PEMFC can be divided into an anode side and a cathode side separated by a membrane; see

Figure 4.4. Within the anode side, hydrogen is separated into electrons and protons. The electrons

provide electrical energy, and the protons travel through a membrane and into a catalyst layer

located within the cathode side. In the catalyst layer, protons combine with electrons and oxygen

to produce water vapour. In order for oxygen to reach the catalyst layer, the oxygen travels through

a gas diffusion layer, also located within the cathode side, composed of carbon fibres.

For this particular model, it is assumed that the catalyst layer is composed of ionomer-filled

spherical agglomerates [30]. Each agglomerate is composed of carbon and platinum particles. Mul-

tiple agglomerates are surrounded and bonded by electrolyte composed mostly of Nafion. Oxygen

that reaches the catalyst layer dissolves into the electrolyte surrounding the agglomerate. Oxygen

is then transported to a reaction site within the agglomerate by diffusion; see Figure 4.5.

This section is mostly concerned with a model of the agglomerate. It can be used to determine

the concentration of oxygen [O2] and the ionic potential φm throughout the agglomerate. The

model consists of a variety of constants and design parameters, brief descriptions of which can be

found in Table 4.1 [30]. The values for the design parameters can be found in Section 4.2.2.

48

Figure 4.4: A two-dimensional cross-sectional view of a PEMFC. [30]

Figure 4.5: Agglomerate of the catalyst layer of a PEMFC. [31]

49

Constants

R gas constant, 8.214 J/(mol ·K)

F Faraday constant, 96500 C/mol

HO2,N Henry’s law coefficient for oxygen in Nafion, 0.3125 atm ·m3/mol

DO2,N Diffusion of oxygen through Nafion, 8.75× 10−10 m2/s

Operating Conditions

T operating temperature

PO2,0 partial pressure of oxygen (assumed constant throughout agglomerate)

φs solid phase potential

Eth theoretical cell voltage

φm,0 exchange ionic potential

Electrochemical Parameters

γ reaction order for oxygen

αc cathodic reaction transfer coefficient

Av specific reaction surface area per volume of catalyst layer

iref
0 reference exchange current density

[O2]ref reference concentration of oxygen

σeff
m effective electrolyte conductivity

Structural Parameters

εCLV void volume fraction in the catalyst layer

ragg radius of the agglomerate

δagg electrolyte film surrounding the agglomerate

εagg volume fraction of the ionomer inside the agglomerate

Table 4.1: Constants and design parameters for agglomerate model.

50

A detailed derivation of the model is beyond the scope of this thesis; see Secanell [31] and

Secanell et al. [32] for details. Assuming azimuthal symmetry, the model consists of a system of

two second-order ODEs

Deff(r)
1
r2

d

dr

(
r2 d

dr
[O2](r)

)
=
j(r)
4F

, (4.7a)

σeff
m

1
r2

d

dr

(
r2 d

dr
φm(r)

)
= j(r), 0 < r < ragg + δagg, (4.7b)

where

j(r) =


Av

1−εCLV
iref
0

(
[O2](r)
[O2]ref

)γ
exp

(
αcF
RT (Eth − (φs − φm(r)))

)
, if r ∈ [0, ragg),

0, otherwise,

and

Deff(r) =

 εagg ·DO2,N , if r ∈ [0, ragg),

DO2,N , otherwise.

The system of ODEs is subject to four boundary conditions

[O2](ragg + δagg) =
pO2,0

HO2,N
,

d

dr
[O2](0) = 0,

φm(ragg + δagg) = φm,0,

dφm
dr

(0) = 0.

4.2.1 Problem reformulation

The model presents several issues that may prevent numerical software from successfully solving the

BVP. For example, both ragg and δagg are typically small, e.g., ragg is typically around 2.5×10−7m.

As a consequence, the problem must be re-scaled to avoid potential problems caused by the small

solution domain. At r = ragg, the definitions of both j and Deff change. Also, (4.7) has a 2/r

coefficient that is unbounded as r approaches zero. In this section, the problem is reformulated to

allow numerical software, including the BVP component of pythODE, to solve this problem despite

these issues.

First, the problem is divided into two systems of ODEs in order to avoid the lack of smoothness

at r = ragg [16, Example 3.5.8]. One system is defined on the domain [0, ragg] and the other is

defined on the domain [ragg, ragg + δagg].

The first system of ODEs is defined for r ∈ [0, ragg]. The domain is also re-scaled to [0, 1] by

51

letting

r(x) = x · ragg. (4.8)

Using (4.8) in (4.7) and performing some algebraic manipulation results in

d2

dx2
[O2]1(x) =

j(x)r2
agg

4FDeff(x)
− 2
x

d

dx
[O2]1(x), (4.9a)

d2

dx2
φm,1(x) =

j(x)r2
agg

σeff
m

− 2
x

d

dx
φm,1(x), (4.9b)

where [O2]1 is the concentration of oxygen on [0, ragg] and φm,1 is the ionic potential on [0, ragg].

