
Folding-up: A Hybrid Method for Updating the Partial Singular

Value Decomposition in Latent Semantic Indexing

by

Jane Elizabeth Bailey Tougas

Submitted in partial fulfillment of the

requirements for the degree of

Master of Computer Science

at

Dalhousie University

Halifax, Nova Scotia

December, 2005

c© Copyright by Jane Elizabeth Bailey Tougas, 2005

DALHOUSIE UNIVERSITY

FACULTY OF COMPUTER SCIENCE

The undersigned hereby certify that they have read and recommend to the

Faculty of Graduate Studies for acceptance a thesis entitled “Folding-up: A

Hybrid Method for Updating the Partial Singular Value Decomposition

in Latent Semantic Indexing” by Jane Elizabeth Bailey Tougas in partial

fulfillment of the requirements for the degree of Master of Computer Science.

Dated: December 6, 2005

Supervisor:
Raymond J. Spiteri

Readers:
Patrick. Keast

Evangelos. E. Milios

ii

DALHOUSIE UNIVERSITY

Date: December 6, 2005

Author: Jane Elizabeth Bailey Tougas

Title: Folding-up: A Hybrid Method for Updating the Partial

Singular Value Decomposition in Latent Semantic Indexing

Department: Computer Science

Degree: M.C.Sc. Convocation: May Year: 2006

Permission is herewith granted to Dalhousie University to circulate and to
have copied for non-commercial purposes, at its discretion, the above title upon the
request of individuals or institutions.

Signature of Author

The author reserves other publication rights, and neither the thesis nor
extensive extracts from it may be printed or otherwise reproduced without the
author’s written permission.

The author attests that permission has been obtained for the use of any
copyrighted material appearing in the thesis (other than brief excerpts requiring
only proper acknowledgement in scholarly writing) and that all such use is clearly
acknowledged.

iii

Table of Contents

Abstract . vii

Acknowledgements . viii

Chapter 1 Introduction . 1

1.1 Motivation . 1

1.2 Statement of Problem . 4

1.3 Literature Survey . 5

1.4 Overview . 6

Chapter 2 Background . 7

2.1 Matrix Norms . 7

2.2 QR Factorization . 8

2.3 Singular Value Decomposition . 9

2.4 Partial Singular Value Decomposition 10

2.4.1 Computing the Partial Singular Value Decomposition 13

2.5 Comparing Terms and Documents . 14

2.5.1 Comparing Terms . 14

2.5.2 Comparing Documents . 15

2.5.3 Comparing a Term and a Document 15

2.6 LSI Example . 16

Chapter 3 Updating Options . 23

3.1 Recomputing the PSVD . 24

3.1.1 Recomputing Example . 25

3.2 Folding-in . 27

3.2.1 Adding Documents . 27

3.2.2 Adding Terms . 28

3.2.3 Example . 29

3.3 PSVD-updating (O’Brien, and Berry, Dumais, and O’Brien) 31

iv

3.3.1 Adding Documents . 31

3.3.2 Adding Terms . 33

3.3.3 Adjusting Term Weights . 34

3.3.4 Example . 36

3.4 PSVD-updating (Zha and Simon) . 38

3.4.1 Adding Documents . 38

3.4.2 Adding Terms . 40

3.4.3 Adjusting Term Weights . 41

3.4.4 Example . 43

3.5 Folding-up . 45

Chapter 4 Term Weighting and Evaluation Metrics 48

4.1 Term Weights . 48

4.1.1 Tf×Idf Weighting Scheme . 51

4.2 Metrics . 52

4.2.1 Precision and Recall . 52

4.2.2 Average Precision . 54

4.2.3 Precision versus Recall Curve Example 54

Chapter 5 Experiments and Results 57

5.1 Medline Text Collection . 58

5.1.1 Medline: Experiment 1 . 58

5.1.2 Medline: Experiment 2 . 61

5.1.3 Medline: Experiment 3 . 63

5.1.4 Medline: Experiment 4 . 65

5.1.5 Medline: Experiment 5 . 67

5.2 Cranfield Text Collection . 70

5.2.1 Cranfield: Experiment 1 . 70

5.2.2 Cranfield: Experiment 2 . 73

5.2.3 Cranfield: Experiment 3 . 75

5.2.4 Cranfield: Experiment 4 . 77

5.2.5 Cranfield: Experiment 5 . 79

v

5.3 CISI Text Collection . 82

5.3.1 CISI: Experiment 1 . 82

5.3.2 CISI: Experiment 2 . 85

5.3.3 CISI: Experiment 3 . 87

5.3.4 CISI: Experiment 4 . 89

5.3.5 CISI: Experiment 5 . 91

Chapter 6 Conclusions and Future Work 95

Bibliography . 98

vi

Abstract

The tremendous size of the Internet and modern databases has made efficient search-

ing and information retrieval (IR) an area of utmost importance. Latent semantic

indexing (LSI) is an IR method that represents a dataset as a term-document ma-

trix. LSI uses a matrix factorization method known as the partial singular value

decomposition (PSVD) to reduce noise in the data by projecting the term-document

matrix into a lower-dimensional vector space. Calculating the PSVD of a large term-

document matrix is computationally expensive. In a rapidly expanding environment,

a term-document matrix is altered often as new documents and terms are added. Re-

computing the PSVD of the term-document matrix each time these slight alterations

occur can be prohibitively expensive.

Folding-in is one method of adding new documents or terms to a term-document

matrix; updating the PSVD of the existing term-document matrix is another method.

The folding-in method is computationally inexpensive, but it may cause deterioration

in the accuracy of the PSVD. The PSVD-updating method is computationally more

expensive than the folding-in method, but it better maintains the accuracy of the

PSVD. This thesis introduces folding-up, a new method which combines folding-in

and PSVD-updating. Folding-up offers a significant improvement in computation

time when compared with either recomputing the PSVD, or PSVD-updating, while

avoiding the degradation in the PSVD that can occur when the folding-in method is

used on its own.

vii

Acknowledgements

“ Just as a house needs a foundation in order to stand firm, so does a person.”

—Jacquie McTaggart

I extend my heartfelt appreciation to my family, who have been unflagging in their

extraordinary patience, support, and encouragement. They are my foundation. I also

offer special thanks to my supervisor Dr. Raymond J. Spiteri, and to Dr. Patrick

Keast; without them I would never have considered this path. I would also like to

express my appreciation to Dr. Shepherd for the use of his computers, and to Trevor

Smith for inadvertently providing the incentive to finish. Thanks also to Chris Jor-

dan, Philip O’Brien, John Mason, and Singer Wang for their friendship, advice, and

encouragement, and to Lydia Hill, not only for her example, but also for her enthusi-

asm when it was most needed. This thesis could not have been completed without the

funding of the Killam Foundation and the Natural Sciences and Engineering Research

Council of Canada (NSERC) for whose support I am also very grateful. This thesis

is dedicated to Christopher Tougas (August 9, 1963 – October 19, 2005), who lived

life with spirit, strength, and good humour. His courage inspired all who knew him.

“ I must finish what I’ve started, even if, inevitably,

what I finish turns out not to be what I began...” —Salman Rushdie

viii

Chapter 1

Introduction

1.1 Motivation

In recent years, there has been a tremendous increase in the size of both the Internet

and modern databases. With this growth comes a corresponding increase in the need

for efficient information retrieval (IR) methods. Latent Semantic Indexing (LSI) is

a method for the automatic indexing and retrieval of textual data [11]. LSI uses a

mathematical approach known as the vector-space model, which relies heavily on tech-

niques from numerical linear algebra. The vector-space model represents a document

collection as a term-document matrix containing a column vector for each document

in the text collection and a row vector for each semantically significant term [29].

Typically, terms that occur in only one document are not considered semantically

significant; often, these words are simply spelling errors. Terms that occur in most

of the documents in a text collection are also not considered semantically significant,

because they are not useful in differentiating between documents. Words that occur

in at least 80% of the documents are considered to be semantically insignificant stop-

words; they are not included in the term-document matrix [1]. Common stopwords

include words such as as, or, and and. A list of 571 such English stopwords [10] is

used by the Cornell SMART system, one of the first vector-space information retrieval

systems [29]. Such a list is not exhaustive however, and the use of a stopword list

does not guarantee the removal of all semantically insignificant terms.

A term-document matrix A thus has t rows and d columns, where t is the number

of semantically significant terms, or index terms, and d is the number of documents

in the text collection. Each entry aij indicates the importance of term i relative to

document j, where 1 ≤ i ≤ t, and 1 ≤ j ≤ d. The entries may simply be binary

(1 if the term appears in the document and 0 otherwise), raw term frequencies (the

number of times the term appears in the document), or more typically, weighted term

frequencies [1, 28]. Two forms of weighting are commonly used in practice. These are

1

2

local weighting, and global weighting. Local weighting indicates the importance of a

term in a document; the frequency of the term in the document is used to calculate

the local weight. Global weighting, on the other hand, indicates the importance of the

term in the document collection as a whole; the frequency of a word across the entire

document collection is used to calculate the global weight [3, 4]. If a word appears in

relatively few documents it is considered to be a better index term than a word that

appears in many documents, and so it will receive a correspondingly higher weight.

Given a term-document matrix A ∈ ℜt×d, a local weight lij , and a global weight gj,

the weight of index term i in document j (entry aij in the term document matrix) is

given by

aij = lij × gj,

where 1 ≤ i ≤ t, and 1 ≤ j ≤ d. Because there may be considerable variance in the

length of documents (and therefore of the frequency of terms within a document),

term weights may be normalized [2]. With both local and global weighting, the

higher the weight, the more important the term is considered to be. Typically, term

weight formulas are constructed such that, for each term weight aij , 0 ≤ aij ≤ 1.

Term weighting is discussed in more detail in Chapter 4, with particular attention,

in Section 4.1.1, to the term frequency × inverse document frequency (tf × idf)

weighting scheme.

The term-document matrix with t rows and d columns represents a t-dimensional

space with d t-dimensional document vectors, where t is the number of semantically

significant terms. Each document vector contains the coordinates of that document’s

location in the t-dimensional space. A user’s search query is represented as a doc-

ument (column) vector, a pseudo-document, using the same stopword removal and

weighting scheme that have been applied to the document collection. The vectors

of documents (and queries) with many terms in common are close together in the t-

dimensional vector space, whereas the vectors of documents with few terms in common

are far apart. The distance, or similarity, between each pair of vectors is typically

measured using the cosine of the angle between them; this is known as the cosine

similarity measure [1, 2]. Two vectors that are very close together have an angle

3

with a large cosine value (close to 1); that is, they are almost parallel. Two vectors

that are far apart have an angle with a small cosine value; that is, they are almost

perpendicular.

Unfortunately even using the vector-space model, retrieving textual information

in response to a search query is hampered by the fact that many words have similar

meanings (they are synonymous). When a word that has a synonym is used in a

search query, relevant documents containing that synonym, but not the specific word

used in the query, may be overlooked. This is known as recall failure. A further

complication arises from the fact that many words have more than one meaning

(they are polysemous). When a polysemous word is used in a search query, irrelevant

documents about the word’s other meaning(s) may be retrieved. This is known as

precision failure. The goal of efficient information retrieval is to have both high recall

(all relevant documents are retrieved) and high precision (all retrieved documents

are relevant). LSI assumes that, although there is an underlying semantic structure

in the data, the term-document representation of the document collection includes

noise due to factors such as synonymy and polysemy. LSI uses a matrix factorization

method known as the partial singular value decomposition (PSVD) to reduce this

noise, and estimate a more accurate representation of the data. By means of the

PSVD, the data in the term-document matrix are projected into a lower-dimensional

vector space. This lower-dimensional space is associated with concepts rather than

specific index terms (i.e., the concepts that are spanned by both the terms and the

documents are represented by the geometric relationships between the vectors in this

lower-dimensional space) [2]. The more terms documents have in common, the more

closely related they are considered to be, and the closer together their representative

vectors will lie in the lower-dimensional vector space. Query vectors are also projected

into the lower-dimensional space using the PSVD. Retrieving documents relevant to a

particular query is based on the matching of concepts rather than the literal matching

of index terms to query terms. When a query is processed, documents containing the

index terms in the query are retrieved, but those documents that are closely related

to the documents containing the query terms are also retrieved. Thus, LSI returns

the documents that are most similar to a search query (those closest to the query

in the vector space), even if the documents do not contain all (or any) of the terms

4

contained in the query [1, 4]. Although research indicates that LSI is more successful

in dealing with the problems caused by synonymy than those caused by polysemy [11],

this does not detract from the importance of LSI in IR.

1.2 Statement of Problem

Although using the PSVD to project the term-document matrix into a lower-dimen-

sional space has the benefit of removing noise from the data, it has the drawback of

being computationally expensive. Even using numerical linear algebra methods, most

of the computation time in LSI is spent in calculating the PSVD [3, 4]. In a dynamic

environment, such as the Internet, the term-document matrix is changed often as

new documents and terms are added. Given the potentially huge size of such term-

document matrices, recomputing the PSVD of the matrix each time such changes

occur can be prohibitively expensive. Traditionally, LSI uses a process known as

folding-in to modify the PSVD if recomputing it would be too costly [11]. The folding-

in of new documents or terms occurs based on the existing representation of the data

(PSVD), and adds to, rather than modifies, the existing semantic structure [3, 4]. In

the existing vector-space, new documents that are folded-in are placed at the centroid

of their index terms, and new terms that are folded-in are placed at the centroid of

the documents in which they are found [11]; details are discussed in Section 3.2.

Unfortunately, although the folding-in method, suggested by Deerwester et al. [11]

and described by O’Brien [26], and Berry, Dumais, and O’Brien [4], is much faster

than recomputing the PSVD, it may result in a significant degradation of retrieval

performance [33]. A more recent and more accurate approach is to update the PSVD

using updating algorithms. PSVD-updating algorithms for LSI were introduced by

O’Brien in his Master’s thesis [26] and published in Berry, Dumais, and O’Brien [4].

These methods for updating the PSVD when new documents or new terms are added

to the LSI-database are a compromise between recomputing the PSVD and folding-in.

Although these methods are much slower than folding-in, they are much faster than

recomputing the PSVD, and unlike folding-in, they do not cause the significant degra-

dation in the data representation that occurs with the folding-in methods. Details of

these algorithms are discussed in Section 3.3.

5

Other PSVD-updating algorithms for use in LSI have been suggested by Zha and

Simon [33]. Zha and Simon have shown that these methods give superior results when

compared to the PSVD-updating algorithms of [4, 26]. In the absence of roundoff

errors, the updating procedure of [33] produces the exact PSVD of the updated

matrix. In practice roundoff errors do affect the results. Details of these algorithms

are given in Section 3.4.

This thesis introduces folding-up, a new hybrid method that is a combination of

folding-in and PSVD-updating. Folding-up is an attractive option because it offers a

significant improvement in computation time when compared to either recomputing

or PSVD-updating, and yet unlike the folding-in method, it results in little or no loss

of accuracy. Although the folding-up experiments performed for this thesis use the

PSVD-updating algorithms of Zha and Simon [33], the method can easily be adapted

to use other PSVD-updating algorithms. Details of the folding-up method are given

in Section 3.5.

1.3 Literature Survey

Although the focus of this thesis is specifically on updating the PSVD in LSI, the

problem of updating the PSVD is not limited to the field of information retrieval. In

numerical linear algebra, early work on incrementally updating the singular value de-

composition (SVD) was carried out by Businger in 1970 [8] and by Bunch and Neilson

in 1978 [7]; in 1994, Gu and Eisenstat introduced an algorithm for updating the SVD

when a row or column is added to the original matrix [16]. The SVD is also used in

image analysis, and an SVD-updating algorithm for use in this area was proposed by

Chandrasekaran, Manjunath, Wang, Winkeler, and Zhang in 1997 [27]. In the area

of signal processing, SVD-updating algorithms include those proposed by Moonen,

van Dooren, and Vandewalle [23] and Ferzali and Proakis [13]. Techniques for paral-

lelizing these algorithms are suggested by Moonen, van Dooren, and Vandewalle [24]

and Sengupta, Cavallaro, and Aazhang [30]. Brand [5] discusses updating the PSVD

in online recommender systems in which fragments of rows and columns need to be

added in random order. Zha and Zhang [34] provide an analysis of matrices with a

low-rank-plus-shift structure, motivated by computing and updating the PSVD. Re-

cent work by Oks̆a, Bec̆ka, and Vajters̆ic [27] introduces an algorithm for the parallel

6

computation of the SVD of matrices with a particular structure, specifically for use

in the PSVD-updating algorithms proposed by Zha and Simon [33].

1.4 Overview

The remainder of this thesis proceeds as follows. Chapter 2 covers background in-

formation on matrix norms, the QR factorization, the SVD, the PSVD, and the

comparison of terms and documents in LSI. The chapter concludes with an LSI

example. Chapter 3 describes the methods of recomputing the PSVD, folding-in,

PSVD-updating, and folding-up. Chapter 4 details term weighting and evaluation

metrics, while Chapter 5 discusses the experiments performed and the experimental

results. Finally, Chapter 6 gives conclusions and suggestions for future work.

Chapter 2

Background

2.1 Matrix Norms

A matrix norm is a scalar measure of the size of the elements of a matrix. In order

for a function ‖ · ‖ to be a norm, it must be a real-valued function defined on the

space of t × d matrices and meet the following three conditions:

1. ‖A‖ ≥ 0, with ‖A‖ = 0 if and only if A = 0,

2. ‖A + B‖ ≤ ‖A‖ + ‖B‖,

3. ‖αA‖ = |α| ‖A‖,

where A ∈ ℜt×d, B ∈ ℜt×d, and α is any scalar value. The infinity norm of a matrix,

for example, is the maximum row sum of the matrix, defined for matrix A ∈ ℜt×d as

‖A‖∞ = max
i

d
∑

j=1

|aij|,

where 1 ≤ i ≤ t, and 1 ≤ j ≤ d. A matrix norm is unitarily invariant if, in addition

to the above conditions, the following condition is also met:

‖QA‖ = ‖A‖,

where Q ∈ ℜt×t is a unitary matrix. A unitary matrix is a square, possibly complex

matrix with orthonormal columns. Such a matrix, Q, satisfies the property QQT = I,

where I is the identity matrix. The Frobenius norm and the 2-norm are both unitarily

invariant matrix norms. For a matrix A ∈ ℜt×d, the Frobenius norm is defined by

‖A‖F =

√

√

√

√

√

t
∑

i=1

d
∑

j=1

|aij|2,

and the 2-norm is defined by

‖A‖2 = σ1,

where σi is the ith largest singular value of A, and r is the rank of A.

7

8

2.2 QR Factorization

A QR factorization is the decomposition of a matrix A such that A = QR, where Q

is an orthogonal matrix and R is an upper-triangular matrix. An orthogonal matrix

is a square matrix that has orthonormal columns; geometrically, this means that the

columns are mutually perpendicular, and that each has a Euclidean length of one.

When a full QR factorization is performed on a matrix A ∈ ℜt×d, with t ≥ d, then

Q ∈ ℜt×t and R ∈ ℜt×d is upper-triangular, with its bottom t − d rows containing

zeros. Figure 2.1 gives a schematic representation of the full QR factorization with

t ≥ d, where the shaded area denotes zeros.

A = Q R

t × d t × t t × d

Figure 2.1: The Full QR Factorization of A ∈ ℜt×d, t ≥ d.

Figure 2.2 gives a schematic representation of the full QR factorization with t < d,

where the shaded area denotes zeros.

A = Q R

t × d t × t t × d

Figure 2.2: The Full QR Factorization of A ∈ ℜt×d, t < d.

9

When a reduced QR factorization is performed under the same circumstances, such

that A = Q̂R̂, then Q̂ ∈ ℜt×d is the first d columns of Q, and R̂ ∈ ℜd×d is the first d

rows of R. In this case, none of the rows of R̂ are necessarily zero. Figure 2.3 gives

a schematic representation of the reduced QR factorization, where the shaded area

denotes zeros.

A = Q R

t × d t × d d × d

Figure 2.3: The Reduced QR Factorization of A ∈ ℜt×d, t > d.

2.3 Singular Value Decomposition

The SVD is a matrix factorization that captures the most important characteristics

of a matrix. The SVD is related to a number of mathematical techniques, such as

spectral analysis and rank determination [11], and it is used for such purposes as

dimensionality reduction, noise reduction, and clustering. Every matrix has an SVD,

and the singular values {σj} are always uniquely determined [31]. Given a real matrix

A with t rows and d columns, its SVD has the form

A = UΣVT, (2.1)

where U ∈ ℜt×t, Σ ∈ ℜt×d, and V ∈ ℜd×d. Matrices U and V are orthogonal matri-

ces that contain the left and right singular vectors of A respectively. When A is a

10

term-document matrix, the left singular vectors represent the term vectors, and the

right singular vectors represent the document vectors (see Sections 2.5.1 and 2.5.2

for details). The matrix Σ has non-zero entries only on the diagonal, although not

all diagonal entries are necessarily non-zero. These diagonal entries are the singular

values of A. The singular values are in non-increasing order, and are denoted by σj ,

for j = 1, 2, . . . , min (t, d). The singular values are the non-negative square roots of

the eigenvalues of the product AAT [15]. The number of non-zero singular values is

the rank, r, of the matrix. See Figure 2.4 for a schematic representation of the SVD.

 =

t × d t × t t × d d × d

A U Σ VT

Figure 2.4: The SVD of A ∈ ℜt×d.

2.4 Partial Singular Value Decomposition

Recall from Section 2.3 that the SVD of a matrix A is written as A = UΣVT . An

alternative way to represent the SVD of a matrix is as the sum of r rank-one matrices

A =
r
∑

j=1

σjujv
T
j , (2.2)

11

where uj and vj are the jth columns of matrices U and V, respectively. This represen-

tation of the SVD in Equation (2.2) allows the formation of lower-rank approximations

of A. Replacing r in this equation by any ν with 0 ≤ ν < r gives

A ≈
ν
∑

j=1

σjujv
T
j .

Taking the first ν columns of U and V and the leading ν × ν submatrix of Σ gives

a rank-ν approximation of A; i.e., A1 is a rank-one approximation of A, A2 is a

rank-two approximation of A, and so on. This can be expressed as

Aν = UνΣνV
T
ν . (2.3)

In the Frobenius-norm

‖A −Aν‖
2
F = min

rank(B)≤ν

B∈ℜt×d

‖A − B‖2
F = σ2

ν+1 + · · ·+ σ2
r .

See [32] for a proof. This means that the rank-ν approximation given in Equation (2.3)

is optimal in the sense that for a given rank, k, where 0 ≤ k < r, there is no

matrix of rank at most k that is closer to A, as measured in the Frobenius-norm [15].

However, this is true not only for the Frobenius norm, but for any unitarily invariant

norm [4, 22]. In the 2-norm, for example,

‖A− Aν‖2 = min
rank(B)≤ν

B∈ℜt×d

‖A− B‖2 = σν+1.

Let matrices Uk and Vk be the first k columns of U and V respectively, and let matrix

Σk be the leading submatrix of Σ with k rows and k columns. Then Ak = UkΣkV
T
k is

the optimal approximation (of rank at most k) of A. This is the partial SVD (PSVD)

12

of A; see Figure 2.5 for a schematic representation of the PSVD. This approximation

can be used to reduce the dimension of the term-document matrix, while eliciting

the underlying structure of the data. In LSI, the effect of this dimensional reduc-

tion on the data is a muting of the noise in the data and an enhancing of the latent

patterns that indicate semantically similar terms. This means that Ak can actually

be a better representation of the data than the original term-document matrix. The

optimal number of dimensions k (singular values and corresponding singular vectors)

to keep in the reduced term-document matrix is an open question, and it is database

dependent [2]. Deciding how many dimensions to use is based on empirical testing

and, in the case of very large datasets, on the feasibility of computation [2, 21, 25].

It is important to note that, in general, having more dimensions does not necessarily

provide better retrieval performance [11]. Typically, as the number of dimensions is

increased, retrieval performance increases to a certain point, and then decreases as

the number of dimensions is further increased [11, 4]. Experiments using databases

containing between 1000 and 2000 documents have found that using between 50 and

100 dimensions is optimal [11]. For very large databases, containing hundreds of

thousands of documents, the number of dimensions used is typically between 100 and

300 [21]. This tremendous dimensional reduction, given the potentially huge size of

such term-document matrices, demonstrates the power of the PSVD as a method of

data compression.

A
k

 =

U
k

Σ
k

V
k
T

t × d t × k k × k k × d

Figure 2.5: The PSVD of A ∈ ℜt×d.

13

2.4.1 Computing the Partial Singular Value Decomposition

A term-document matrix is very sparse, containing relatively few non-zero entries and

many zero entries, because any document typically contains only a small percentage

of all the index terms [2]. When computing the PSVD of a term-document matrix

A, it makes sense to take advantage of this sparsity. In this thesis, all PSVD calcu-

lations are performed using the Matlab sparse matrix function svds, which returns a

user-specified number k of the largest singular values of a matrix and, if requested,

the corresponding left and right singular vectors. The function svds uses the function

eigs to compute the k largest magnitude eigenvalues and corresponding eigenvectors

of the following matrix B:

B =





0t A

AT 0d



 ,

where B ∈ ℜ(t+d)×(t+d), and 0t ∈ ℜt×t and 0d ∈ ℜd×d are zero matrices. B is a sym-

metric matrix. The positive eigenvalues of B are the singular values of A, the first k

eigenvectors of B correspond to the left singular vectors of A, and the last k eigen-

vectors of B correspond to the right singular vectors of A. The algorithm used by the

Matlab function eigs to compute the k largest eigenvalues and corresponding eigen-

vectors is an implicitly restarted Arnoldi-Lanczos iterative method, implemented in

the linear algebra library ARPACK. ARPACK is a collection of subroutines designed

to solve large scale eigenvalue problems. The Arnoldi-Lanczos iterative method takes

advantage of the existing sparsity of the matrix. Details of the algorithm can be

found in the ARPACK Users’ Guide [20].

14

2.5 Comparing Terms and Documents

In order to compare terms and/or documents, it is first helpful to define the in-

ner product or dot product of two vectors. The dot product is a binary operation

that takes two vectors and returns a scalar value. The dot product of two vectors

x = [x1, x2, . . . , xn]T and y = [y1, y2, . . . , yn]
T is expressed as

x · y = x1y1 + x2y2 + . . . + xnyn =
n
∑

i=1

xiyi = xT y.

The dot product can be used to express the cosine of the angle between two vectors

x and y:

cos α =
xTy

‖x‖2‖y‖2

,

where ‖ · ‖2 is the vector 2-norm. As discussed in Section 1.1, the cosine of the angle

between a query vector and a document vector is used to measure the similarity

between the two vectors; this is the cosine similarity measure.

2.5.1 Comparing Terms

To compare two terms in a term-document matrix A, recall from Section 2.4 that

the rank-k approximation of A is expressed as Ak = UkΣkV
T
k . The dot product of

the rows of Ak indicates the similarity of the occurrence pattern of the two terms

represented by the rows, across all the documents (columns). This can be expressed

as

AkA
T
k =

(

UkΣkV
T
k

) (

UkΣkV
T
k

)T

=
(

UkΣkV
T
k

) (

VkΣkU
T
k

)

= UkΣk

(

VT
k Vk

)

ΣkU
T
k

= UkΣ
2
kU

T
k .

15

Thus, the measure of the comparison between the term represented by the ith row

of A and that represented by the jth row of A, is the element in row i, column j of

AkA
T
k = UkΣ

2
kU

T
k . The rows of UkΣk can be considered to be the coordinates for

the terms [11]. For this reason, the matrix Uk, containing the k left singular vectors

of A, is known as the term vector matrix.

2.5.2 Comparing Documents

To compare two documents in a term-document matrix A, the dot product of the

columns of Ak is taken. This product indicates how similar the pattern of terms is

between the two documents. This can be expressed as

AT
k Ak =

(

UkΣkV
T
k

)T (

UkΣkV
T
k

)

=
(

VkΣkU
T
k

) (

UkΣkV
T
k

)

= VkΣk

(

UT
k Uk

)

ΣkV
T
k

= VkΣ
2
kV

T
k .

Thus, the measure of the comparison between the document represented by the ith

column of A and that represented by the jth column of A, is the element in row i,

column j of AT
k Ak = VkΣ

2
kV

T
k . The rows of VkΣk can be considered the coordinates

for the documents [11]. For this reason, the matrix Vk, containing the k right singular

vectors of A, is known as the document vector matrix.

2.5.3 Comparing a Term and a Document

To compare a term i and a document j in a term-document matrix A, the value of

interest is that found in row i, column j of A (i.e., element aij). Recalling that the

rank-k approximation of A is expressed as Ak = UkΣkV
T
k , the dot product is taken

between the ith row of UkΣ
1/2
k and the jth row of Σ

1/2
k VT

k . Thus, the comparison of

a term and a document uses coordinates from both UkΣ
1/2
k and Σ

1/2
k VT

k [11].

16

2.6 LSI Example

This example steps through the process of forming a small term-document matrix

and projecting it into a 2-dimensional vector space using the PSVD.

Suppose that the document collection consists of a small number of book titles,

given in Table 2.1. The semantically significant index terms are those terms not

considered stopwords and that appear more than once in the document collection.

These terms are underlined in Table 2.1.

ID Document Title

D1 Going to the Net: A Girl’s Guide to Cyberspace

D2 Internet for Kids: A Beginner’s Guide to Surfing the Net

D3 Naked in Cyberspace: How to Find Personal Information Online

D4 Learning the Internet for Kids: A Voyage of Internet Treasures

D5 Internet Safety: Surfing the Net with Kids

D6 Online Kids: A Young Surfer’s Guide to Cyberspace

D7 Feline Online: What Happens when a Smart Cat Surfs the Internet

D8 The Big Deep: Classic Big Wave Surfing

D9 Surf Science: An Introduction to Waves for Surfing

D10 Surf Riders: In Search of the Perfect Wave

D11 The Next Wave: The World of Surfing

D12 Big Wave: Stories of Riding the World’s Wildest Water

D13 Good Things Love Water: A Collection of Surf Stories

D14 Surfing: The Big Wave

Table 2.1: Document IDs and Documents for Example 2.6.

17

Note that in processing the text, punctuation is removed, and a process known as

stemming is performed to reduce words to their root form. Thus, for example, the

words surfing, surfer’s, and surfs are all stemmed to the root surf. The theory behind

stemming is that by reducing words to a common concept, retrieval performance is

enhanced. This is countered by the possibility that stemming may relate nonrelevant

terms, and therefore nonrelevant documents may be retrieved (increasing precision

failure). Reducing both the words divide and divine to the root div could cause

this precision problem. Perhaps the greatest advantage to stemming, and the main

reason for its use, is that it greatly reduces the number of index terms, and thus the

size of the term-document matrix. For example, without stemming, the documents

from Table 2.1 would generate 19 index terms, whereas with stemming, there are

only 13 index terms. Thus, the term-document matrix is of size 13 × 14, rather

than size 19 × 14. When the number of documents is very large, the saving in the

storage needed for the term-document matrix becomes significant when stemming is

performed. There are a number of automatic stemming algorithms; the most popular

is Porter’s algorithm [1].

Table 2.2 lists the stemmed index terms for the documents given in Table 2.1.

Note that for the term stories, stemming has replaced the ies ending with y, giving

the index term story.

Term ID Stemmed Term Term ID Stemmed Term Term ID Stemmed Term

T1 net T6 surf T11 world

T2 guide T7 online T12 water

T3 cyberspace T8 big T13 story

T4 internet T9 wave

T5 kid T10 ride

Table 2.2: Term IDs and Stemmed Terms for Example 2.6.

18

The data in Tables 2.1 and 2.2 allow the formation of the term-document matrix

in Table 2.3. For simplicity, global weighting is ignored in this example, and the local

weight function is defined as the frequency of an index term in a document. The

documents are similar in size, so normalization of the weights is not necessary. Note

that the matrix is very sparse, containing few non-zero entries and many zero entries.

This is typical of term-document matrices because any document is likely to contain

only a small percentage of all the index terms.

ID D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14

T1 1 1 0 0 1 0 0 0 0 0 0 0 0 0
T2 1 1 0 0 0 1 0 0 0 0 0 0 0 0
T3 1 0 1 0 0 1 0 0 0 0 0 0 0 0
T4 0 1 0 2 1 0 1 0 0 0 0 0 0 0
T5 0 1 0 1 1 1 0 0 0 0 0 0 0 0
T6 0 1 0 0 1 1 1 1 2 1 1 0 1 1
T7 0 0 1 0 0 1 1 0 0 0 0 0 0 0
T8 0 0 0 0 0 0 0 2 0 0 0 1 0 1
T9 0 0 0 0 0 0 0 1 1 1 1 1 0 1
T10 0 0 0 0 0 0 0 0 0 1 0 1 0 0
T11 0 0 0 0 0 0 0 0 0 0 1 1 0 0
T12 0 0 0 0 0 0 0 0 0 0 0 1 1 0
T13 0 0 0 0 0 0 0 0 0 0 0 1 1 0

Table 2.3: Term-document matrix A for Example 2.6.

Let A be the 13 × 14 term-document matrix from Table 2.3. Having formed this

matrix, the next step is to project it into a lower dimension using the PSVD. For

convenience in plotting, let k = 2, where k is the number of dimensions. Recalling

Equation (2.3), the projection is expressed as

A ≈ A2 = U2Σ2V
T
2 ,

where A2 ∈ ℜ13×14, U2 ∈ ℜ13×2, Σ2 ∈ ℜ2×2, and VT
2 ∈ ℜ2×14. Performing this calcu-

lation in Matlab gives the following results (where only 2 decimal places of accuracy

are displayed).

19

A2 = U2Σ2V
T
2

=















































































−0.156 0.27

−0.15 0.25

−0.09 0.16

−0.26 0.49

−0.24 0.41

−0.73 −0.01

−0.13 0.16

−0.27 −0.38

−0.40 −0.41

−0.11 −0.16

−0.11 −0.16

−0.09 −0.14

−0.09 −0.14



















































































4.62 0

0 3.48

























































































−0.09 0.20

−0.33 0.40

−0.05 0.09

−0.16 0.40

−0.30 0.33

−0.29 0.28

−0.24 0.18

−0.36 −0.34

−0.40 −0.13

−0.27 −0.17

−0.27 −0.17

−0.23 −0.40

−0.20 −0.08

−0.30 −0.23





















































































T

.