The second system of ODEs is defined for r ∈ [ragg, ragg + δagg]. The domain is also re-scaled

to [0, 1]. Therefore, let

r(x) = x · δagg + ragg. (4.10)

Using (4.10) in (4.7) and performing some algebraic manipulation results in

d2

dx2
[O2]2(x) =

j(x)δ2
agg

4FDeff(x)
− 2δagg

x · δagg + ragg

d

dx
[O2]2(x), (4.11a)

d2

dx2
φm,2(x) =

j(x)δ2
agg

σeff
m

− 2δagg

x · δagg + ragg

d

dx
φm,2(x), (4.11b)

where [O2]2 is the concentration of oxygen on [ragg, ragg + δagg] and φm,2 is the ionic potential on

[ragg, ragg + δagg].

To ensure continuity at r = ragg between the systems of ODEs (4.9) and (4.11), the ODEs are

solved as one large system with the added non-separated boundary conditions

[O2]1(1) = [O2]2(0), (4.12a)

1
ragg

d

dx
[O2]1(1) =

1
δagg

d

dx
[O2]2(0), (4.12b)

φm,1(1) = φm,2(0), (4.12c)

1
ragg

d

dx
φm,1(1) =

1
δagg

d

dx
φm,2(0). (4.12d)

Conditions (4.12) ensures C1 continuity through the internal point ragg.

The problem has been reformulated to deal with both the small scale and the lack of smoothness

at r = ragg This section is concluded by addressing the singularity at r = 0. Note that as r

approaches zero [4, Example 1.5],

2
r

d

dr
[O2]1 → 2

d2

dr2
[O2]1,

2
r

d

dr
φm,1 → 2

d2

dr2
φm,1.

52

Applying the transformation to (4.9) when x = 0 results in the following ODEs

d2

dx2
[O2]1 = r2

agg

j(x)
12FDeff(x)

, (4.13a)

d2

dx2
φm,1 = r2

agg

j(x)
3σeff

m

. (4.13b)

The system of ODEs (4.13) is used when x = 0. When x 6= 0, the systems of ODEs (4.9) and (4.11)

are used.

4.2.2 Solving the agglomerate model with pythODE

The BVP component of pythODE is used to solve the agglomerate model. In order to solve the

BVP, the following algorithms are used. For the mesh selection algorithm, mesh equidistribution

is used. A numerical solution is obtained by using a sixth-order continuous MIRK approach. The

software package only returns the solution when an estimate of the global error is less than the

user-supplied tolerance of 10−6. The global error is estimated by deferred corrections. An initial

guess based on experimental data is not presently available. Instead, a constant initial guess that

agrees with the boundary conditions is used,

[O2]1 ≡
PO2,0

HO2,N
,

d

dx
[O2]1 ≡ 0, φm,1 ≡ φm,0,

d

dx
φm,1 ≡ 0,

[O2]2 ≡
PO2,0

HO2,N
,

d

dx
[O2]2 ≡ 0, φm,2 ≡ φm,0,

d

dx
φm,2 ≡ 0,

for 0 < x < 1.

In order to solve the problem, typical PEMFC design parameters are used [31]. The value of

each parameter can be found in Table 4.2.

Figure 4.6 shows the resulting concentration of oxygen throughout the agglomerate. As the

centre of the agglomerate is approached, the concentration of oxygen drops. This is likely caused

by an increase in the number of reactions that take place as oxygen diffuses towards the centre of

the agglomerate. Figure 4.7 shows the resulting ionic potential. The ionic potential σm shows a

slight increase as r approaches ragg + δagg.

The agglomerate model, with the design parameters indicated in Table 4.2, was also solved with

the BVP software packages COLNEW, BVP SOLVER, and bvp4c. The solutions from all three BVP

software packages agree with the solution obtained from the BVP component of pythODE. It should

also be noted that none of the mentioned BVP software packages, including the BVP component

of pythODE, are able to obtain a solution for φs < 0.4 with the initial guess as described.

53

Operating Conditions

T 353 K

PO2 0.5 atm

φs 0.6 V

Eth 1.23 V

φm,0 −0.2 V

Electrochemical Parameters

γ 0.5

αc 1.0

Av 0.2 Pt/m

iref
0 2.47× 10−4 A/m2 · Pt

[O2]ref 34.52 mol/m3

σeff
m 1.0 S/m

Structural Parameters

εCLV 0.6

ragg 2.5× 10−7 m

δagg 2.5× 10−8 m

εagg 0.5

Table 4.2: Parameter values of the agglomerate model.

54

0 0.5 1 1.5 2 2.5

x 10−7

1.35

1.4

1.45

1.5

1.55

1.6

r (m)

C
o

n
ce

n
tr

a
tio

n
 o

f
O

xy
g

e
n

 (
m

o
l/m

3)

Figure 4.6: Concentration of oxygen [O2] in the agglomerate.

0 0.5 1 1.5 2 2.5

x 10−7

−0.200040

−0.200035

−0.200030

−0.200025

−0.200020

−0.200015

−0.200010

−0.200005

−0.200000

r (m)

Io
n

ic
 P

o
te

n
tia

l(
V

)

Figure 4.7: Ionic potential φm in the agglomerate.

55

4.2.3 Summary

The BVP component of pythODE is used to successfully solve a complex real-world problem. Ulti-

mately, the agglomerate model will be added to the PEMFC simulator FCST [30]. The simulator

itself would be responsible for supplying the parameters used for the model. To solve the agglom-

erate model within the simulator, a BVP software package capable of solving the model for a wide

range of parameters must be added to FCST.

56

Chapter 5

Conclusions And Future Work

Numerically solving a BVP is a complex process that involves the combination of a series of

numerical methods. As seen in Chapter 2, there are a variety of choices for each numerical method

used to solve a BVP.

In this thesis, a BVP component to the PSE pythODE is presented. This component is the

first known BVP software package that completely modularizes the solution process of a BVP. As

a direct consequence, researchers have the flexibility to create their own solution process from a

catalogue of numerical algorithms. The modularization of the numerical methods to solve BVPs

is largely achieved by the use of well-known object-oriented programming principles. By doing so,

researchers can easily add new numerical algorithms into the PSE without changing existing code.

Once a numerical algorithm is added to the PSE, the effects can be immediately evaluated with

an automated test suite. As a consequence, the BVP component of pythODE has the potential to

become a powerful research tool.

The BVP component of pythODE is also used to perform two research investigations. First,

the PSE is used to compare both the runtime and accuracy of four known global-error estimation

algorithms. One algorithm, based on Richardson extrapolation, is used in existing BVP software

packages. The three other algorithms are based on the use of higher-order formulas, deferred

corrections, and a conditioning constant. Through numerical experimentation, it can be shown

that an approach based on higher-order formulas and deferred corrections are computationally

faster than Richardson extrapolation while having similar accuracy. Second, the BVP component

of pythODE is used to solve a newly developed model of a agglomerate in a PEMFC.

This thesis is concluded with several suggestions of future work:

1. At present, users of pythODE require a certain amount of programming knowledge to use the

code interface. To greatly reduce this requirement, a graphical user interface (GUI) could

be added to the PSE. By design, the layered architecture of pythODE allows for the easy

implementation of a GUI without the need to modify the existing code of the PSE.

2. The BVP component of pythODE may also be used to experiment with methods to preserve

the known positivity property of a solution to a BVP, i.e., ensure that y(x) ≥ 0 for a ≤ x ≤ b.

It is possible for BVP software packages to return a solution that has negative values despite

57

a known positivity property. The error from the Newton’s method used to solve the NAEs

generated during the solution process is one possible cause of this. Therefore, different variants

of Newton’s methods that preserve the known positivity of numerical solutions may be able

to help avoid this issue. Because pythODE easily allows for the addition of new variants of

Newton’s methods, it is an ideal platform for this form of research.

3. The problem class of pythODE may be increased to include boundary value DAEs. Systems

of DAEs are composed of ODEs and generally nonlinear algebraic constraints. Boundary

value DAEs are also subject to a system of boundary conditions. In the past, BVP software

packages have been successfully adapted to solve boundary value DAEs, e.g., COLDAE [6].

Using similar techniques, it is possible that the BVP component of pythODE can also be

modified to numerically solve these problems. In addition, pythODE is an ideal platform to

study new numerical algorithms that aid in both the effectiveness and efficiency of numerical

methods to solve boundary value DAEs.

58

Appendix: Tables of Global-Error Results for

MIRK Formulas of Orders Two, Four, and Six

Tables 1, 2, and 3 contain the results from a second-order MIRK formula applied to problems

(4.4), (4.5), and (4.6) respectively. Tables 4, 5, and 6 contain the results from a fourth-order MIRK

formula applied to problems (4.4), (4.5), and (4.6) respectively. Tables 7, 8, and 9 contain the

results from a sixth-order MIRK formula applied to problems (4.4), (4.5), and (4.6) respectively.

The entries of each of the tables are organized by columns. The first column, Algorithm,

is the algorithm used to estimate the global error. These algorithms are based on Richardson

extrapolation (RE), higher-order formulas (HO), deferred corrections (DC), and a conditioning

constant (CO). The second column, Tol, is the user-supplied tolerance for the defect. The third

column, Time, is the runtime in seconds for the global-error algorithm. The fourth column, % Total

Time, is the percent of the total solution time used for the global-error algorithm. The fifth column,

Global Error, is the exact global error. The sixth column, Estimated Error, is the estimated global

error provided by the global-error algorithm. The seventh column, τ , is the absolute value of the

difference between the exact global error and its estimate; it measures the quality of the global-error

estimate.