This rank-2 PSVD of the term-document matrix A can be used to plot the terms

and documents in two dimensions. Given a standard x-axis and y-axis, the terms are

plotted by scaling the first column of U2 by the first singular value to get the term

x-coordinates, and by scaling the second column of U2 by the second singular value to

get the term y-coordinates. Similarly, the documents are plotted by scaling the first

column of matrix V2 by the first singular value to get the document x-coordinates,

and by scaling the second column of V2 by the second singular value to get the

document y-coordinates. Figure 2.6 gives the two-dimensional plot of the documents

and terms from Tables 2.1 and 2.2.

Note that the plot shows two distinct clusters of terms and documents, corre-

sponding to the two distinct topics (surfing the Internet, and surfing waves) in the

documents. It is interesting to note that in two cases, two terms map to the same

point (water and story, ride and world), and in one case, two documents map to the

same point (D10 and D11). This is a function of the dimensionality reduction that

20

−3.5 −3 −2.5 −2 −1.5 −1 −0.5 0
−1.5

−1

−0.5

0

0.5

1

1.5

2

internet

kid

net

guide

cyberspace online

surf

wave
big

ride, world

water, story D9

D8

 D2

D14

D5

D6

D10, D11

D7

D12

D13

D4

D1

D3

Figure 2.6: Two-dimensional plot of terms and documents for Example 2.6.

removes noise from the data [11].

As discussed in Section 1.1, search queries are treated as pseudo-documents, and

are projected into the same lower-dimensional space as the documents, using the

PSVD. Suppose, for the documents listed in Table 2.1, the search query Information

for kids about surfing the Internet is posed. Removing stopwords and non-index

21

terms and performing stemming reduces this query to kid surf internet. As a pseudo-

document vector q, this is expressed as q = [0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0]T .

To project the query q vector into the two-dimensional document space of Fig-

ure 2.6, giving the reduced dimensional query q2, the following multiplication is per-

formed:

q ≈ q2 = qTU2Σ
−1
2

=















































































0

0

0

1

1

1

0

0

0

0

0

0

0















































































T 













































































−0.156 0.27

−0.15 0.25

−0.09 0.16

−0.26 0.49

−0.24 0.41

−0.73 −0.01

−0.13 0.16

−0.27 −0.38

−0.40 −0.41

−0.11 −0.16

−0.11 −0.16

−0.09 −0.14

−0.09 −0.14



















































































4.62 0

0 3.48





−1

=
[

−0.27 0.25
]

.

This projected query can be thought of as a probe into the document vector space [2].

The similarity of the query to the documents must be evaluated. As discussed in Sec-

tion 1.1, the cosine similarity measure is used. The documents are ranked according

to the value of the cosine of the angle between each document and the query. Using

this ranked list, the top n documents (those closest to the query in the vector space)

can be returned to the user as relevant to the query, or a cosine threshold can be set

in which all documents above the given threshold are returned to the user as relevant.

Let the angle between the query vector and a document vector be θ. The shaded area

of Figure 2.7 represents the area in which document vectors which satisfy cos(θ) ≥ .90

are found; this is the area spanning approximately 25.84◦ on either side of the query

22

−3.5 −3 −2.5 −2 −1.5 −1 −0.5 0
−1.5

−1

−0.5

0

0.5

1

1.5

2

internet

kid

net

guide

cyberspace online

surf

wave
big

ride, world

water, story D9

D8

 D2

D14

D5

D6

D10, D11

D7

D12

D13

D4

D1

D3 Query

Figure 2.7: Two-dimensional plot of the terms and the documents from Example 2.6
and the query Information for kids about surfing the Internet.

vector (the line from the origin to the query). Note that all the documents related to

surfing the Internet are in this area, whereas none of the documents related to surfing

waves are in this area.

Chapter 3

Updating Options

As discussed in Chapter 1, calculating the PSVD of a matrix is a computationally

intensive procedure that takes up most of the processing time in LSI [3, 4]. With

a dynamic medium, such as the Internet, the PSVD needs to be modified often as

new documents and terms are added to the existing LSI database. This chapter dis-

cusses options for incorporating changes to an existing term-document matrix in LSI.

Section 3.1 describes recomputing the PSVD of the new term-document matrix from

scratch, Section 3.2 describes the traditional method of folding-in new documents and

terms, Section 3.3 details the PSVD-updating algorithms proposed by O’Brien [26]

and Berry, Dumais, and O’Brien [4], and Section 3.4 covers the PSVD-updating algo-

rithms proposed by Zha and Simon [33]. Finally, Section 3.5 introduces a new hybrid

PSVD-updating method, folding-up.

Sections 3.1–3.4 include brief examples in which four documents and one term are

added to the documents in Table 2.1 and the terms in Table 2.2 of the LSI example

in Section 2.6. The documents to be added in each case are listed in Table 3.1. As

in Table 2.1, the semantically significant index terms are those terms that are not to

be considered stopwords and that appear more than once in the document collection.

These terms are underlined in Table 3.1. The original documents have already been

parsed, and the index terms selected as those that appeared more than once in these

documents; therefore in this case, the only terms that are added when new documents

are introduced are those terms that are considered semantically significant (i.e., they

are not stopwords) and that appear more than once in the new documents. In the

examples in this chapter, the term web, which appears twice in the new documents,

is added to the existing term-document matrices.

23

24

ID Document Title

D15 The Net: Effective Email, Web Surfing and Assessing Information

D16 The Complete Idiot’s Guide to Surfing the Internet with WebTV

D17 Learning how to Surf the Web

D18 Kids Online: Protecting your Children in Cyberspace

Table 3.1: Additional documents to be appended to those from Table 2.1.

3.1 Recomputing the PSVD

Given unlimited time and memory, the ideal way of incorporating new documents

and terms into an LSI database is to recompute the PSVD; i.e., compute the PSVD

of the matrix

Â =





A D

0 T



 , (3.1)

where A ∈ ℜt×d is the original term-document matrix, D ∈ ℜt×p is the term-

document matrix containing p new documents, and T ∈ ℜq×p is the term-document

matrix containing the q new terms. It is possible, and probable, that due to memory

constraints, the original term-document matrix A has not been stored in memory and

is no longer available for use in computing Â. In this case, Equation (3.1) is modi-

fied such that the term-document matrix A is replaced by the reduced-rank matrix

Ak = UkΣkV
T
k , where k is the rank (number of dimensions) of Ak:

Â ≈





Ak D

0 T



 . (3.2)

25

Although recomputing the PSVD of the new term-document matrix each time

changes are made to the document collection is the most accurate method of incorpo-

rating change in the term-document representation of the dataset, it is also the most

expensive method. Alternatives to this approach are discussed in Sections 3.2–3.5.

3.1.1 Recomputing Example

Suppose that the documents from Tables 2.1 and 3.1 are combined in order to create

a new term-document matrix Â. Whereas the original term-document matrix from

Section 2.6 contains 13 terms and 14 documents, this new term-document matrix

Â contains 14 terms (the term web is being added) and 18 documents. As with

the example in Section 2.6, the new term-document matrix is projected into two di-

mensional space, for ease of visualizing. Thus, let k = 2, where k is the number of

dimensions. Recalling Equation (2.3), the projection is expressed as

Â ≈ Â2 = Û2Σ̂2V̂
T
2 ,

where Â2 ∈ ℜ14×18, Û2 ∈ ℜ14×2, Σ̂2 ∈ ℜ2×2, and V̂T
2 ∈ ℜ2×18. See Figure 3.1 for

the two-dimensional plot of the documents and terms using this procedure. Compare

Figure 3.1 to Figure 2.6, and note that the positions of the documents and terms

that were in the original term-document matrix have shifted in response to the new

documents and term. Despite this shift, note that as in Figure 2.6, the terms water

and story still map to the same point, as do the terms ride and world, and the

documents D10 and D11. The two distinct clusters of documents are also maintained.

The new documents, which are Internet related, are clustered with documents D1–

D7 about surfing the Internet, rather than with documents D8–D14, which are about

surfing waves.

26

−4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

surf

internet
kid

net

guide

wave

big

ride, world

water, story

web

D9

D2

D5
D6

D8

D3

D18

D1

D4

D17

D12

D13

D15

D10, D11

D7
D16

D14

online

cyberspace

Figure 3.1: Two-dimensional plot of 14 terms and 18 documents using a PSVD that
has been recomputed from scratch.

27

3.2 Folding-in

Because recomputing the PSVD when new documents and terms are added to an

existing LSI database is very expensive, the method of folding-in new documents

and terms is often used [11]. The folding-in method is computationally inexpensive

compared to recomputing the PSVD. Unfortunately, because the folding-in method

bases the new representation of the data on the existing latent semantic structure,

its use can cause deterioration in the numerical representation of the dataset by the

PSVD.

Recall from Equation (2.3) that the PSVD of the term-document matrix A is

UkΣkV
T
k , where k is the number of dimensions. Also recall, from Section 2.3 that

the columns of matrix Uk are mutually orthogonal, as are the columns of matrix Vk.

Folding-in p documents appends p rows to the bottom of Vk, giving V̂k, and folding-

in q terms appends q rows to the bottom of Uk, giving Ûk. This process corrupts the

orthogonality of the columns of Ûk and V̂k, potentially leading to a misrepresentation

of the dataset.

3.2.1 Adding Documents

As before, let UkΣkV
T
k be the PSVD of the term-document matrix A ∈ ℜt×d, where

t is the number of terms, d is the number of documents, and k is the number of

dimensions used in the PSVD, such that Uk ∈ ℜt×k,Σk ∈ ℜk×k, and Vk ∈ ℜd×k.

Let D ∈ ℜt×p be the term-document matrix containing the document vectors to be

appended to A, where p is the number of new documents.

Using the PSVD, D is projected into the k-dimensional space, giving Dk:

Dk = DTUkΣ
−1
k .

The projection Dk ∈ ℜp×k is folded-in to the existing PSVD of A by appending it

to the bottom of Vk, giving the modified matrix V̂k ∈ ℜ(d+p)×k. Uk and Σk are not

modified in any way with this method. Figure 3.2 gives a schematic representation

of folding-in documents.

28

≈A D U
k
 Σ

k
 V

k
T DT

k

t × (d + p) t × k k × k k × (d + p)

Figure 3.2: A schematic representation of folding-in p new documents.

3.2.2 Adding Terms

Folding-in terms follows a similar process. Let T ∈ ℜq×d be the term-document

matrix containing the term vectors to be appended to A, where q is the number of

new terms.

T is projected into the k-dimensional space, giving Tk:

Tk = TVkΣ
−1
k .

The projection Tk ∈ ℜq×k is folded-in to the existing PSVD of A by appending it

to the bottom of Uk, giving the modified matrix Ûk ∈ ℜ(t+p)×k. Vk and Σk are not

modified in any way with this method. Figure 3.3 gives a schematic representation

of folding-in documents.

29

≈A U
k
 Σ

k
 V

k
T

T T
k

(t + q) × d (t + q) × k k × k k × d

Figure 3.3: A schematic representation of folding-in q new terms.

3.2.3 Example

As with the example in Section 3.1.1, suppose that the documents from Tables 2.1

and 3.1 are combined in order to create a new term-document matrix Â containing 14

terms (the term web is being added) and 18 documents. As with the examples in Sec-

tions 2.6 and 3.1.1, the new term-document matrix is projected into two-dimensional

space for ease of plotting.

See Figure 3.4 for the two-dimensional plot of the documents and terms using

the folding-in method. Recall that the new documents that have been folded-in are

D15–D18 and that web is the new term that has been folded-in. Compare Figure 3.4

to Figures 2.6 and 3.1, and note that the positions of the documents and terms that

were in the original term-document matrix have not shifted in response to the new

documents and term. Unlike recomputing the PSVD, in which the new data directly

changes the existing latent semantic structure, folding-in merely adds to the existing

latent semantic structure [26]. This means that new documents and terms do not

affect the representation of documents and terms that are already in the dataset. As

in Figures 2.6 and 3.1, the terms water and story still map to the same point, as do

the terms ride and world, and the documents D10 and D11.

30

−4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

internet

kid

net

guide

cyberspace online

surf

wave
big

ride, world

water, story
D9

D8

 D2

D14

D5

D6

D10, D11

D7

D12

D13

D4

D1

D3

 web

D16

D15

D17

D18

Figure 3.4: Two-dimensional plot of 14 terms and 18 documents using a PSVD that
has been modified by folding-in 4 documents and 1 term.

31

3.3 PSVD-updating (O’Brien, and Berry, Dumais, and O’Brien)

Recomputing the PSVD each time changes are made to an LSI database can be

prohibitively expensive, but the inexpensive alternative of folding-in new terms and

documents may result in an inaccurate numerical representation of the dataset by the

modified PSVD; this is illustrated by the experimental results in Chapter 5. Another

option, aside from the recomputing or folding-in methods, is to use PSVD-updating

methods to modify, or update, the existing PSVD of the current term-document

matrix to incorporate the addition of new documents and terms. The first PSVD-

updating techniques for LSI were introduced by O’Brien [26], and Berry, Dumais,

and O’Brien [4]. In this thesis, these PSVD-updating methods are referred to as

O’Brien’s PSVD-updating methods. Section 3.3.1 describes the algorithm for PSVD-

updating when new documents are added, Section 3.3.2 describes the algorithm for

PSVD-updating when new terms are added, and Section 3.3.3 details the algorithm for

adjusting term weights. Section 3.3 concludes with a brief example of these document

and term PSVD-updating methods.

3.3.1 Adding Documents

As before, let UkΣkV
T
k be the PSVD of the term-document matrix A ∈ ℜt×d, where

t is the number of terms, d is the number of documents, and k is the number of

dimensions used in the PSVD, such that Uk ∈ ℜt×k,Σk ∈ ℜk×k, and Vk ∈ ℜd×k.

Let D ∈ ℜt×p be the term-document matrix containing the document vectors to be

appended to A, where p is the number of new documents. Define

Â =
[

Ak D
]

.

Then

Â =
[

UkΣkV
T
k D

]

,

UT
k Â =

[

ΣkV
T
k UT

k D
]

, and

32

UT
k Â





Vk 0dp

0pk Ip



 =
[

Σk UT
k D

]

= Ã ,

where Ip ∈ ℜp×p is the identity matrix and 0dp ∈ ℜd×p and 0pk ∈ ℜp×k are zero

matrices.

Let Â = ÛΣ̂V̂T be the SVD of Â, and let Ã = ŨΣ̃ṼT be the SVD of Ã. Then

(

UT
k Û

)

Σ̂



V̂T





Vk 0dp

0pk Ip







 = ŨΣ̃ṼT .

This gives

UT
k Û = Ũ ,

Σ̂ = Σ̃ , and

V̂T





Vk 0dp

0pk Ip



 = ṼT .

Therefore,

Û = UkŨ , and

V̂ =





Vk 0dp

0pk Ip



 Ṽ ,

where Û ∈ ℜt×k, Σ̂ ∈ ℜk×(k+p), and V̂ ∈ ℜd×(k+p). ÛΣ̂V̂T is the updated PSVD,

i.e., the PSVD of Â.

33

3.3.2 Adding Terms

Adding terms follows a similar process. As before, let UkΣkV
T
k be the PSVD of the

term-document matrix A ∈ ℜt×d, where t is the number of terms, d is the number

of documents, and k is the number of dimensions used in the PSVD, such that Uk ∈

ℜt×k,Σk ∈ ℜk×k, and Vk ∈ ℜd×k. Let T ∈ ℜq×d be the term-document matrix

containing the term vectors to be appended to A, where q is the number of new

terms. Define

Â =





Ak

T



 .

Then

Â =





UkΣkV
T
k

T



 ,





UT
k 0kq

0qt Iq



 Â =





ΣkV
T
k

T



 , and





UT
k 0kq

0qt Iq



 ÂVk =





Σk

TVk



 = Ã ,

where Iq is the identity matrix of size q × q, 0kq is a zero matrix of size k× q, and 0qt

is a zero matrix of size q × t.

Let Â = ÛΣ̂V̂T be the SVD of Â , and let Ã = ŨΣ̃ṼT be the SVD of Ã. Then









UT
k 0kq

0qt Iq



 Û



 Σ̂
(

V̂TVk

)

= ŨΣ̃ṼT .

This gives

34





UT
k 0kq

0qt Iq



 Û = Ũ ,

Σ̂ = Σ̃ , and

V̂TVk = ṼT .

Therefore,

Û =





Uk 0T
qt

0T
qk Iq



 Ũ , and

V̂ = VkṼ ,

where Û ∈ ℜ(t+q)×(k+q), Σ̂ ∈ ℜ(k+q)×k, and V̂ ∈ ℜd×k. ÛΣ̂V̂T is the updated PSVD,

i.e., the PSVD of Â.

3.3.3 Adjusting Term Weights

A typical scenario for using the updating methods in LSI is that first, new documents

are added to the document collection, and the PSVD of the term-document matrix

is updated to reflect the addition of these documents. If the addition of these doc-

uments increases the number of terms, the PSVD of the term-document matrix is

then updated to reflect the addition of the new terms. If the addition of these new

documents and terms affects the weights in the term-document matrix, then as a final

step, the PSVD of the term-document matrix is updated to reflect the corresponding

changes to the term-weights. For example, if the tf × idf weighting scheme discussed

in Section 4.1.1 is being used, then the weights would need to be updated to reflect

changes in the global idf factor.