59

Algorithm Tol Time % Total Time Global Error Estimated Error τ
RE 1E-4 8.52 0.26 2.4E-05 2.4E-05 5.8E-08

1E-5 29.57 0.27 2.0E-06 1.9E-06 5.0E-09
1E-6 100.55 0.28 1.8E-07 1.8E-07 1.9E-10
1E-7 357.17 0.28 1.7E-08 1.7E-08 1.9E-12
1E-8 995.88 0.25 1.6E-09 1.6E-09 2.7E-14

HO 1E-4 1.33 0.04 2.4E-05 2.4E-05 4.9E-08
1E-5 4.55 0.04 2.0E-06 1.9E-06 6.3E-09
1E-6 14.97 0.04 1.8E-07 1.8E-07 2.1E-10
1E-7 51.90 0.04 1.7E-08 1.7E-08 8.1E-13
1E-8 161.85 0.04 1.6E-09 1.6E-09 1.9E-14

DC 1E-4 2.12 0.07 2.4E-05 2.4E-05 4.9E-08
1E-5 7.25 0.07 2.0E-06 1.9E-06 6.3E-09
1E-6 23.88 0.07 1.8E-07 1.8E-07 2.1E-10
1E-7 80.82 0.06 1.7E-08 1.7E-08 8.1E-13
1E-8 256.02 0.06 1.6E-09 1.6E-09 1.9E-14

CO 1E-4 0.98 0.03 2.4E-05 1.5E-01 1.5E-01
1E-5 3.22 0.03 2.0E-06 4.3E-02 4.3E-02
1E-6 10.52 0.03 1.8E-07 1.4E-02 1.4E-02
1E-7 34.25 0.03 1.7E-08 4.2E-03 4.2E-03
1E-8 112.55 0.03 1.6E-09 1.2E-03 1.2E-03

Table 1: Results for problem (4.4), MIRK order two.

Algorithm Tol Time % Total Time Global Error Estimated Error τ
RE 1E-4 4.22 0.24 5.5E-05 5.5E-05 5.1E-10

1E-5 10.57 0.28 8.5E-06 8.5E-06 1.2E-11
1E-6 36.60 0.27 7.2E-07 7.2E-07 8.4E-14
1E-7 123.38 0.27 6.4E-08 6.4E-08 1.3E-16
1E-8 403.77 0.26 6.1E-09 6.1E-09 7.9E-17

HO 1E-4 0.72 0.04 5.5E-05 5.5E-05 4.3E-10
1E-5 1.83 0.05 8.5E-06 8.5E-06 3.3E-12
1E-6 6.33 0.05 7.2E-07 7.2E-07 3.0E-14
1E-7 21.32 0.05 6.4E-08 6.4E-08 9.0E-16
1E-8 68.88 0.04 6.1E-09 6.1E-09 0.0E+00

DC 1E-4 1.17 0.07 5.5E-05 5.5E-05 4.3E-10
1E-5 2.98 0.08 8.5E-06 8.5E-06 3.3E-12
1E-6 10.23 0.08 7.2E-07 7.2E-07 3.0E-14
1E-7 34.33 0.07 6.4E-08 6.4E-08 9.0E-16
1E-8 111.10 0.07 6.1E-09 6.1E-09 0.0E+00

CO 1E-4 0.47 0.03 5.5E-05 1.7E-02 1.7E-02
1E-5 1.18 0.03 8.5E-06 6.6E-03 6.6E-03
1E-6 4.12 0.03 7.2E-07 1.9E-03 1.9E-03
1E-7 13.90 0.03 6.4E-08 5.7E-04 5.7E-04
1E-8 45.38 0.03 6.1E-09 1.8E-04 1.8E-04

Table 2: Results for problem (4.5), MIRK order two.

60

Algorithm Tol Time % Total Time Global Error Estimated Error τ
RE 1E-4 28.77 0.39 1.8E-04 1.8E-04 2.1E-10

1E-5 92.82 0.38 1.8E-05 1.8E-05 2.2E-12
1E-6 301.38 0.37 1.7E-06 1.7E-06 1.3E-13
1E-7 763.73 0.42 2.7E-07 2.7E-07 1.1E-13
1E-8 2648.28 0.38 2.3E-08 2.3E-08 1.1E-13

HO 1E-4 1.10 0.01 1.8E-04 1.8E-04 1.3E-09
1E-5 3.53 0.01 1.8E-05 1.8E-05 1.1E-11
1E-6 11.55 0.01 1.7E-06 1.7E-06 6.3E-15
1E-7 29.07 0.02 2.7E-07 2.7E-07 1.1E-13
1E-8 99.65 0.01 2.3E-08 2.3E-08 1.1E-13

DC 1E-4 1.75 0.02 1.8E-04 1.8E-04 1.3E-09
1E-5 5.67 0.02 1.8E-05 1.8E-05 1.1E-11
1E-6 18.38 0.02 1.7E-06 1.7E-06 6.3E-15
1E-7 46.45 0.03 2.7E-07 2.7E-07 1.1E-13
1E-8 159.08 0.02 2.3E-08 2.3E-08 1.1E-13

CO 1E-4 4.48 0.06 1.8E-04 2.5E-01 2.5E-01
1E-5 14.45 0.06 1.8E-05 7.3E-02 7.3E-02
1E-6 47.07 0.06 1.7E-06 2.2E-02 2.2E-02
1E-7 118.78 0.07 2.7E-07 8.7E-03 8.7E-03
1E-8 408.87 0.06 2.3E-08 2.5E-03 2.5E-03

Table 3: Results for problem (4.6), MIRK order two.

Algorithm Tol Time % Total Time Global Error Estimated Error τ
RE 1E-4 1.98 0.11 4.6E-06 4.6E-06 2.6E-09

1E-5 3.25 0.13 5.2E-07 5.2E-07 8.1E-11
1E-6 5.67 0.15 5.4E-08 5.4E-08 4.9E-12
1E-7 9.70 0.16 5.9E-09 5.9E-09 9.4E-14
1E-8 14.28 0.23 1.4E-09 1.4E-09 2.9E-14

HO 1E-4 0.53 0.03 4.6E-06 4.6E-06 1.5E-08
1E-5 0.75 0.03 5.2E-07 5.2E-07 2.4E-09
1E-6 1.28 0.03 5.4E-08 5.5E-08 2.4E-10
1E-7 2.18 0.04 5.9E-09 5.9E-09 1.0E-12
1E-8 3.03 0.05 1.4E-09 1.4E-09 3.4E-12

DC 1E-4 0.70 0.04 4.6E-06 4.6E-06 1.5E-08
1E-5 1.02 0.04 5.2E-07 5.2E-07 2.4E-09
1E-6 1.87 0.05 5.4E-08 5.5E-08 2.4E-10
1E-7 3.27 0.05 5.9E-09 5.9E-09 1.0E-12
1E-8 4.75 0.08 1.4E-09 1.4E-09 3.4E-12

CO 1E-4 0.10 0.01 4.6E-06 3.5E-02 3.5E-02
1E-5 0.33 0.01 5.2E-07 6.2E-03 6.2E-03
1E-6 0.52 0.01 5.4E-08 1.1E-03 1.1E-03
1E-7 0.92 0.01 5.9E-09 1.8E-04 1.8E-04
1E-8 1.27 0.02 1.4E-09 4.7E-05 4.7E-05

Table 4: Results for problem (4.4), MIRK order four.

61

Algorithm Tol Time % Total Time Global Error Estimated Error τ
RE 1E-4 1.70 0.07 1.2E-05 1.2E-05 2.6E-09

1E-5 2.25 0.06 4.2E-06 4.2E-06 4.4E-10
1E-6 3.62 0.08 5.1E-07 5.1E-07 1.9E-11
1E-7 6.63 0.10 4.7E-08 4.7E-08 5.3E-13
1E-8 12.83 0.12 5.0E-09 5.0E-09 1.8E-14

HO 1E-4 0.38 0.02 1.2E-05 1.2E-05 1.2E-07
1E-5 0.57 0.02 4.2E-06 4.2E-06 3.7E-09
1E-6 0.83 0.02 5.1E-07 5.1E-07 1.6E-10
1E-7 1.48 0.02 4.7E-08 4.7E-08 4.5E-12
1E-8 2.82 0.03 5.0E-09 5.0E-09 1.5E-13

DC 1E-4 0.62 0.03 1.2E-05 1.2E-05 1.2E-07
1E-5 0.75 0.02 4.2E-06 4.2E-06 3.7E-09
1E-6 1.28 0.03 5.1E-07 5.1E-07 1.6E-10
1E-7 2.22 0.03 4.7E-08 4.7E-08 4.5E-12
1E-8 4.20 0.04 5.0E-09 5.0E-09 1.5E-13

CO 1E-4 0.17 0.01 1.2E-05 1.6E-02 1.6E-02
1E-5 0.22 0.01 4.2E-06 1.3E-02 1.3E-02
1E-6 0.33 0.01 5.1E-07 2.1E-03 2.1E-03
1E-7 0.52 0.01 4.7E-08 1.6E-04 1.6E-04
1E-8 1.00 0.01 5.0E-09 5.7E-05 5.7E-05

Table 5: Results for problem (4.5), MIRK order four.

Algorithm Tol Time % Total Time Global Error Estimated Error τ
RE 1E-4 4.28 0.32 4.3E-05 4.3E-05 8.5E-08

1E-5 7.33 0.34 4.9E-06 4.9E-06 4.7E-09
1E-6 14.15 0.31 4.2E-07 4.2E-07 1.2E-10
1E-7 26.38 0.35 4.8E-08 4.8E-08 5.1E-12
1E-8 47.78 0.39 6.0E-09 6.0E-09 6.2E-13

HO 1E-4 0.27 0.02 4.3E-05 4.4E-05 5.2E-07
1E-5 0.42 0.02 4.9E-06 5.0E-06 2.9E-08
1E-6 0.83 0.02 4.2E-07 4.2E-07 7.2E-10
1E-7 1.60 0.02 4.8E-08 4.8E-08 3.6E-11
1E-8 2.57 0.02 6.0E-09 6.0E-09 6.9E-13