Assume that there are s terms whose weights need to be adjusted in an existing

term-document matrix A ∈ ℜt×d. Let S ∈ ℜt×s be the selection matrix. A selection

matrix has a column for each term whose weight must be modified: each column has

one entry which is 1 (to select the term), and all other entries are 0. For example

35

if term i is represented by column j, then the entry sij is 1, and all other entries in

column j are 0. Let W ∈ ℜd×s be the matrix such that each column wi contains

the difference between the old term weights and the new term weights for the term

i. The following method updates the PSVD of A to give the PSVD of Â, where

Â = Ak + SWT is the adjusted term-document matrix.

As before, let UkΣkV
T
k be the PSVD of the term-document matrix A ∈ ℜt×d,

and let ÛΣ̂V̂T be the PSVD of the term-document matrix Â ∈ ℜt×d. Then

Â = UkΣkV
T
k + SWT ,

UT
k Â = ΣkV

T
k + UT

k SWT , and

UT
k ÂVk = Σk + UT

k SWTVk = Ã .

Let Ã = ŨΣ̃VT be the PSVD of Ã. Then

UT
k ÂVk = ŨΣ̃ṼT , and

(

UT
k Û

)

Σ̂
(

V̂TVk

)

= ŨΣ̃ṼT .

This gives

UT
k Û = Ũ ,

Σ̂ = Σ̃ , and

V̂TVk = ṼT .

36

Therefore

Û = UkŨ , and

V̂ = VkṼ ,

where Û ∈ ℜt×k, Σ̂ ∈ ℜk×k, and V̂ ∈ ℜd×k. ÛΣ̂V̂T is the updated PSVD, i.e., the

PSVD of Â.

3.3.4 Example

As with the examples in Sections 3.1.1 and 3.2.3, suppose that the documents from

Tables 2.1 and 3.1 are combined in order to create a new term-document matrix Â

containing 14 terms (the term web is being added) and 18 documents. As with the

examples in Sections 2.6, 3.1.1, and 3.2.3, the new term-document matrix is projected

into two-dimensional space, for ease of plotting.

See Figure 3.5 for the two-dimensional plot of the documents and terms using the

O’Brien’s PSVD-updating methods. Recall that the new documents that have been

added are D15–D18, and that web is the new term that has been added. Compare

Figure 3.5 to Figures 2.6, 3.1, and 3.4. Note that unlike the example in Figure 3.1,

in which the documents and term were folded-in, the positions of the documents and

terms that were in the original term-document matrix have shifted in response to the

new documents and term, similar to Figure 2.6 in which the PSVD was recomputed.

This is a more accurate representation of the dataset than the result of the folding-in

method. As in Figures 2.6, 3.1, and 3.1, the terms water and story still map to the

same point, as do the terms ride and world, and the documents D10 and D11.

37

−4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

surf

wave

internet

kid

big

net
guide

online cyberspace

ride, world

water, story

web

D9

D2

D8

D5

D6

D14

D16

D10, D11

D7

D4

D15

D13

D12

D17

D18 D1

D3

Figure 3.5: Two-dimensional plot of 14 terms and 18 documents using a PSVD that
has been modified by O’Brien’s PSVD-updating methods to incorporate 4 new doc-
uments and 1 new term.

38

3.4 PSVD-updating (Zha and Simon)

Although O’Brien’s PSVD-updating methods, detailed in Section 3.3, result in a more

accurate representation of the modified LSI database than do the folding-up methods

described in Section 3.2, Zha and Simon have proposed alternative PSVD-updating

methods for LSI [33]; their research indicates that these PSVD-updating methods

give even better results than do O’Brien’s methods. Section 3.4.1 describes Zha and

Simon’s algorithm for PSVD-updating when new documents are added, Section 3.4.2

describes their algorithm for PSVD-updating when new terms are added, and Sec-

tion 3.4.3 details the algorithm for adjusting term weights. Section 3.4 concludes with

a brief example of these document and term PSVD-updating methods in Section 3.4.4.

3.4.1 Adding Documents

As before, let UkΣkV
T
k be the PSVD of the term-document matrix A ∈ ℜt×d, where

t is the number of terms, d is the number of documents, and k is the number of

dimensions used in the PSVD, such that Uk ∈ ℜt×k,Σk ∈ ℜk×k, and Vk ∈ ℜd×k.

Let D ∈ ℜt×p be the term-document matrix containing the document vectors to be

appended to A, where p is the number of new documents. Define

Â =
[

Ak D
]

.

The following method updates the PSVD of A to give the PSVD of Â. Let D̂ ∈ ℜt×p

be defined by

D̂ =
[

It −UkU
T
k

]

D.

The matrix It − UkU
T
k is an orthogonal projection mapping the columns of D into

the subspace that is orthogonal to the space spanned by the columns of Uk. Note

that an orthogonal projection is a matrix P such that P2 = P and P = PT . Having

formed the projection D̂, now form the reduced QR decomposition, as described in

Section 2.2, of D̂ such that

39

QDRD = D̂.

Recall that with such a decomposition, QD ∈ ℜt×p has orthogonal columns, and

RD ∈ ℜp×p is upper triangular. Then,

Â =
[

Ak D
]

=
[

Uk QD

]





Σk UT
k D

0pk RD









VT
k 0kp

0pd Ip



 ,

where Ip ∈ ℜp×p is the identity matrix and 0pk ∈ ℜp×k, 0kp ∈ ℜk×p, and 0pd ∈ ℜp×d

are zero matrices.

Let Ã ∈ ℜ(k+p)×(k+p) be defined by Ã =





Σk UT
k D

0pk RD



 .

Let ŨΣ̃ṼT be the SVD of Ã, and partition it to give

Ã =
[

Ũk Ũp

]





Σ̃k 0kp

0pk Σ̃p





[

Ṽk Ṽp

]T
,

where Ũk ∈ ℜ(k+p)×k, Ũp ∈ ℜ(k+p)×p, Σ̃k ∈ ℜk×k, Σ̃p ∈ ℜp×p, Ṽk ∈ ℜ(k+p)×k, and

Ṽp ∈ ℜ(k+p)×p.

Then the rank-k PSVD of the updated term-document matrix Â = [Ak,D] is

Âk =
([

Uk QD

]

Ũk

)

Σ̃k









Vk 0dp

0pk Ip



 Ṽk





T

.

40

3.4.2 Adding Terms

Adding terms follows a similar process. As before, let UkΣkV
T
k be the PSVD of the

term-document matrix A ∈ ℜt×d, where t is the number of terms, d is the number

of documents, and k is the number of dimensions used in the PSVD, such that Uk ∈

ℜt×k,Σk ∈ ℜk×k, and Vk ∈ ℜd×k.

Let T ∈ ℜq×d be the term-document matrix containing the term vectors to be

appended to A, where q is the number of new terms. Define

Â =





Ak

T



 .

The following method updates the PSVD of A to give the PSVD of Â. Let T̂ ∈ ℜd×q

be defined by

T̂ =
(

Id − VkV
T
k

)

TT .

The matrix Id − VkV
T
k is an orthogonal projection mapping the rows of T into the

subspace that is orthogonal to the space spanned by the columns of Vk. Having

formed the projection T̂, now form the reduced QR decomposition of T̂ such that

QTRT = T̂.

Then QT ∈ ℜd×q has orthogonal columns, RT ∈ ℜq×q is upper triangular, and

Â =





Ak

T



 =





Uk 0tq

0qk Iq









Σk 0kq

TVk RT
T



 [Vk,QT]T ,

where Iq ∈ ℜq×q is the identity matrix and 0tq ∈ ℜt×q, 0kq ∈ ℜk×q, and 0qk ∈ ℜq×k

are zero matrices.

Let Ã ∈ ℜ(k+q)×(k+q) be defined by Ã =





Σk 0kq

TVk RT
T



 .

41

Let ŨΣ̃ṼT be the SVD of Ã, and partition it to give

Ã =
[

Ũk Ũq

]





Σ̃k 0kq

0qk Σ̃q





[

Ṽk Ṽq

]T
,

where Ũk ∈ ℜ(k+q)×k, Ũq ∈ ℜ(k+q)×q, Σ̃k ∈ ℜk×k, Σ̃q ∈ ℜq×q, Ṽk ∈ ℜ(k+q)×k, and

Ṽq ∈ ℜ(k+q)×q.

Then the rank-k PSVD of the updated term-document matrix

Â =





Ak

T



 is Âk =









Uk 0tq

0qk Iq



 Ũk



 Σ̃k

([

Vk QT

]

Ṽk

)T
.

3.4.3 Adjusting Term Weights

Assume that there are s terms whose weights need to be adjusted in an existing

term-document matrix A ∈ ℜt×d. Let S ∈ ℜt×s be a matrix which has a column

for each term whose weight must be modified: each column has one entry which is 1

(to select the term), and all other entries are 0. For example if term i is represented

by column j, then the entry sij is 1, and all other entries in column j are 0. S is

known as a selection matrix. Let W ∈ ℜd×s be the matrix such that each column wi

contains the difference between the old term weights and the new term weights for

the term i. The following method updates the PSVD of A to give the PSVD of Â,

where Â = Ak + SWT is the adjusted term-document matrix.

As before, let UkΣkV
T
k be the PSVD of the term-document matrix A ∈ ℜt×d,

and let UÂΣÂVT
Â

be the PSVD of the term-document matrix Â ∈ ℜt×d.

Let Ŝ ∈ ℜt×s be defined by

Ŝ =
(

It −UkU
T
k

)

S,

and let Ŵ ∈ ℜd×s be defined by

Ŵ =
(

Id −VkV
T
k

)

W.

42

The matrix It − UkU
T
k is an orthogonal projection mapping the columns of S into

the subspace that is orthogonal to the space spanned by the columns of Uk, and the

matrix Id − VkV
T
k is an orthogonal projection mapping the columns of W into the

subspace that is orthogonal to the space spanned by the columns of Vk. Form the

reduced QR decomposition of Ŝ such that

QSRS = Ŝ.

Then QS ∈ ℜt×s has orthogonal columns, and RS ∈ ℜs×s is upper triangular. Also

form the reduced QR decomposition of Ŵ such that

QWRW = Ŵ.

Then QW ∈ ℜd×s has orthogonal columns, and RW ∈ ℜs×s is upper triangular. Using

these decompositions,

Â = Ak + SWT

=
[

Uk QS

]











Σk 0ks

0sk 0ss



+





UT
k S

RS









VT
k W

RW





T





[

Vk QW

]T
,

where 0ks ∈ ℜk×s, 0sk ∈ ℜs×k, and 0ss ∈ ℜs×s are zero matrices.

Let Ã ∈ ℜ(k+s)×(k+q) be defined by

Ã =





Σk 0ks

0sk 0ss



+





UT
k S

RS









VT
k W

RW





T

.

Let ŨΣ̃ṼT be the SVD of Ã, and partition it to give

43

Ã =
[

Ũk Ũs

]





Σ̃k 0ks

0sk Σ̃s





[

Ṽk Ṽs

]T
,

where Ũk ∈ ℜ(k+s)×k, Ũs ∈ ℜ(k+s)×s, Σ̃k ∈ ℜk×k, Σ̃s ∈ ℜs×s, Ṽk ∈ ℜ(k+s)×k, and

Ṽs ∈ ℜ(k+s)×s.

Then the rank-k PSVD of the updated term-document matrix Â = Ak + SWT is

Âk =
([

Uk QS

]

Ũk

)

Σ̃k

([

Vk QW

]

Ṽk

)T
.

3.4.4 Example

As with the examples in Sections 3.1.1, 3.2.3, and 3.3.4, suppose that the documents

from Tables 2.1 and 3.1 are combined in order to create a new term-document matrix

Â containing 14 terms (the term web is being added) and 18 documents. As with the

previous examples, the new term-document matrix is projected into two-dimensional

space for ease of plotting.

See Figure 3.6 for the two-dimensional plot of the documents and terms using

the Zha and Simon’s PSVD-updating methods. Recall that the new documents that

have been added are D15–D18 and that web is the new term that has been added.

Compare Figure 3.5 to Figures 2.6, 3.1, 3.4, and 3.5. Note that unlike the example

in Figure 3.1 in which the documents and terms were folded in, the positions of the

documents and terms that were in the original term-document matrix have shifted in

response to the new documents and term, similar to Figure 2.6 in which the PSVD

was recomputed. Also note that Figure 3.6 more closely resembles Figure 3.1 in which

the PSVD is recomputed, than do either Figures 3.4 or 3.5. Zha and Simon’s PSVD-

updating methods give a more accurate representation of the dataset than either the

folding-in methods or O’Brien’s PSVD-updating methods [33]. As before, the terms

water and story still map to the same point, as do the terms ride and world, and the

documents D10 and D11.

44

−4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

surf

internet

kid

wave

big

guide
net

web

water, story

ride, world

online cyberspace

D9

D2

D5

D8

D6

D16

D7

D14

D10, D11

D4

D12

D13

D17

D15

D3

D18

D1

Figure 3.6: Two-dimensional plot of 14 terms and 18 documents using a PSVD that
has been modified by Zha and Simon’s PSVD-updating methods to incorporate 4 new
documents and 1 new term.

45

3.5 Folding-up

It is well known that folding-in is a very inexpensive way to incorporate new informa-

tion into an existing term-document matrix, compared to recomputing the PSVD [4].

However, because the folding-in method bases the new representation of the data on

the existing latent semantic structure, its use can cause deterioration in the numerical

representation of the dataset by the PSVD, even after only a small number of updates.

On the other hand, PSVD-updating gives the same result (to within rounding errors)

as recomputing the PSVD, with significantly less computational expense. However,

it is still significantly more computationally expensive than folding-in.

We now describe a new hybrid method that uses a combination of folding-in and

PSVD-updating in order to reduce the computational expense of PSVD-updating

even further, without significantly degrading the results. This new method, called

folding-up, will be shown to be computationally faster than either recomputing the

PSVD or using PSVD-updating methods, with no significant difference in retrieval

performance. The idea is that when there are new documents or terms to be added to

the LSI database, they are first folded-in, although the original vectors are stored for

later use. After a certain amount of folding-in has been done (as described below),

the changes that have been made by the folding-in process are discarded, and all

the document or term vectors that have been folded-in are instead added to the LSI

database using a PSVD-updating method, such as the method introduced by Zha and

Simon and discussed in Section 3.4. The original document or term vectors that have

been added to the LSI database by the PSVD-updating process can then be discarded.

The goal of the folding-up method is to switch from the process of folding-in to that of

using a PSVD-updating method before the accuracy of the numerical representation

of the database degrades significantly from the folding-in process. After the PSVD-

update has been performed, the cycle begins again; documents and/or terms are

again folded-in until it is deemed necessary to switch to a PSVD-updating method.

In folding-up, the PSVD-updating process can be thought of as a correction step, but

it is important to decide at what point this step becomes necessary.

Recall from Equation (2.3) that the PSVD of the term-document matrix A is

UkΣkV
T
k , where k is the number of dimensions. Also recall, from Section 2.3, that

the columns of matrix Uk are mutually orthogonal, as are the columns of matrix

46

Vk. Recall from Section 3.2 that folding-in p documents appends p rows to the

bottom of Vk, to get V̂k, and folding-in q terms appends q rows to the bottom of

Uk, to get Ûk. This process corrupts the orthogonality of the columns of Ûk and V̂k,

potentially leading to a misrepresentation of the dataset. With the folding-up method,

the deterioration of the orthogonality of V̂k (when documents are being added) or

Ûk (when terms are being added) is monitored. This distortion of orthogonality

is an indication of how much inaccuracy has been introduced to the representation

of the dataset with the addition of new documents and terms. When the loss of

orthogonality reaches a limit that is deemed unacceptable, the changes that have

been made by the folding-in method are discarded; i.e., the vectors that have been

appended to Vk and Uk are discarded. PSVD-updating methods are then applied

such that the modified PSVD reflects the addition of all of the document and term

vectors that have been folded-in since the last update. The process then continues

with folding-in until the next update.

The loss of orthogonality in Ûk and V̂k can be measured by

‖ÛT
k Ûk − Ik‖∞ and ‖V̂T

k V̂k − Ik‖∞, (3.3)

respectively, where ‖ · ‖∞ is the matrix infinity norm, and Ik ∈ ℜk×k is the identity

matrix. However, when the term-document matrix is very large, this measurement is

computationally expensive. Recall from Section 3.2 that

Ûk =





Uk

Tk



 , and

V̂k =





Vk

Dk



 .

Then

47

ÛT
k Ûk =

[

UT
k TT

k

]













Uk

Tk













=
[

UT
k Uk + TT

k Tk

]

, and (3.4)

V̂T
k V̂k =

[

VT
k DT

k

]





Vk

Dk



 =
[

VT
k Vk + DT

k Dk

]

. (3.5)

Substituting Equations (3.4) and (3.5) into Equation (3.3) gives

‖UT
k Uk + TT

k Tk − Ik‖∞ = ‖Ik + TT
k Tk − Ik‖∞ = ‖TT

k Tk‖∞ and (3.6)

‖VT
k Vk + DT

k Dk − Ik‖∞ = ‖Ik + DT
k Dk − Ik‖∞ = ‖DT

k Dk‖∞. (3.7)

Thus, the deterioration in the orthogonality of Ûk and V̂k can be measured by

‖TT
k Tk‖∞ and ‖DT

k Dk‖∞, respectively.

Using the results from Equations (3.6) and (3.7) rather than Equations (3.3) to

monitor the deterioration in orthogonality offers significant computational savings.