DC 1E-4 0.38 0.03 4.3E-05 4.4E-05 5.2E-07
1E-5 0.67 0.03 4.9E-06 5.0E-06 2.9E-08
1E-6 1.33 0.03 4.2E-07 4.2E-07 7.2E-10
1E-7 2.32 0.03 4.8E-08 4.8E-08 3.6E-11
1E-8 3.90 0.03 6.0E-09 6.0E-09 6.9E-13

CO 1E-4 0.65 0.05 4.3E-05 6.6E-02 6.6E-02
1E-5 1.03 0.05 4.9E-06 1.4E-02 1.4E-02
1E-6 2.00 0.04 4.2E-07 1.8E-03 1.8E-03
1E-7 3.37 0.04 4.8E-08 3.9E-04 3.9E-04
1E-8 5.67 0.05 6.0E-09 9.2E-05 9.2E-05

Table 6: Results for problem (4.6), MIRK order four.

62

Algorithm Tol Time % Total Time Global Error Estimated Error τ
RE 1E-4 1.67 0.07 1.5E-06 1.5E-06 2.1E-10

1E-5 2.35 0.08 1.6E-07 1.6E-07 4.6E-11
1E-6 3.22 0.09 1.6E-08 1.6E-08 3.2E-12
1E-7 4.28 0.12 2.8E-09 2.8E-09 1.9E-13
1E-8 6.28 0.14 2.8E-10 2.8E-10 4.2E-15

HO 1E-4 0.58 0.03 1.5E-06 1.5E-06 1.5E-08
1E-5 0.72 0.03 1.6E-07 1.6E-07 4.3E-10
1E-6 1.00 0.03 1.6E-08 1.6E-08 1.8E-11
1E-7 1.28 0.04 2.8E-09 2.8E-09 7.3E-12
1E-8 1.87 0.04 2.8E-10 2.8E-10 9.6E-14

DC 1E-4 0.72 0.03 1.5E-06 1.5E-06 1.5E-08
1E-5 1.03 0.04 1.6E-07 1.6E-07 4.3E-10
1E-6 1.53 0.04 1.6E-08 1.6E-08 1.8E-11
1E-7 1.87 0.05 2.8E-09 2.8E-09 7.3E-12
1E-8 2.68 0.06 2.8E-10 2.8E-10 9.6E-14

CO 1E-4 0.03 0.00 1.5E-06 9.4E-03 9.4E-03
1E-5 0.12 0.00 1.6E-07 1.5E-03 1.5E-03
1E-6 0.10 0.00 1.6E-08 1.7E-04 1.7E-04
1E-7 0.25 0.01 2.8E-09 1.1E-04 1.1E-04
1E-8 0.38 0.01 2.8E-10 1.2E-05 1.2E-05

Table 7: Results for problem (4.4), MIRK order six.

Algorithm Tol Time % Total Time Global Error Estimated Error τ
RE 1E-4 2.75 0.06 1.5E-08 1.5E-08 1.9E-13

1E-5 2.78 0.06 1.3E-08 1.3E-08 1.4E-13
1E-6 2.70 0.05 1.1E-08 1.1E-08 1.3E-13
1E-7 6.07 0.08 8.0E-11 8.0E-11 4.4E-16
1E-8 6.80 0.08 3.9E-11 3.9E-11 8.2E-17

HO 1E-4 0.83 0.02 1.5E-08 1.5E-08 1.2E-11
1E-5 0.85 0.02 1.3E-08 1.3E-08 1.0E-11
1E-6 0.88 0.02 1.1E-08 1.1E-08 9.0E-12
1E-7 1.82 0.02 8.0E-11 8.0E-11 1.5E-14
1E-8 2.03 0.02 3.9E-11 3.9E-11 5.7E-15

DC 1E-4 1.20 0.03 1.5E-08 1.5E-08 1.1E-11
1E-5 1.20 0.02 1.3E-08 1.3E-08 8.8E-12
1E-6 1.18 0.02 1.1E-08 1.1E-08 7.7E-12
1E-7 2.65 0.03 8.0E-11 8.0E-11 1.5E-14
1E-8 2.93 0.03 3.9E-11 3.9E-11 5.7E-15

CO 1E-4 0.17 0.00 1.5E-08 2.8E-05 2.8E-05
1E-5 0.17 0.00 1.3E-08 4.2E-05 4.2E-05
1E-6 0.17 0.00 1.1E-08 1.5E-04 1.5E-04
1E-7 0.33 0.00 8.0E-11 3.4E-07 3.4E-07
1E-8 0.40 0.00 3.9E-11 1.2E-06 1.2E-06

Table 8: Results for problem (4.5), MIRK order six.