This is because Ûk is of size (t + q) × k, whereas Tk is of size q × k, with typically

t ≫ q, and so the multiplication TT
k Tk is much less expensive than the multiplication

ÛT
k Ûk. Likewise, V̂k is of size (d + p) × k whereas Dk is of size p × k, with typically

d ≫ p, thus the multiplication DT
k Dk is much less expensive than the multiplication

V̂T
k V̂k.

The process of folding-up also has the overhead of saving the document vectors

that are being folded-in between updates; however, it repays this cost with a saving in

computation time, coupled with the precision advantages of updating. Experiments

in Chapter 5 demonstrate that folding-up produces results that are not statistically

different from those produced by recomputing the PSVD.

Chapter 4

Term Weighting and Evaluation Metrics

Term weighting, an approach commonly used to improve retrieval performance, is

discussed in Section 4.1. Retrieval performance is the ability of a retrieval system to

return relevant documents, while minimizing the return of nonrelevant documents.

The retrieval performance metrics precision and recall are discussed in Section 4.2.1,

and average precision is discussed in Section 4.2.2. An example of forming a precision

versus recall curve is given in Section 4.2.3.

4.1 Term Weights

As discussed in Section 1.1, a term-document matrix A has t rows and d columns,

where t is the number of semantically significant terms, or index terms, and d is the

number of documents in the text collection. Not all of the index terms for a document

collection are equally useful in distinguishing the contents of the documents. Terms

that are in all the documents are not useful as index terms, and it is for this reason

that lists of stopwords are used to remove common words from the list of index

terms, as discussed in Section 1.1. In contrast, a word that appears in only a few

documents may be very useful as an index term, because it narrows the number of

documents that are likely to be of relevance to the user [1]. Each term-document

entry aij indicates the importance of term i relative to document j, where 1 ≤ i ≤ t,

and 1 ≤ j ≤ d. The entries may be binary, raw term frequencies, or weighted

term frequencies. As a simplification, the term-weights are generally assumed to be

mutually independent [1, 28].

As discussed in Section 1.1, local and global weighting are the two forms of weight-

ing commonly used in practice. Local weighting indicates the importance of a term

in a document, whereas global weighting indicates the importance of the term in the

document collection as a whole.

Four commonly used local weighting schemes are binary [2, 28], logarithmic [2, 17],

48

49

term frequency [1, 2, 28], and augmented normalized term frequency [2, 17, 28]. Denote

the frequency of a term i in document j by fij. The binary term weight function χ

is defined as

χ (fij) =







1 if fij > 0

0 if fij = 0.
(4.1)

The logarithmic term weight is defined as log(1 + fij), and the term frequency term

weight is simply fij , the number of times term i appears in document j. The aug-

mented normalized term frequency weighting scheme is defined as follows:

χ (fij) +
(

fij

maxk fkj

)

2
, (4.2)

where χ(fij) is the binary weight function from Equation (4.1), and maxk fkj is the

maximum frequency of any term in document j. According to Berry and Browne [2],

the choice of the local weighting scheme depends on the type of vocabulary prevalent

in the document collection. They note that with general or varied vocabularies, the

use of raw term frequencies fij is often sufficient, whereas for scientific vocabularies,

normalized term frequency schemes such as Equation (4.2) are recommended.

Although global weights are typically not used in dynamic environments, thus

avoiding the need to update the global weight factor as the number of documents in

the document collection changes, global weights are often used in static environments

in which the number of documents in the document collection is stable [2]. Global

weighting schemes have the effect of reducing the weight of terms that are found in

many documents [26].

Four commonly used global weighting schemes are inverse document frequency

(idf) [1, 2, 12, 28], global frequency × inverse document frequency (gf × idf) [2, 12],

normal [2, 12], and probabilistic inverse [2, 17, 28]. As before, denote the frequency

of a term i in document j by fij , and let χ(fij) be the binary weight function from

Equation (4.1). Let N be the total number of documents in the document collection,

50

let gfi be the global frequency of term i, and let dfi be the number of documents

containing term i. The idf weighting scheme, which provides a measure of the inverse

of the frequency of a term among all the documents in the document collection, is

defined as

log

(

N

dfi

)

+ 1,

and the gf × idf global weighting scheme, which is the ratio of the global frequency

of a term to the number of documents in which it occurs, is defined as

gfi

dfi
.

The normal global weighting scheme normalizes the local weights for each term i, and

is defined as

√

√

√

√

1
∑

j (fij)
2 ,

and the probabilistic inverse global weighting scheme is defined as

log

(

N − dfi

dfi

)

.

A common combination of local and global weighting is to use the tf × idf weight-

ing scheme [1, 2, 28], as described in Section 4.1.1.

51

4.1.1 Tf×Idf Weighting Scheme

Although there are many term-weighting schemes, the most popular of these are

some form of the tf × idf weighting scheme. The tf factor in the tf × idf weighting

scheme stands for the term frequency (the number of times a term appears in a

document); this is a measure of the how well a particular term represents a particular

document [1]. This is a local weight. The idf factor stands for inverse document

frequency, which is a measure of the inverse of the frequency of a term among all the

documents in the document collection; this is a global weight. The idea behind using

the idf factor is that words that are found in only a small proportion of the document

collection are more likely to be useful in differentiating between documents [1]. The

normalized tf factor for term i in document j is given by

tfij =
fij

maxk fkj

,

where fij is the raw frequency of term i in document j, and maxk fkj is the raw

frequency of the most common index term, k, in document j. The tf × idf weight

aij for term i in document j is then

aij = tfij ×

(

gfi

dfi

)

, (4.3)

where gfi

dfi
is the idf factor for term i. Normalizing Equation (4.3) gives

aij =
tfij × idfi

√

t
∑

k=1
(tfij)

2 (idfi)
2

, (4.4)

where t is the number of index terms.

For query weights, a slightly modified formula is suggested by Salton and Buck-

ley [28]. The tf × idf weight wiq for term i in query q is given by

52

wiq =

(

0.5 +
0.5 fiq

maxk fkq

)

× log
N

dfi

= (0.5 + 0.5 tfiq) × idfi. (4.5)

Normalizing Equation (4.5) gives

wiq =
(0.5 + 0.5 tfiq) × idfi

√

(0.5 + 0.5 tfiq)
2 (idfi)

2
. (4.6)

4.2 Metrics

In response to a user’s query, an IR system returns a ranked list of documents. In order

to measure the quality of this list, and thus the quality of the retrieval performance, it

is necessary to define performance metrics. Retrieval performance is the ability of an

IR system to retrieve relevant information and eschew irrelevant information [2]. Two

standard metrics used to evaluate IR systems are precision and recall. These metrics

are discussed in Section 4.2.1, and average precision is discussed in Section 4.2.2.

4.2.1 Precision and Recall

As an IR performance metric, precision, P , is defined as the proportion of retrieved

documents that are relevant out of all the documents that are retrieved; this is the

purity of the retrieval, and it is expressed as

P =
Drr

Dtr

, (4.7)

where Drr is the number of retrieved documents that are relevant, and Dtr is the

total number of retrieved documents.

53

The IR performance metric recall, R, is defined as the proportion of relevant doc-

uments that are retrieved, out of all the relevant documents; this is the completeness

of the retrieval, and is expressed as

R =
Drr

Nr

, (4.8)

where Drr is again the number of retrieved documents that are relevant, and Nr is

the total number of relevant documents.

Ideally, an IR system will have both high precision and high recall; however there

is a known trade-off between precision and recall. Research indicates that as precision

increases, recall decreases [6].

The definitions of precision and recall, in Equations (4.7) and (4.8) respectively,

assume that all the documents in the dataset have been examined by the user to

determine their relevance. It is typically not the case, however, that a ranked list

of the entire document collection is returned to the user of the IR system (although

this is the case for the experiments in Chapter 5). Generally, either a list of the

top ranked n documents is returned, or a ranked list of all those documents whose

similarity score (using, for example, the cosine similarity measure) is above some

threshold is returned. In either case, the user examines this list starting with the top

document; the precision and recall measures change as the user proceeds through the

list [1]. Thus, to properly evaluate the retrieval performance it is necessary to plot a

precision versus recall curve. The precision versus recall curve is generally based on

11 standard recall levels. These recall levels are 0%, 10%, 20%, . . . , 100%. If the recall

levels for a query are distinct from the 11 standard recall levels, then the precision at

each level is calculated using the following interpolation procedure (this procedure is

also used to determine the precision at the standard recall level 0%) [1]. Let ri denote

the standard recall level i, where i ∈ {0, 1, 2 . . . , 10}; for example, let r3 denote the

standard recall level of 30%. Then the interpolated precision, P , at the ith standard

recall level is the maximum known precision at any recall level between recall level i

and recall level i + 1 [1]; it is expressed as

P (ri) = max
ri≤r≤ri+1

P (r), (4.9)

54

where P (ri) is the precision at the ith standard recall level.

4.2.2 Average Precision

In order to compare the performance of IR algorithms, it is necessary to compare the

precision versus recall curves for a collection of test queries; the set of queries is run

using each algorithm. To effectively evaluate the performance of an algorithm over

all the queries, it is necessary to average the precision values at each of the standard

recall levels [1]. This is expressed as

P̄ (r) =
Nq
∑

j=1

Pj(r)

Nq
, (4.10)

where P̄ (r) is the average precision at standard recall level r, Nq is the number of

test queries, and Pj(r) is the precision at recall level r for the jth test query.

4.2.3 Precision versus Recall Curve Example

Suppose that a document collection contains 100 documents, denoted D1,D2, . . . ,D100,

and suppose that for a particular test query, there are 10 relevant documents, which

make up the set {D1,D23,D41,D49,D53,D59,D72,D77,D86,D97}. Table 4.1 gives a

ranked listing of the top 10 documents retrieved by a fictional IR system, where •

denotes a relevant document. Table 4.1 also gives the recall and precision values,

calculated as described in Section 4.2.1. Figure 4.1 depicts the precision versus recall

curve for this example. Note that because only 6 out of 10 relevant documents are

retrieved, the precision for recall levels 7 to 10 (70%, . . . , 100%) is 0.

55

Ranking Document ID Relevant Recall Precision

1 D44 • 1
10

= 0.10 1
1

= 1.00

2 D16
1
10

= 0.10 1
2

= 0.50

3 D97 • 2
10

= 0.20 2
3

= 0.67

4 D59 • 3
10

= 0.30 3
4

= 0.75

5 D62
3
10

= 0.30 3
5

= 0.60

6 D23 • 4
10

= 0.40 4
6

= 0.67

7 D100
4
10

= 0.40 4
7

= 0.57

8 D77 • 5
10

= 0.50 5
8

= 0.62

9 D1 • 6
10

= 0.60 6
9

= 0.67

10 D85
6
10

= 0.60 6
10

= 0.60

Table 4.1: Recall and Precision Example.

56

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

Recall

P
re

c
is

io
n

Figure 4.1: Precision versus recall curve at 11 standard recall levels.

Chapter 5

Experiments and Results

The experiments in this thesis are run using Matlab Release 13 on an Ultra3 SunFire

V880 (Solaris 8 operating system). Three document collections are used: Medline,

Cranfield, and CISI [9]. Sections 5.1–5.3 describe the experiments and discuss the re-

sults for each collection respectively. Each experiment compares the average precision

for the four methods discussed in Chapter 3, i.e., recomputing, folding-in documents,

PSVD-updating, and the new hybrid folding-up method. Note that in these ex-

periments, Zha and Simon’s PSVD-updating method is used; Zha and Simon have

clearly shown [33] that their updating method outperforms O’Brien’s PSVD updat-

ing method, in terms of retrieval performance. For each experiment, two versions

of the folding-up method are tested; the first measures orthogonal deterioration in

order to determine when to switch from folding-in to updating, whereas the second

method switches from folding-in to updating based on how many documents have

been folded-in, relative to the number of documents in the most recently updated

term-document matrix. These two folding-up methods will henceforth be referred to

as folding-up method 1 and folding-up method 2, respectively.

Each experiment includes a comparison of the average precisions for three trials

of folding-up method 1, in which the error threshold is varied. The error threshold is

set at 0.75, 1.00, and 1.50 respectively. Each experiment also includes a comparison

of the average precisions for three trials of folding-up method 2. Here the percentage

of documents folded-in before an update is performed, relative to the size of the term-

document matrix, is varied. The percentage is set at 8%, 10%, and 12% respectively.

Although in each case these are nominal ranges, they give some indication of the

sensitivity of the folding-up methods to these parameters.

A Jarque-Bera test for goodness-of-fit to a uniform distribution [19] is run for

the data in each experiment. These tests indicate that although the data for the

Medline document collection are uniformly distributed, the data for the Cranfield and

57

58

CISI collections are not. Thus, the statistical comparisons are made pairwise using

a distribution-free Kruskal-Wallis test. The Kruskal-Wallis test is a non-parametric

equivalent to an ANOVA test [14, 18]. For each experiment, the final average precision

values for each method are compared using the Kruskal-Wallis test at significance level

0.05.

In each experiment, the term-document matrix for the whole text collection is

partitioned into an initial matrix and a number of smaller submatrices. The initial

matrix is incrementally enlarged by iteratively appending the submatrices, and the

average precision for each method is plotted at each increment. Note that this preci-

sion is averaged not only over the number of queries, but also over the 11 standard

recall levels. In each case, the PSVD of the initial matrix is computed using the svds

function for sparse matrices in Matlab. The measure of similarity for each experiment

is the cosine similarity measure. A local normalized term frequency weighting scheme

is used in each experiment; no global weighting is used.

5.1 Medline Text Collection

The Medline text collection contains 1033 medical abstracts and 30 queries. Af-

ter stopword removal and stemming, there are 5735 terms, giving a 5735 × 1033

term-document matrix. This matrix is partitioned into an initial matrix with 433

documents and a number of submatrices to be appended incrementally. For each

of the experiments with the Medline collection, k = 75, where k is the number of

dimensions used in computing the PSVD. Table 5.1 gives a comparison of CPU times

for each of the experiments.

5.1.1 Medline: Experiment 1

The Medline term-document matrix is partitioned into an initial matrix of 433 docu-

ments and 300 submatrices of 2 documents each. Thus, there are 300 additions of 2

documents to the term-document matrix. Figure 5.1, shows a comparison for three

tests of folding-up method 1 in which the error threshold is set at 0.75, 1.00, and 1.50.

Although the difference between the results is slight, it is interesting to note that in

this case the smallest error threshold does not return the highest average precision.

59

Figure 5.2 shows a comparison for three tests of folding-up method 2, in which the

percentage of documents that can be folded-in before an update is performed is set

at 8%, 10%, and 12%. The difference between the results is minimal, which is an

indication of the robustness of the method.

Figure 5.3 compares the average precision for the methods of recomputing, folding-

up (methods 1 and 2), PSVD-updating, and folding-in. Note that in this figure,

folding-up method 1 uses an error threshold of 1.00, and folding-up method 2 uses a

percentage threshold of 8%. As expected, Figure 5.3 shows that the average precision

for folding-in deteriorates rapidly relative to recomputing the PSVD; the final average

precision is significantly different from that of recomputing the PSVD (p = 0.0093).

The average precision for updating and folding-up, methods 1 and 2, is much higher

than that of folding-in, and the final average precision in each case is not significantly

different than that of recomputing (p = 0.2488 for updating, p = 0.5154 for folding-up

method 1, and p = 0.6898 for folding-up method 2). See Table 5.1 for a comparison

of the computation times.

500 600 700 800 900 1000
0.4

0.42

0.44

0.46

0.48

0.5

0.52

0.54

0.56

0.58

Number of Documents

A
ve

ra
g

e
 P

re
ci

si
o

n

Folding−up: Update after error ≥ 0.75
Folding−up: Update after error ≥ 1.00
Folding−up: Update after error ≥ 1.50

Figure 5.1: Comparison of average precisions of folding-up method 1 for the Medline
collection with 600 documents added in 300 groups of 2.

60

500 600 700 800 900 1000
0.4

0.42

0.44

0.46

0.48

0.5

0.52

0.54

0.56

0.58

Number of Documents

A
ve

ra
g

e
 P

re
ci

si
o

n

Folding−up: update after folding−in 8%
Folding−up: update after folding−in 10%
Folding−up: update after folding−in 12%

Figure 5.2: Comparison of average precisions of folding-up method 2 for the Medline
collection with 600 documents added in 300 groups of 2.

500 600 700 800 900 1000
0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

Number of Documents

A
ve

ra
g

e
 P

re
ci

si
o

n

Recomputing
Folding−up (Method 1)
Folding−up (Method 2)
Updating (Zha and Simon)
Folding−in

Figure 5.3: Comparison of average precisions for the Medline collection with 600
documents added in 300 groups of 2.

61

5.1.2 Medline: Experiment 2

The Medline term-document matrix is partitioned into an initial matrix of 433 docu-

ments and 150 submatrices of 4 documents each. Figure 5.4, shows a comparison for

three tests of folding-up method 1 in which the error threshold is set at 0.75, 1.00, and

1.50; Figure 5.2 shows a comparison for three tests of folding-up method 2, in which

the percentage of documents that can be folded-in before an update is performed is

set at 8%, 10%, and 12%. The difference between the results in each case is minimal.

Figure 5.6 compares the average precision for the methods of recomputing, folding-

up (methods 1 and 2), PSVD-updating, and folding-in. Note that in this figure,

folding-up method 1 uses an error threshold of 1.00, and folding-up method 2 uses a

percentage threshold of 8%. The final average precisions for updating and the folding-

up methods are not significantly different than that of recomputing (p = 0.2488 for

updating, p = 0.6048 for folding-up method 1, and p = 0.6467 for folding-up method

2). See Table 5.1 for a comparison of the computation times.

500 600 700 800 900 1000
0.4

0.42

0.44

0.46

0.48

0.5

0.52

0.54

0.56

0.58

Number of Documents

A
ve

ra
g

e
 P

re
ci

si
o

n

Folding−up: Update after error ≥ 0.75
Folding−up: Update after error ≥ 1.00
Folding−up: Update after error ≥ 1.50

Figure 5.4: Comparison of average precisions of folding-up method 1 for the Medline
collection with 600 documents added in 150 groups of 4.

62

500 600 700 800 900 1000
0.4

0.42

0.44

0.46

0.48

0.5

0.52

0.54

0.56

0.58

Number of Documents

A
ve

ra
g

e
 P

re
ci

si
o

n

Folding−up: update after folding−in 8%
Folding−up: update after folding−in 10%
Folding−up: update after folding−in 12%

Figure 5.5: Comparison of average precisions of folding-up method 2 for the Medline
collection with 600 documents added in 150 groups of 4.

500 600 700 800 900 1000
0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

Number of Documents

A
ve

ra
g

e
 P

re
ci

si
o

n

Recomputing
Folding−up (Method 1)
Folding−up (Method 2)
Updating (Zha and Simon)
Folding−in

Figure 5.6: Comparison of average precisions for the Medline collection with 600
documents added in 150 groups of 4.

63

5.1.3 Medline: Experiment 3

In this experiment, the Medline term-document matrix is partitioned into an initial

matrix of 433 documents and 100 submatrices of 6 documents each. Thus, there

are 100 additions of 6 documents to the term-document matrix. Note that in this

experiment, as those in Sections 5.1.1 and 5.1.2, the number of columns in the initial

term-document matrix more than doubles as the submatrices are added incrementally.

Figure 5.7 shows a comparison for three tests of folding-up method 1 in which the

error threshold is set at 0.75, 1.00, and 1.50. As with Figures 5.1 and 5.4, this

figure illustrates that this range of error thresholds produces similar results. This is

an indication that the error threshold does not have to be finely tuned. Figure 5.2

shows a comparison for three tests of folding-up method 2, in which the percentage

of documents that can be folded-in before an update is performed is set at 8%, 10%,

and 12%. Again we see that the given range of percentages produces similar results.

Figure 5.9 compares the average precision for the methods of recomputing, folding-

up (methods 1 and 2), PSVD-updating, and folding-in. Note that in this figure,

folding-up method 1 again uses an error threshold of 1.00, and folding-up method 2

uses a percentage threshold of 8%. The methods of updating and folding-up once

again out perform folding-in, with the folding-up methods giving higher average pre-

cisions than updating. The final average precision for folding-in is again significantly

different from that of recomputing the PSVD (p = 0.0093). Updating and folding

up (methods 1 and 2) again have final average precisions not significantly different

than that of recomputing (p = 0.2612 for updating, p = 0.6681 for folding-up method

1, and p = 0.7007 for folding-up method 2). In this experiment, as with those in

Sections 5.1.1 and 5.1.2, the two folding up methods produce very similar results,

although here folding-up method 2 gives slightly higher average precisions than does

folding-up method 1. As expected, folding-up method 2 has a slightly faster compu-

tation time than folding-up method 1. It is interesting to note that in this case, the

folding-up methods are approximately 170 times faster than recomputing and more

than twice as fast as updating. A comparison of all the computation times is found

in Table 5.1.

64

500 600 700 800 900 1000
0.4

0.42

0.44

0.46

0.48

0.5

0.52

0.54

0.56

0.58

Number of Documents

A
ve

ra
g

e
 P

re
ci

si
o

n

Folding−up: Update after error ≥ 0.75
Folding−up: Update after error ≥ 1.00
Folding−up: Update after error ≥ 1.50

Figure 5.7: Comparison of average precisions of folding-up method 1 for the Medline
collection with 600 documents added in 100 groups of 6.

500 600 700 800 900 1000
0.4

0.42

0.44

0.46

0.48

0.5

0.52

0.54

0.56

0.58

Number of Documents

A
ve

ra
g

e
 P

re
ci

si
o

n

Folding−up: update after folding−in 8%
Folding−up: update after folding−in 10%
Folding−up: update after folding−in 12%

Figure 5.8: Comparison of average precisions of folding-up method 2 for the Medline
collection with 600 documents added in 100 groups of 6.

65

500 600 700 800 900 1000
0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

Number of Documents

A
ve

ra
g

e
 P

re
ci

si
o

n

Recomputing
Folding−up (Method 1)
Folding−up (Method 2)
Updating (Zha and Simon)
Folding−in

Figure 5.9: Comparison of average precisions for the Medline collection with 600
documents added in 100 groups of 6.

5.1.4 Medline: Experiment 4

The Medline term-document matrix is partitioned into an initial matrix of 433 docu-

ments and 60 submatrices of 10 documents each. Figure 5.11 shows a comparison for

three tests of folding-up method 1 in which the error threshold is set at 0.75, 1.00, and

1.50. Figure 5.10 shows a comparison for three tests of folding-up method 2, in which

the percentage of documents that can be folded-in before an update is performed is

set at 8%, 10%, and 12%. Figure 5.12 compares the average precision for the methods

of recomputing, folding-up (methods 1 and 2), PSVD-updating, and folding-in. Note

that in this figure, folding-up method 1 uses an error threshold of 1.00, and folding-up

method 2 uses a percentage threshold of 8%. The average precision for updating and

folding-up, methods 1 and 2, is again much higher than that of folding-in, with final

average precisions not significantly different than that of recomputing; p = 0.3750 for

updating, p = 0.6048 for folding-up method 1, and p = 0.4508 for folding-up method

2. See Table 5.1 for a comparison of the computation times.

66

500 600 700 800 900 1000
0.4

0.42

0.44

0.46

0.48

0.5

0.52

0.54

0.56

0.58

Number of Documents

A
ve

ra
g

e
 P

re
ci

si
o

n

Folding−up: Update after error ≥ 0.75
Folding−up: Update after error ≥ 1.00
Folding−up: Update after error ≥ 1.50

Figure 5.10: Comparison of average precisions of folding-up method 1 for the Medline
collection with 600 documents added in 60 groups of 10.

500 600 700 800 900 1000
0.4

0.42

0.44

0.46

0.48

0.5

0.52

0.54

0.56

0.58

Number of Documents

A
ve

ra
g

e
 P

re
ci

si
o

n

Folding−up: update after folding−in 8%
Folding−up: update after folding−in 10%
Folding−up: update after folding−in 12%

Figure 5.11: Comparison of average precisions of folding-up method 2 for the Medline
collection with 600 documents added in 60 groups of 10.

67

500 600 700 800 900 1000
0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

Number of Documents

A
ve

ra
g

e
 P

re
ci

si
o

n

Recomputing
Folding−up (Method 1)
Folding−up (Method 2)
Updating (Zha and Simon)
Folding−in

Figure 5.12: Comparison of average precisions for the Medline collection with 600
documents added in 60 groups of 10.

5.1.5 Medline: Experiment 5

In this experiment, the Medline term-document matrix is partitioned into an initial

matrix of 433 documents and 30 submatrices of 20 documents each. This allows

30 additions of 20 documents to the term-document matrix. Note that in this ex-

periment, as those in Sections 5.1.1 and 5.1.4, the number of columns in the initial

term-document matrix more than doubles as the submatrices are added incremen-

tally. Figure 5.13 shows a comparison for three tests of folding-up method 1, in which

the error threshold is set at 0.75, 1.00, and 1.50. As with Figures 5.1 – 5.10, this

figure illustrates that this range of error thresholds produces similar results, despite

the fact that the number of documents being added at each increment has increase

tenfold over these experiments. Figure 5.14 shows a comparison for three tests of

folding-up method 2, in which the percentage of documents that can be folded-in be-

fore an update is performed is set at 8%, 10%, and 12%. Again we see that the given

range of percentages produces similar results. This is an indication the percentage

68

of documents (relative to the term-document matrix) that are folded-in before an

update can fall within a range of values.

Figure 5.15 compares the average precision for the methods of recomputing, folding-

up (methods 1 and 2), PSVD-updating, and folding-in. Note that in this figure,

folding-up method 1 uses an error threshold of 1.00, and folding-up method 2 uses a

percentage threshold of 8%. Figure 5.15 shows that the average precision for folding-

in deteriorates rapidly relative to recomputing the PSVD. The average precision for

updating and folding-up, methods 1 and 2, is again much higher than that of folding-

in, with final average precisions not significantly different than that of recomputing;

p = 0.4688 for updating, p = 0.5642 for folding-up method 1, and p = 0.5444 for

folding-up method 2. In this experiment, as with those in Sections 5.1.1 – 5.1.4, the

two folding up methods produce very similar results. See Table 5.1 for a comparison

of the computation times.

500 600 700 800 900 1000
0.4

0.42

0.44

0.46

0.48

0.5

0.52

0.54

0.56

0.58

Number of Documents

A
ve

ra
g

e
 P

re
ci

si
o

n

Folding−up: Update after error ≥ 0.75
Folding−up: Update after error ≥ 1.00
Folding−up: Update after error ≥ 1.50

Figure 5.13: Comparison of average precisions of folding-up method 1 for the Medline
collection with 600 documents added in 30 groups of 20.

69

500 600 700 800 900 1000
0.4

0.42

0.44

0.46

0.48

0.5

0.52

0.54

0.56

0.58

Number of Documents

A
ve

ra
g

e
 P

re
ci

si
o

n

Folding−up: update after folding−in 8%
Folding−up: update after folding−in 10%
Folding−up: update after folding−in 12%

Figure 5.14: Comparison of average precisions of folding-up method 2 for the Medline
collection with 600 documents added in 30 groups of 20.

500 600 700 800 900 1000
0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

Number of Documents

A
ve

ra
g

e
 P

re
ci

si
o

n

Recomputing
Folding−up (Method 1)
Folding−up (Method 2)
Updating (Zha and Simon)
Folding−in

Figure 5.15: Comparison of average precisions for the Medline collection with 600
documents added in 30 groups of 20.

70

Method CPU time CPU time CPU time CPU time CPU time

Groups of 2 Groups of 4 Groups of 6 Groups of 10 Groups of 20

Recomputing 6551.0 3371.6 2260.8 1344.8 699.0
Updating 87.8 44.7 31.9 20.9 13.8
Folding-up 1 16.3 13.3 13.3 12.0 12.3
Folding-up 2 13.2 11.5 12.7 11.1 11.1
Folding-in 3.3 1.8 1.3 0.9 0.6

Table 5.1: Comparison of total CPU times (seconds) for the Medline collection with
600 documents added in groups of 2, 4, 6, 10, and 20.

For the case in which documents are added in groups of 2 in Table 5.1, the folding-

up methods are more than 400 times faster than recomputing, and more than five

times faster than updating. For the case in which documents are added in groups of

20, the folding-up methods are more than 50 times faster than recomputing.

5.2 Cranfield Text Collection

The Cranfield text collection contains 1398 aerospace systems abstracts and 225

queries. After stopword removal and stemming, there are 4563 terms, giving a

4563× 1398 term-document matrix. This matrix is partitioned into an initial matrix

with 598 documents and a number of submatrices to be appended incrementally. For

each of the experiments with the Cranfield collection, k = 300, where k is the number

of dimensions used in computing the PSVD. Table 5.2 gives a comparison of CPU

times for each of the experiments.

5.2.1 Cranfield: Experiment 1

In this experiment, the Cranfield term-document matrix is partitioned into an initial

matrix of 598 documents and 400 submatrices of 2 documents each. Thus, there are

400 additions of 2 documents to the term-document matrix, more than doubling the

size of the initial matrix. Figure 5.16 shows a comparison for three tests of folding-up

method 1 in which the error threshold is set at 0.75, 1.00, and 1.50. The difference

between the results is so slight that it is difficult to distinguish between the individual

71

lines in the graph. Figure 5.17 shows a comparison for three tests of folding-up method

2, in which the percentage of documents that can be folded-in before an update is

performed is set at 8%, 10%, and 12%. The difference between the results is slight,

which again is an indication of the robustness of the method.

Figure 5.18 compares the average precision for the methods of recomputing, folding-

up (methods 1 and 2), PSVD-updating, and folding-in. Note that in this figure,

folding-up method 1 uses an error threshold of 1.00, and folding-up method 2 uses

a percentage threshold of 10%. The average precision for updating and folding-up,

methods 1 and 2, is higher than that of folding-in, and the final average precision

in each case is not significantly different than that of recomputing (p = 0.9754 for

updating, p = 0.9529 for folding-up method 1, and p = 0.9520 for folding-up method

2). It is interesting to note that in this experiment, folding-up method 1 is more than

500 times faster than recomputing and more than two and one half times faster than

updating. Folding-up method 2 is more than 3800 times faster than recomputing in

this case, and more than 20 times faster than updating.

600 700 800 900 1000 1100 1200 1300
0.075

0.08

0.085

0.09

0.095

0.1

0.105

0.11

0.115

0.12

Number of Documents

A
ve

ra
g

e
 P

re
ci

si
o

n

Folding−up: Update after error ≥ 0.75
Folding−up: Update after error ≥ 1.00
Folding−up: Update after error ≥ 1.50

Figure 5.16: Comparison of average precisions of folding-up method 1 for the Cranfield
collection with 800 documents added in 400 groups of 2.

72

600 700 800 900 1000 1100 1200 1300
0.075

0.08

0.085

0.09

0.095

0.1

0.105

0.11

0.115

0.12

Number of Documents

A
ve

ra
g

e
 P

re
ci

si
o

n

Folding−up: update after folding−in 8%
Folding−up: update after folding−in 10%
Folding−up: update after folding−in 12%

Figure 5.17: Comparison of average precisions of folding-up method 2 for the Cranfield
collection with 800 documents added in 400 groups of 2.

600 700 800 900 1000 1100 1200 1300
0.075

0.08

0.085

0.09

0.095

0.1

0.105

0.11

0.115

0.12

Number of Documents

A
ve

ra
g

e
 P

re
ci

si
o

n

Recomputing
Folding−up (Method 1)
Folding−up (Method 2)
Updating (Zha and Simon)
Folding−in

Figure 5.18: Comparison of average precisions for the Cranfield collection with 800
documents added in 400 groups of 2.

73

5.2.2 Cranfield: Experiment 2

The Cranfield term-document matrix is partitioned into an initial matrix of 598 doc-

uments and 200 submatrices of 4 documents each. Figure 5.19, shows a comparison

for three tests of folding-up method 1 in which the error threshold is set at 0.75,

1.00, and 1.50; Figure 5.17 shows a comparison for three tests of folding-up method

2, in which the percentage of documents that can be folded-in before an update is

performed is set at 8%, 10%, and 12%. The difference between the results in each case

is minimal. Figure 5.21 compares the average precision for the methods of recomput-

ing, folding-up (methods 1 and 2), PSVD-updating, and folding-in. Note that in this

figure, folding-up method 1 uses an error threshold of 1.00, and folding-up method

2 uses a percentage threshold of 10%. The final average precisions for updating and

folding-up, methods 1 and 2, are not significantly different than that of recomputing

(p = 0.9783 for updating, p = 0.9769 for folding-up method 1, and p = 0.9942 for

folding-up method 2). See Table 5.2 for a comparison of the computation times.

600 700 800 900 1000 1100 1200 1300
0.075

0.08

0.085

0.09

0.095

0.1

0.105

0.11

0.115

0.12

Number of Documents

A
ve

ra
g

e
 P

re
ci

si
o

n

Folding−up: Update after error ≥ 0.75
Folding−up: Update after error ≥ 1.00
Folding−up: Update after error ≥ 1.50

Figure 5.19: Comparison of average precisions of folding-up method 1 for the Cranfield
collection with 800 documents added in 200 groups of 4.

74

600 700 800 900 1000 1100 1200 1300
0.075

0.08

0.085

0.09

0.095

0.1

0.105

0.11

0.115

0.12

Number of Documents

A
ve

ra
g

e
 P

re
ci

si
o

n

Folding−up: update after folding−in 8%
Folding−up: update after folding−in 10%
Folding−up: update after folding−in 12%

Figure 5.20: Comparison of average precisions of folding-up method 2 for the Cranfield
collection with 800 documents added in 200 groups of 4.

600 700 800 900 1000 1100 1200 1300
0.075

0.08

0.085

0.09

0.095

0.1

0.105

0.11

0.115

0.12

Number of Documents

A
ve

ra
g

e
 P

re
ci

si
o

n

Recomputing
Folding−up (Method 1)
Folding−up (Method 2)
Updating (Zha and Simon)
Folding−in

Figure 5.21: Comparison of average precisions for the CISI collection with 800 docu-
ments added in 200 groups of 4.

75

5.2.3 Cranfield: Experiment 3

In this experiment, the Cranfield term-document matrix is partitioned into an initial

matrix of 598 documents and 100 submatrices of 8 documents each. Thus, there

are 100 additions of 8 documents to the term-document matrix. Note that in this

experiment, as those in Sections 5.2.1 and 5.2.2, the number of columns in the initial

term-document matrix more than doubles as the submatrices are added incrementally.