63

Algorithm Tol Time % Total Time Global Error Estimated Error τ
RE 1E-4 2.28 0.27 3.9E-05 3.9E-05 7.5E-09

1E-5 2.93 0.29 4.9E-06 4.9E-06 7.5E-10
1E-6 4.88 0.25 1.7E-07 1.7E-07 7.9E-12
1E-7 6.80 0.26 2.8E-08 2.8E-08 1.1E-12
1E-8 10.43 0.27 3.5E-09 3.5E-09 7.9E-13

HO 1E-4 0.22 0.03 3.9E-05 3.9E-05 1.9E-07
1E-5 0.32 0.03 4.9E-06 4.9E-06 1.7E-08
1E-6 0.43 0.02 1.7E-07 1.7E-07 2.0E-10
1E-7 0.83 0.03 2.8E-08 2.8E-08 1.8E-11
1E-8 1.12 0.03 3.5E-09 3.5E-09 1.8E-12

DC 1E-4 0.37 0.04 3.9E-05 3.9E-05 1.9E-07
1E-5 0.45 0.04 4.9E-06 4.9E-06 1.7E-08
1E-6 0.80 0.04 1.7E-07 1.7E-07 2.0E-10
1E-7 1.05 0.04 2.8E-08 2.8E-08 1.8E-11
1E-8 1.65 0.04 3.5E-09 3.5E-09 1.8E-12

CO 1E-4 0.32 0.04 3.9E-05 8.4E-03 8.4E-03
1E-5 0.35 0.03 4.9E-06 3.7E-03 3.7E-03
1E-6 0.53 0.03 1.7E-07 1.3E-04 1.3E-04
1E-7 0.77 0.03 2.8E-08 3.2E-05 3.2E-05
1E-8 1.23 0.03 3.5E-09 6.7E-06 6.7E-06

Table 9: Results for problem (4.6), MIRK order six.

64

Bibliography

[1] LAPACK. http://www.netlib.org/lapack/.

[2] Numpy, Feburary 2010. http://www.numpy.org/.

[3] Ascher, U., Christiansen, J., and Russell, R. D. A collocation solver for mixed order

systems of boundary value problems. Math. Comp. 33, 146 (1979), 659–679.

[4] Ascher, U. M., Mattheij, R. M. M., and Russell, R. D. Numerical solution of boundary

value problems for ordinary differential equations, vol. 13 of Classics in Applied Mathematics.

Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1995. Corrected

reprint of the 1988 original.

[5] Ascher, U. M., and Petzold, L. R. Computer Methods for Ordinary Differential Equations

and Differential-Algebraic Equations. Society for Industrial and Applied Mathematics (SIAM),

Philadelphia, PA, USA, 1998.

[6] Ascher, U. M., and Spiteri, R. J. Collocation software for boundary value differential-

algebraic equations. SIAM J. Sci. Comput. 15, 4 (1994), 938–952.

[7] Bader, G., and Ascher, U. A new basis implementation for a mixed order boundary value

ODE solver. SIAM J. Sci. Statist. Comput. 8, 4 (1987), 483–500.

[8] Bailey, P. B., Shampine, L. F., and Waltman, P. E. Nonlinear two point boundary value

problems. Mathematics in Science and Engineering, Vol. 44. Academic Press, New York, 1968.

[9] Boisvert, J. J., Muir, P. H., and Spiteri, R. J. A numerical study of global error

estimation schemes for defect control BVODE codes. Saint Mary’s University, Dept. of Math.

and Comp. Sci. Technical Report Series,cs.smu.ca/tech reports/ (2009).

[10] Boisvert, J. J., Muir, P. H., and Spiteri, R. J. py bvp: A universal python interface for

BVP codes. In Proceedings of the 2010 Spring Simulation Multiconference (New York, NY,

USA, 2010), SpringSim ’10, ACM, pp. 95:1–95:9.

[11] Cash, J. R. http://www2.imperial.ac.uk/∼jcash/BVP software/readme.php.

[12] Cash, J. R., and Mazzia, F. A new mesh selection algorithm, based on conditioning, for

two-point boundary value codes. J. Comput. Appl. Math. 184, 2 (2005), 362–381.

65

[13] Cash, J. R., and Mazzia, F. Hybrid mesh selection algorithms based on conditioning for

two-point boundary value problems. J. Numer. Anal. Ind. Appl. Math. 1, 1 (2006), 81–90.

[14] Cash, J. R., and Wright, M. H. A deferred correction method for nonlinear two-point

boundary value problems: implementation and numerical evaluation. SIAM J. Sci. Statist.

Comput. 12, 4 (1991), 971–989.

[15] Evans, E. Domain-Driven Design: Tacking Complexity in the Heart of Software. Addison–

Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2003.

[16] Gladwell, I., Shampine, L., and Thompson, S. Solving ODEs with MATLAB. Cambridge

University Press, New York, NY, USA, 2003.

[17] Hanson, P. M., and Enright, W. H. Controlling the defect in existing variable-order

Adams codes for initial value problems. ACM Trans. Math. Software 9, 1 (1983), 71–97.

[18] Higham, N. J. FORTRAN codes for estimating the one-norm of a real or complex matrix,

with applications to condition estimation. ACM Trans. Math. Software 14, 4 (1988), 381–396

(1989).

[19] Kelley, C. T. Solving nonlinear equations with Newton’s method. Fundamentals of Algo-

rithms. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2003.

[20] Kierzenka, J., and Shampine, L. F. A BVP solver that controls residual and error.