Figure 5.22 shows a comparison for three tests of folding-up method 1, in which the

error threshold is set at 0.75, 1.00, and 1.50. As with Figures 5.16 and 5.19, this figure

illustrates that this range of error thresholds produces very similar results. Again this

is an indication that the error threshold does not have to be finely tuned. Figure 5.23

shows a comparison for three tests of folding-up method 2, in which the percentage of

documents that can be folded-in before an update is performed is set at 8%, 10%, and

12%. As with Figures 5.17 and 5.20, this figure shows that the range of percentages

produces similar retrieval performance. This is an indication of the robustness of

folding-up method 2.

Figure 5.24 compares the average precision for the methods of recomputing, folding-

up (methods 1 and 2), PSVD-updating, and folding-in. In this figure, folding-up

method 1 uses an error threshold of 1.00, and folding-up method 2 uses a percentage

threshold of 10%. The methods of updating and folding-up once again out perform

folding-in. The average precisions for recomputing, updating, and the folding-up

methods are all very similar. Updating and folding up (methods 1 and 2) again

have final average precisions not significantly different than that of recomputing

(p = 0.9633 for updating, p = 0.9615 for folding-up method 1, and p = 0.9997

for folding-up method 2). As expected, the folding-up methods are faster than either

recomputing or updating, and folding-up method 2 has a slightly faster computa-

tion time than folding-up method 1. In this case, folding-up method 1 is more than

380 times faster than recomputing and more than twice as fast as updating; folding-

up method 2 is almost 1150 times faster than recomputing and more than six times

faster than updating. A comparison of all the computation times is found in Table 5.3.

76

600 700 800 900 1000 1100 1200 1300
0.075

0.08

0.085

0.09

0.095

0.1

0.105

0.11

0.115

0.12

Number of Documents

A
ve

ra
g

e
 P

re
ci

si
o

n

Folding−up: Update after error ≥ 0.75
Folding−up: Update after error ≥ 1.00
Folding−up: Update after error ≥ 1.50

Figure 5.22: Comparison of average precisions of folding-up method 1 for the Cranfield
collection with 800 documents added in 100 groups of 8.

600 700 800 900 1000 1100 1200 1300
0.075

0.08

0.085

0.09

0.095

0.1

0.105

0.11

0.115

0.12

Number of Documents

A
ve

ra
g

e
 P

re
ci

si
o

n

Folding−up: update after folding−in 8%
Folding−up: update after folding−in 10%
Folding−up: update after folding−in 12%

Figure 5.23: Comparison of average precisions of folding-up method 2 for the Cranfield
collection with 800 documents added in 100 groups of 8.

77

600 700 800 900 1000 1100 1200 1300
0.075

0.08

0.085

0.09

0.095

0.1

0.105

0.11

0.115

0.12

Number of Documents

A
ve

ra
g

e
 P

re
ci

si
o

n

Recomputing
Folding−up (Method 1)
Folding−up (Method 2)
Updating (Zha and Simon)
Folding−in

Figure 5.24: Comparison of average precisions for the Cranfield collection with 800
documents added in 100 groups of 8.

5.2.4 Cranfield: Experiment 4

Here the Cranfield term-document matrix is partitioned into an initial matrix of 598

documents and 80 submatrices of 10 documents each. Figure 5.26 shows a comparison

for three tests of folding-up method 1, in which the error threshold is set at 0.75,

1.00, and 1.50. Figure 5.25 shows a comparison for three tests of folding-up method

2, in which the percentage of documents that can be folded-in before an update is

performed is set at 8%, 10%, and 12%. Figure 5.27 compares the average precision

for the methods of recomputing, folding-up (methods 1 and 2), PSVD-updating,

and folding-in. In this figure, folding-up method 1 again uses an error threshold of

1.00, and folding-up method 2 uses a percentage threshold of 10%. The final average

precisions for updating and folding-up, methods 1 and 2, are not significantly different

than that of recomputing; p = 0.9584 for updating, p = 0.9905 for folding-up method

1, and p = 0.9853 for folding-up method 2. See Table 5.2 for a comparison of the

computation times.

78

600 700 800 900 1000 1100 1200 1300
0.075

0.08

0.085

0.09

0.095

0.1

0.105

0.11

0.115

0.12

Number of Documents

A
ve

ra
g

e
 P

re
ci

si
o

n

Folding−up: Update after error ≥ 0.75
Folding−up: Update after error ≥ 1.00
Folding−up: Update after error ≥ 1.50

Figure 5.25: Comparison of average precisions of folding-up method 1 for the Cranfield
collection with 800 documents added in 80 groups of 10.

600 700 800 900 1000 1100 1200 1300
0.075

0.08

0.085

0.09

0.095

0.1

0.105

0.11

0.115

0.12

Number of Documents

A
ve

ra
g

e
 P

re
ci

si
o

n

Folding−up: update after folding−in 8%
Folding−up: update after folding−in 10%
Folding−up: update after folding−in 12%

Figure 5.26: Comparison of average precisions of folding-up method 2 for the Cranfield
collection with 800 documents added in 80 groups of 10.

79

600 700 800 900 1000 1100 1200 1300
0.075

0.08

0.085

0.09

0.095

0.1

0.105

0.11

0.115

0.12

Number of Documents

A
ve

ra
g

e
 P

re
ci

si
o

n

Recomputing
Folding−up (Method 1)
Folding−up (Method 2)
Updating (Zha and Simon)
Folding−in

Figure 5.27: Comparison of average precisions for the Cranfield collection with 800
documents added in 80 groups of 10.

5.2.5 Cranfield: Experiment 5

In this experiment, the Cranfield term-document matrix is partitioned into an ini-

tial matrix of 598 documents and 40 submatrices of 20 documents each. This allows

40 additions of 20 documents to the term-document matrix. Note that in this ex-

periment, as those in Sections 5.2.1 and 5.2.4, the number of columns in the initial

term-document matrix more than doubles as the submatrices are added incremen-

tally. Figure 5.28 shows a comparison for three tests of folding-up method 1, in which

the error threshold is set at 0.75, 1.00, and 1.50. As with Figures 5.16 – 5.25, this

figure illustrates that this range of error thresholds produces similar results, despite

the fact that the number of documents being added at each increment has increase

tenfold over these experiments. Figure 5.29 shows a comparison for three tests of

folding-up method 2, in which the percentage of documents that can be folded-in be-

fore an update is performed is set at 8%, 10%, and 12%. Again we see that the given

range of percentages produces similar results. This is an indication the percentage

80

of documents (relative to the term-document matrix) that are folded-in before an

update can fall within a range of values.

Figure 5.30 compares the average precision for the methods of recomputing, folding-

up (methods 1 and 2), PSVD-updating, and folding-in. In this figure, folding-up

method 1 uses an error threshold of 1.00, and folding-up method 2 uses a percentage

threshold of 10%. Figure 5.30 shows that the average precision for folding-in deteri-

orates relative to recomputing the PSVD. The final average precisions for updating

and folding-up, methods 1 and 2, are again not significantly different than that of

recomputing (p = 0.9864 for updating, p = 0.9899 for folding-up method 1, and

p = 0.9824 for folding-up method 2). In this experiment, folding-up method 1 is 290

times faster than recomputing and more than twice as fast as updating. Folding-up

method 2 is more than 450 times faster than recomputing, and more than three times

faster than updating. See Table 5.2 for a comparison of all the computation times.

600 700 800 900 1000 1100 1200 1300
0.075

0.08

0.085

0.09

0.095

0.1

0.105

0.11

0.115

0.12

Number of Documents

A
ve

ra
g

e
 P

re
ci

si
o

n

Folding−up: Update after error ≥ 0.75
Folding−up: Update after error ≥ 1.00
Folding−up: Update after error ≥ 1.50

Figure 5.28: Comparison of average precisions of folding-up method 1 for the Cranfield
collection with 800 documents added in 40 groups of 20.

81

600 700 800 900 1000 1100 1200 1300
0.075

0.08

0.085

0.09

0.095

0.1

0.105

0.11

0.115

0.12

Number of Documents

A
ve

ra
g

e
 P

re
ci

si
o

n

Folding−up: update after folding−in 8%
Folding−up: update after folding−in 10%
Folding−up: update after folding−in 12%

Figure 5.29: Comparison of average precisions of folding-up method 2 for the Cranfield
collection with 800 documents added in 40 groups of 20.

600 700 800 900 1000 1100 1200 1300
0.075

0.08

0.085

0.09

0.095

0.1

0.105

0.11

0.115

0.12

Number of Documents

A
ve

ra
g

e
 P

re
ci

si
o

n

Recomputing
Folding−up (Method 1)
Folding−up (Method 2)
Updating (Zha and Simon)
Folding−in

Figure 5.30: Comparison of average precisions for the Cranfield collection with 800
documents added in 40 groups of 20.

82

Method CPU time CPU time CPU time CPU time CPU time

Groups of 2 Groups of 4 Groups of 8 Groups of 10 Groups of 20

Recomputing 354556.3 179631.0 90863.4 73532.0 35828.3
Updating 1873.0 969.8 502.3 409.0 265.5
Folding-up 1 685.5 407.9 238.2 238.5 123.2
Folding-up 2 91.7 85.9 79.1 76.6 79.2
Folding-in 46.3 24.1 12.8 10.5 5.9

Table 5.2: Comparison of total CPU times (seconds) for the Cranfield collection with
800 documents added in groups of 2, 4, 8, 10, and 20.

In each case in Table 5.2, the folding-up methods are hundreds of times faster than

recomputing. Both folding-up methods are also significantly faster than updating.

5.3 CISI Text Collection

The CISI text collection contains 1460 information retrieval abstracts and 35 queries.

After stopword removal and stemming, there are 5544 terms, giving a 5544 × 1460

term-document matrix. This matrix is partitioned into an initial matrix with 460

documents and a number of submatrices to be appended incrementally. For each

of the experiments with the CISI collection, k = 150, where k is the number of

dimensions used in computing the PSVD. Table 5.3 gives a comparison of CPU times

for each of the experiments.

5.3.1 CISI: Experiment 1

In this experiment, the CISI term-document matrix is partitioned into an initial

matrix of 460 documents and 500 submatrices of 2 documents each. Thus, there are

500 additions of 2 documents to the term-document matrix, more than tripling the

number of columns in the initial term-document matrix as the submatrices are add

incrementally. Figure 5.31 shows a comparison for three tests of folding-up method

1 in which the error threshold is set at 0.75, 1.00, and 1.50. Figure 5.32 shows

a comparison for three tests of folding-up method 2, in which the percentage of

documents that can be folded-in before an update is performed is set at 8%, 10%, and

12%.

83

Figure 5.33 compares the average precision for the methods of recomputing, folding-

up (methods 1 and 2), PSVD-updating, and folding-in. Note that in this figure,

folding-up method 1 uses an error threshold of 1.00, and folding-up method 2 uses a

percentage threshold of 10%. The final average precisions for updating and folding-up,

methods 1 and 2 are not significantly different than that of recomputing (p = 0.9018

for updating, p = 0.8925 for folding-up method 1, and p = 0.8740 for folding-up

method 2). In this case, folding-up method 1 is more than 650 times faster than re-

computing and more than four and one half times faster than recomputing. Folding-

up method 2 is more than 1700 times faster than recomputing and more than twelve

times faster than updating. See Table 5.3 for a comparison of all the computation

times.

500 600 700 800 900 1000 1100 1200 1300
0.105

0.11

0.115

0.12

0.125

0.13

0.135

0.14

Number of Documents

A
ve

ra
g

e
 P

re
ci

si
o

n

Folding−up: Update after error ≥ 0.75
Folding−up: Update after error ≥ 1.00
Folding−up: Update after error ≥ 1.50

Figure 5.31: Comparison of average precisions of folding-up method 1 for the CISI
collection with 1000 documents added in 500 groups of 2.

84

500 600 700 800 900 1000 1100 1200 1300
0.105

0.11

0.115

0.12

0.125

0.13

0.135

0.14

Number of Documents

A
ve

ra
g

e
 P

re
ci

si
o

n

Folding−up: update after folding−in 8%
Folding−up: update after folding−in 10%
Folding−up: update after folding−in 12%

Figure 5.32: Comparison of average precisions of folding-up method 2 for the CISI
collection with 1000 documents added in 500 groups of 2.

500 600 700 800 900 1000 1100 1200 1300
0.105

0.11

0.115

0.12

0.125

0.13

0.135

0.14

Number of Documents

A
ve

ra
g

e
 P

re
ci

si
o

n

Recomputing
Folding−up (Method 1)
Folding−up (Method 2)
Updating (Zha and Simon)
Folding−in

Figure 5.33: Comparison of average precisions for the CISI collection with 1000 doc-
uments added in 500 groups of 2.

85

5.3.2 CISI: Experiment 2

Here the CISI term-document matrix is partitioned into an initial matrix of 460

documents and 250 submatrices of 4 documents each. Figure 5.34, shows a comparison

for three tests of folding-up method 1 in which the error threshold is set at 0.75,

1.00, and 1.50; Figure 5.32 shows a comparison for three tests of folding-up method

2, in which the percentage of documents that can be folded-in before an update is

performed is set at 8%, 10%, and 12%. The difference between the results in each

case is minimal. Figure 5.36 compares the average precision for the methods of

recomputing, folding-up (methods 1 and 2), PSVD-updating, and folding-in. In this

figure, folding-up method 1 uses an error threshold of 1.00, and folding-up method

2 uses a percentage threshold of 10%. The final average precisions for updating and

folding-up, methods 1 and 2, are not significantly different than that of recomputing

(p = 0.9018 for updating, p = 0.9018 for folding-up method 1, and p = 0.8555 for

folding-up method 2). See Table 5.3 for a comparison of the computation times.

500 600 700 800 900 1000 1100 1200 1300
0.105

0.11

0.115

0.12

0.125

0.13

0.135

0.14

Number of Documents

A
ve

ra
g

e
 P

re
ci

si
o

n

Folding−up: Update after error ≥ 0.75
Folding−up: Update after error ≥ 1.00
Folding−up: Update after error ≥ 1.50

Figure 5.34: Comparison of average precisions of folding-up method 1 for the CISI
collection with 1000 documents added in 250 groups of 4.

86

500 600 700 800 900 1000 1100 1200 1300
0.105

0.11

0.115

0.12

0.125

0.13

0.135

0.14

Number of Documents

A
ve

ra
g

e
 P

re
ci

si
o

n

Folding−up: update after folding−in 8%
Folding−up: update after folding−in 10%
Folding−up: update after folding−in 12%

Figure 5.35: Comparison of average precisions of folding-up method 2 for the CISI
collection with 1000 documents added in 250 groups of 4.

500 600 700 800 900 1000 1100 1200 1300
0.105

0.11

0.115

0.12

0.125

0.13

0.135

0.14

Number of Documents

A
ve

ra
g

e
 P

re
ci

si
o

n

Recomputing
Folding−up (Method 1)
Folding−up (Method 2)
Updating (Zha and Simon)
Folding−in

Figure 5.36: Comparison of average precisions for the CISI collection with 1000 doc-
uments added in 250 groups of 4.

87

5.3.3 CISI: Experiment 3

In this experiment, the CISI term-document matrix is partitioned into an initial

matrix of 460 documents and 125 submatrices of 8 documents each. Thus, there

are 125 additions of 8 documents to the term-document matrix. Note that in this

experiment, as those in Sections 5.3.1 and 5.3.2, the number of columns in the initial

term-document matrix more than triples as the submatrices are added incrementally.

Figure 5.37 shows a comparison for three tests of folding-up method 1 in which the

error threshold is set at 0.75, 1.00, and 1.50. As with Figures 5.31 and 5.34, this figure

illustrates that this range of error thresholds produces very similar results. This is

an indication that the error threshold does not have to be finely tuned. Figure 5.38

shows a comparison for three tests of folding-up method 2, in which the percentage of

documents that can be folded-in before an update is performed is set at 8%, 10%, and

12%. As with Figures 5.32 and 5.35, this figure shows that the range of percentages

produces similar retrieval performance. This is an indication of the robustness of

folding-up method 2.

Figure 5.39 compares the average precision for the methods of recomputing, folding-

up (methods 1 and 2), PSVD-updating, and folding-in. In this figure, folding-up

method 1 uses an error threshold of 1.00, and folding-up method 2 uses a percentage

threshold of 10%. The methods of updating and folding-up once again out perform

folding-in. The average precisions for recomputing, updating, and the folding-up

methods are all very similar. Updating and folding up (methods 1 and 2) again have

final average precisions that are not significantly different than that of recomputing

(p = 0.8925 for updating, p = 0.8463 for folding-up method 1, and p = 0.8833 for

folding-up method 2). As expected, the folding-up methods are faster than either

recomputing or updating, and folding-up method 2 has a slightly faster computation

time than folding-up method 1. In this case, folding-up method 1 is more than 385

times faster than recomputing and more than two and one half times faster than

updating. Folding-up method 2 is more than 580 times faster than recomputing and

more than four times faster than updating. See Table 5.3 for a comparison of all the

computation times.

88

500 600 700 800 900 1000 1100 1200 1300
0.105

0.11

0.115

0.12

0.125

0.13

0.135

0.14

Number of Documents

A
ve

ra
g

e
 P

re
ci

si
o

n

Folding−up: Update after error ≥ 0.75
Folding−up: Update after error ≥ 1.00
Folding−up: Update after error ≥ 1.50

Figure 5.37: Comparison of average precisions of folding-up method 1 for the CISI
collection with 1000 documents added in 125 groups of 8.

500 600 700 800 900 1000 1100 1200 1300
0.105

0.11

0.115

0.12

0.125

0.13

0.135

0.14

Number of Documents

A
ve

ra
g

e
 P

re
ci

si
o

n

Folding−up: update after folding−in 8%
Folding−up: update after folding−in 10%
Folding−up: update after folding−in 12%

Figure 5.38: Comparison of average precisions of folding-up method 2 for the CISI
collection with 1000 documents added in 125 groups of 8.

89

500 600 700 800 900 1000 1100 1200 1300
0.105

0.11

0.115

0.12

0.125

0.13

0.135

0.14

Number of Documents

A
ve

ra
g

e
 P

re
ci

si
o

n

Recomputing
Folding−up (Method 1)
Folding−up (Method 2)
Updating (Zha and Simon)
Folding−in

Figure 5.39: Comparison of average precisions for the CISI collection with 1000 doc-
uments added in 125 groups of 8.

5.3.4 CISI: Experiment 4

The CISI term-document matrix is partitioned into an initial matrix of 460 documents

and 100 submatrices of 10 documents each. Figure 5.41 shows a comparison for three

tests of folding-up method 1, in which the error threshold is set at 0.75, 1.00, and

1.50. Figure 5.40 shows a comparison for three tests of folding-up method 2, in which

the percentage of documents that can be folded-in before an update is performed

is set at 8%, 10%, and 12%. Figure 5.42 compares the average precision for the

methods of recomputing, folding-up (methods 1 and 2), PSVD-updating, and folding-

in. Note that in this figure, folding-up method 1 uses an error threshold of 1.00, and

folding-up method 2 uses a percentage threshold of 10%. The final average precisions

for updating and folding-up, methods 1 and 2, are not significantly different than

that of recomputing (p = 0.9018 for updating, p = 0.8833 for folding-up method

1, and p = 0.8463 for folding-up method 2). See Table 5.3 for a comparison of the

computation times.

90

500 600 700 800 900 1000 1100 1200 1300
0.105

0.11

0.115

0.12

0.125

0.13

0.135

0.14

Number of Documents

A
ve

ra
g

e
 P

re
ci

si
o

n

Folding−up: Update after error ≥ 0.75
Folding−up: Update after error ≥ 1.00
Folding−up: Update after error ≥ 1.50

Figure 5.40: Comparison of average precisions of folding-up method 1 for the CISI
collection with 1000 documents added in 100 groups of 10.

500 600 700 800 900 1000 1100 1200 1300
0.105

0.11

0.115

0.12

0.125

0.13

0.135

0.14

Number of Documents

A
ve

ra
g

e
 P

re
ci

si
o

n

Folding−up: update after folding−in 8%
Folding−up: update after folding−in 10%
Folding−up: update after folding−in 12%

Figure 5.41: Comparison of average precisions of folding-up method 2 for the CISI
collection with 1000 documents added in 100 groups of 10.

91

500 600 700 800 900 1000 1100 1200 1300
0.105

0.11

0.115

0.12

0.125

0.13

0.135

0.14

Number of Documents

A
ve

ra
g

e
 P

re
ci

si
o

n

Recomputing
Folding−up (Method 1)
Folding−up (Method 2)
Updating (Zha and Simon)
Folding−in

Figure 5.42: Comparison of average precisions for the CISI collection with 1000 doc-
uments added in 100 groups of 10.

5.3.5 CISI: Experiment 5

In this experiment, the CISI term-document matrix is partitioned into an initial ma-

trix of 460 documents and 50 submatrices of 20 documents each. This allows 50

additions of 20 documents to the term-document matrix. Note that in this exper-

iment, as those in Sections 5.3.1 and 5.3.4, the number of columns in the initial

term-document matrix more than triples as the submatrices are add incrementally.

Figure 5.43 shows a comparison for three tests of folding-up method 1 in which the

error threshold is set at 0.75, 1.00, and 1.50. As with Figures 5.31 – 5.40, this figure

illustrates that this range of error thresholds produces similar results, despite the fact

that the number of documents being added at each increment has increase tenfold

over these experiments. Figure 5.44 shows a comparison for three tests of folding-

up method 2, in which the percentage of documents that can be folded-in before an

update is performed is set at 8%, 10%, and 12%. Again we see that the given range

92

of percentages produces similar results. This is an indication the percentage of doc-

uments (relative to the term-document matrix) that are folded-in before an update

can fall within a range of values.

Figure 5.45 compares the average precision for the methods of recomputing, folding-

up (methods 1 and 2), PSVD-updating, and folding-in. In this figure, folding-up

method 1 uses an error threshold of 1.00, and folding-up method 2 uses a percentage

threshold of 10%. Figure 5.45 shows that the average precision for folding-in dete-

riorates rapidly relative to recomputing the PSVD. The final average precisions for

updating and folding-up, methods 1 and 2, are not significantly different than that

of recomputing (p = 0.8925 for updating, p = 0.8833 for folding-up method 1, and

p = 0.8555 for folding-up method 2). In this experiment, the folding-up methods are

more than 200 times faster than recomputing and more than one and a half times

faster than updating. See Table 5.3 for a comparison of all the computation times.

500 600 700 800 900 1000 1100 1200 1300
0.105

0.11

0.115

0.12

0.125

0.13

0.135

0.14

Number of Documents

A
ve

ra
g

e
 P

re
ci

si
o

n

Folding−up: Update after error ≥ 0.75
Folding−up: Update after error ≥ 1.00
Folding−up: Update after error ≥ 1.50

Figure 5.43: Comparison of average precisions of folding-up method 1 for the CISI
collection with 1000 documents added in 50 groups of 20.

93

500 600 700 800 900 1000 1100 1200 1300
0.105

0.11

0.115

0.12

0.125

0.13

0.135

0.14

Number of Documents

A
ve

ra
g

e
 P

re
ci

si
o

n

Folding−up: update after folding−in 8%
Folding−up: update after folding−in 10%
Folding−up: update after folding−in 12%

Figure 5.44: Comparison of average precisions of folding-up method 2 for the CISI
collection with 1000 documents added in 50 groups of 20.

500 600 700 800 900 1000 1100 1200 1300
0.105

0.11

0.115

0.12

0.125

0.13

0.135

0.14

Number of Documents

A
ve

ra
g

e
 P

re
ci

si
o

n

Recomputing
Folding−up (Method 1)
Folding−up (Method 2)
Updating (Zha and Simon)
Folding−in

Figure 5.45: Comparison of average precisions for the CISI collection with 1000 doc-
uments added in 50 groups of 20.

94

Method CPU time CPU time CPU time CPU time CPU time

Groups of 2 Groups of 4 Groups of 8 Groups of 10 Groups of 20

Recomputing 87112.9 43705.9 21909.2 17546.1 8754.2
Updating 607.5 309.9 161.0 131.1 72.5
Folding-up 1 130.8 83.9 56.8 52.1 41.7
Folding-up 2 48.9 43.1 37.6 37.8 38.3
Folding-in 16.2 8.7 4.8 4.0 2.3

Table 5.3: Comparison of total CPU times (seconds) for the CISI collection with 1000
documents added in groups of 2, 4, 8, 10, and 20.

In each case in Table 5.3, the folding-up methods are hundreds of times faster than

recomputing. Both folding-up methods are also significantly faster than updating.

Chapter 6

Conclusions and Future Work

LSI relies heavily on the PSVD of the term-document matrix representation of a doc-

ument collection. Calculating the PSVD of large term-document matrices is compu-

tationally expensive. In a rapidly expanding environment, a term-document matrix is

altered often as new documents and terms are added. Recomputing the PSVD of the

term-document matrix each time these slight alterations occur can be prohibitively

expensive; therefore when documents (or terms) are added to an existing dataset, it

is beneficial to update the existing PSVD to reflect these changes.

As discussed in Section 3.2, folding-in is one method of adding new documents

(or terms) to a term-document matrix. Updating the PSVD of the existing term-

document matrix, as discussed in Sections 3.3 and 3.4, is another method. The

folding-in method is computationally inexpensive, but as demonstrated by the ex-

periments in Chapter 5, it may cause a deterioration in the accuracy of the PSVD

that results in decreased retrieval performance when compared with recomputing

the PSVD. The PSVD-updating method is computationally more expensive than the

folding-in method, but it better maintains the accuracy of the PSVD. This thesis has

introduced folding-up, a new hybrid method which combines folding-in and PSVD-

updating. The experiments in Sections 5.1.1–5.3.5 demonstrate that folding-up is

computationally faster than either recomputing the PSVD or using PSVD-updating

methods, with no significant difference in retrieval performance.

Two versions of the folding-up method have been introduced; the first measures

deterioration in matrix orthogonality in order to determine when to switch from

folding-in to updating, whereas the second method switches from folding-in to up-

dating based on how many documents have been folded-in relative to the number of

documents in the most recently updated term-document matrix. These two folding-

up methods are referred to as folding-up method 1 and folding-up method 2, re-

spectively. Although folding-up methods 1 and 2 give similar retrieval performance

95

96

for the three document collections examined in this thesis (Medline, Cranfield, and

CISI [9]), folding-up method 1 is computationally more expensive than folding-up

method 2. The higher computational cost in folding-up method 1 is due to the ma-

trix multiplication DT
k Dk, where Dk ∈ ℜt×p is the term-document matrix containing

new documents to be appended to the term-document matrix A ∈ ℜt×d. Moreover,

the computation time of folding-up method 1 scales more dramatically with the size

and number of updates; the computation time for folding-up method 2 is much less

sensitive to the number and size of updates. For these reasons, folding-up method 2

would be the better choice in situations where p is small, or in which the speed of the

computation is critical.

The goal of the folding-up method is to switch from the process of folding-in to that

of using a PSVD-updating method before the accuracy of the numerical representation

of the database degrades significantly from the folding-in process. Interesting future

work could include establishing an optimal range for the error threshold that is used

when measuring the loss of orthogonality during the folding-in stage of folding-up

method 1. Tests would include expanding the error threshold range used in the

experiments in Chapter 5 (0.75 to 1.50) by testing error thresholds in a wider range,

for example 0.10 to 10.00. As well, a more meaningful error threshold measure could

be developed by measuring the loss of orthogonality relative to the size of the matrix

Dk, for example

‖DT
k Dk‖∞

‖Dk‖∞
.

An optimal range for the percentage of documents (relative to the term-document

matrix) that can be folded-in to a term-document matrix without a significant loss

in retrieval performance could also be investigated. Although these ranges are likely

to be somewhat database dependent, the success in using similar ranges for the three

diverse collections of abstracts (Medline, Cranfield, and CISI [9]) in Chapter 5 indi-

cates that establishing such ranges is possible. Of course, testing with a variety of

larger document collections would be necessary.

Although the folding-up experiments performed for this thesis use the PSVD-

updating algorithms of Zha and Simon [33], the folding-up method can easily be

97

adapted to use other PSVD-updating algorithms. As noted in Section 1.3, Oks̆a,

Bec̆ka, and Vajters̆ic [27] have introduced an algorithm for the parallel computation

of the SVD of matrices with a particular structure, specifically for use in the PSVD-

updating algorithms proposed by Zha and Simon [33]. It would be interesting to

compare an implementation of folding-up that is based on Zha and Simon’s original

PSVD-updating algorithms [33] with an implementation of folding-up that incorpo-

rates the parallel SVD computation developed by Oks̆a, Bec̆ka, and Vajters̆ic [27].

Bibliography

[1] R. A. Baeza-Yates, R. Baeza-Yates, and B. Ribeiro-Neto. Modern Information
Retrieval. Addison-Wesley Longman Publishing Co., Inc., 1999.

[2] M. W. Berry and M. Browne. Understanding Search Engines: Mathematical
Modeling and Text Retrieval. Software, Environments, and Tools. Society for
Industrial and Applied Mathematics (SIAM), Philadelphia, PA, first edition,
1999.

[3] M. W. Berry, S. T. Dumais, and T. A. Letsche. Computational methods for
intelligent information access, 1995. Presented at the Proceedings of Supercom-
puting.

[4] M. W. Berry, S. T. Dumais, and G. W. O’Brien. Using linear algebra for intel-
ligent information retrieval. SIAM Rev., 37(4):573–595, 1995.

[5] M. Brand. Fast online SVD revisions for lightweight recommender systems, 1993.
In Proceedings of SIAM International Conference on Data Mining, 2003.

[6] M. Buckland and F. Gey. The trade-off between recall and precision. Journal of
the American Society for Information Science, 45(1):12–19, 1994.

[7] J. Bunch and C. Neilson. Updating the singular value decomposition. Numerische
Mathematik, 31(2):111–129, 1978.

[8] P. Businger. Updating a singular value decomposition. BIT, 10:376 – 385, 1970.

[9] Cornell SMART System ftp://ftp.cs.cornell.edu/pub/smart.

[10] Cornell SMART System ftp://ftp.cs.cornell.edu/pub/smart/english.stop.

[11] S. C. Deerwester, S. T. Dumais, T. K. Landauer, G. W. Furnas, and R. A.
Harshman. Indexing by latent semantic analysis. Journal of the American Society
of Information Science, 41(6):391–407, 1990.

[12] S. T. Dumais. Improving the retrieval of information from external sources.
Behavior Research Methods, Instruments, & Computers, 23:229–236, 1991.

[13] W. Ferzali and J.G. Proakis. Adaptive SVD algorithm with application to nar-
rowband signal tracking. SVD and Signal Processing, II:149 – 159, 1991.

[14] J. D. Gibbons and S. Chakraborty. Nonparametric Statistical Inference. Statis-
tics, A Series of Textbooks and Monographs. Marcel Dekker, New York, fourth
edition, 2003.

98

99

[15] G. H. Golub and C. F. Van Loan. Matrix Computations. Johns Hopkins Studies
in the Mathematical Sciences. Johns Hopkins University Press, Baltimore, MD,
third edition, 1996.

[16] M. Gu and S. Eisenstat. A fast and stable algorithm for updating the singular
value decomposition. Technical Report, Department of Computer Science, Yale
University, YALEU/DCS/RR-966, 1994.

[17] D. Harman. Ranking algorithms. In Information retrieval: data structures and
algorithms, pages 363–392. Prentice-Hall, Inc., Upper Saddle River, NJ, USA,
1992.

[18] M. Hollander and D.A. Wolfe. Nonparametric Statistical Methods. John Wiley
& Sons, New York, second edition, 1999.

[19] G.G. Judge, R.C. Hill, W.E. Griffiths, H. Lütkepohl, and T.C. Lee. Introduction
to the Theory and Practice of Econometrics. John Wiley & Sons, New York,
second edition, 1988.

[20] R. Lehoucq, D. Sorensen, and C. Yang. Arpack users’ guide: Solution of large
scale eigenvalue problems with implicitly restarted arnoldi methods, 1997.

[21] T. A. Letsche and M. W. Berry. Large-scale information retrieval with latent
semantic indexing. Information Sciences, 100(1-4):105–137, 1997.

[22] L. Mirsky. Symmetric gauge functions and unitarily invariant norms. Quart. J.
Math. Oxford Ser. (2), 11:50–59, 1960.

[23] M. Moonen, P. Van Dooren, and J. Vandewalle. An SVD updating algorithm
for subspace tracking. SIAM J. Matrix Anal. Appl., 13:1015 – 1038, 1992.

[24] M. Moonen, P. Van Dooren, and J. Vandewalle. A systolic array for SVD up-
dating. SIAM J. Matrix Anal. Appl., 14:353 – 371, 1993.

[25] E.R. Jessup M.W. Berry, Z. Drmac. Matrices, vector spaces, and information
retrieval. SIAM Review, 41(2):335–362, 1999.

[26] G. W. O’Brien. Information tools for updating an SVD-encoded indexing scheme,
1994. Master’s Thesis, The University of Knoxville, Tennessee.

[27] G. Oks̆a, M. Bec̆ka, and M. Vajters̆ic. Parallel SVD computation in updat-
ing problems of latent semantic indexing. Proceedings of ALGORITMY 2002,
Conference on Scientific Computing, pages 113–120, 2002.

[28] G. Salton and C. Buckley. Term-weighting approaches in automatic text retrieval.
Inf. Process. Manage., 24(5):513–523, 1988.

100

[29] G. Salton and M. J. McGill. Introduction to Modern Information Retrieval.
McGraw-Hill Computer Science Series. McGraw-Hill, New York, NY, first edi-
tion, 1983.

[30] C. Sengupta, J.R Cavallaro, and B. Aazhang. Solving the SVD updating problem
for subspace tracking on a fixed size linear array of processors. Proceedings of
the IEEE International Conference on Acoustics, Speech, and Signal Processing,
5:4137–4140, 1997.

[31] L. N. Trefethen and D. Bau, III. Numerical linear algebra. Society for Industrial
and Applied Mathematics (SIAM), Philadelphia, PA, 1997.

[32] J. H. Wilkinson and C. Reinsch, editors. Handbook for automatic computa-
tion. Vol. II. Springer-Verlag, New York, 1971. Linear algebra, Compiled by
J. H. Wilkinson and C. Reinsch, Die Grundlehren der Mathematischen Wis-
senschaften, Band 186.

[33] H. Zha and H. D. Simon. On updating problems in latent semantic indexing.
SIAM J. Sci. Comput., 21(2):782–791, 1999.

[34] H. Zha and Z. Zhang. Matrices with low-rank-plus-shift structure: partial SVD
and latent semantic indexing. SIAM J. Matrix Anal. Appl., 21(2):522–536, 1999.