JNAIAM J. Numer. Anal. Ind. Appl. Math. 3, 1-2 (2008), 27–41.

[21] Mazzia, F., and Trigiante, D. A hybrid mesh selection strategy based on conditioning for

boundary value ODE problems. Numer. Algorithms 36, 2 (2004), 169–187.

[22] Mench, M. M. Fuel Cell Engines. Wiley, 2004.

[23] Millman, J. Scipy, Feburary 2010. http://www.scipy.org/.

[24] Muir, P. H. Optimal discrete and continuous mono-implicit Runge-Kutta schemes for

BVODEs. Adv. Comput. Math. 10, 2 (1999), 135–167.

[25] Muir, P. H., and Adams, M. Mono-implicit Runge–Kutta Nyström methods with applica-

tion to boundary value ordinary differential equations. BIT 41, 4 (2001), 776–799.

[26] Osborne, M. R. Collocation, difference equations, and stitched function representations. In

Topics in numerical analysis, II (Proc. Roy. Irish Acad. Conf., Univ. College, Dublin, 1974).

Academic Press, London, 1975, pp. 121–132.

[27] Peterson, P. F2PY: Fortran to Python Interface Generator, July 2007.

http://cens.ioc.ee/projects/f2py2e/.

66

[28] Rice, J., and Boisvert, R. F. From scientific software libraries to problem solving envi-

ronments. IEEE Computational Science and Engineering 3 (1996), 44–53.

[29] Russell, R. D., and Christiansen, J. Adaptive mesh selection strategies for solving

boundary value problems. SIAM J. Numer. Anal. 15, 1 (1978), 59–80.

[30] Secanell, M. Computational Modeling and Optimization of Proton Exchange Membrane

Fuel Cells. Ph.D. dissertation, University of Victoria, Department of Mechanical Engineering,

2007.

[31] Secanell, M., 2010. Multi-Scale Agglomerate Model (Research Proposal).

[32] Secanell, M., Karan, K., Suleman, A., and Djilali, N. Multi-variable optimization of

pemfc cathodes using an agglomerate model. Electrochimica Acta 52, 22 (2007), 6318 – 6337.

[33] Shampine, L. F., Gladwell, I., and Thompson, S. Solving ODEs with MATLAB. Cam-

bridge University Press, Cambridge, 2003.

[34] Shampine, L. F., and Muir, P. H. Estimating conditioning of BVPs for ODEs. Math.

Comput. Modelling 40, 11-12 (2004), 1309–1321.

[35] Shampine, L. F., Muir, P. H., and Xu, H. A user-friendly Fortran BVP solver. J. Numer.

Anal. Ind. Appl. Math. 1, 2 (2006), 201–217.

[36] Skeel, R. D. Thirteen ways to estimate global error. Numer. Math. 48, 1 (1986), 1–20.

[37] Ter, T. A problem-solving environment for the numerical solution of nonlinear algebraic

equations. Master’s thesis, University of Saskatchewan, Department of Computer Science,

2007.

[38] COMSOL. http://www.comsol.com/.

[39] Mathematica. www.wolfram.com/products/mathematica/index.html.

[40] MATLAB. www.mathworks.com/products/matlab/.

[41] matplotlib. http://matplotlib.sourceforge.net/.

[42] Yang, D. C++ and object-oriented numeric computing for scientists and engineers. Springer-

Verlag New York, Inc., New York, NY, USA, 2001.

67

	Permission to Use
	Abstract
	Acknowledgements
	Contents
	List of Tables
	List of Figures
	List of Abbreviations
	1 Introduction
	1.1 Structure of thesis

	2 Numerical Methods For BVPs
	2.1 Existence and uniqueness of BVP solutions
	2.2 Conditioning of BVPs
	2.3 Initial value methods
	2.4 Global methods
	2.5 One-step methods
	2.6 Continuous solution methods
	2.6.1 An approach based on MIRK formulas
	2.6.2 Spline-collocation methods

	2.7 Mesh selection
	2.8 Solving nonlinear algebraic equations
	2.9 Summary

	3 A Problem-Solving Environment for BVPs
	3.1 A review of BVP software packages based on global methods
	3.2 Problem-solving environments
	3.3 The architecture of pythODE
	3.4 Design and architecture of the BVP component of pythODE
	3.5 Using the BVP component of pythODE to solve Bratu's problem
	3.6 Summary

	4 Numerical Experiments and Applications
	4.1 Global-error methods
	4.1.1 Richardson extrapolation
	4.1.2 Higher-order formulas
	4.1.3 Deferred corrections
	4.1.4 Conditioning constant based algorithm
	4.1.5 Adding the global-error estimation algorithms to pythODE
	4.1.6 Test problems
	4.1.7 Numerical results
	4.1.8 Conclusions

	4.2 Multi-scale agglomerate model for PEMFCs
	4.2.1 Problem reformulation
	4.2.2 Solving the agglomerate model with pythODE
	4.2.3 Summary

	5 Conclusions And Future Work
	Appendix: Tables of Global-Error Results for MIRK Formulas of Orders Two, Four, and Six

