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Abstract. One of the most promising emerging green energy

technologies is the proton exchange membrane fuel cell, an electro-

chemical energy conversion device that converts hydrogen and oxy-

gen into electricity and heat. In this device, a mixture of gases, in-

cluding hydrogen, is introduced to a catalyst via a semi-permeable

gas diffusion layer (GDL). The efficiency of the fuel cell is in part

governed by the composition of the GDL and the composition of

the gas mixture. In this report, we motivate the problem and

discuss a one-dimensional mathematical model of the multicom-

ponent gas transport across the GDL suggested by Stockie in [5],

consisting of coupled parabolic partial differential equations and

some separated boundary conditions. We solve these equations

with BACOL, a high-order adaptive method of lines package based

on B-spline collocation. We compare our results with those ob-

tained by Stockie [5] and discuss future work.

Date: Friday, December 13, 2002.
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1. Introduction

Non-polluting energy production has become an important area of

research in recent years and is poised to become even more urgent with

the passage of international environmental agreements. One of the

most promising areas of research is the Proton Exchange Membrane

fuel cell. The PEM fuel cell is an electrochemical device that converts

hydrogen and oxygen into electricity and heat with water as the by-

product. These devices are compact in size and produce a reasonable

amount of energy at relatively low temperatures ( 80◦ C) and thus have

a wide range of applications.

In the following section, we take a brief look at the chemistry and

physics of the fuel cell. We will then introduce a model for an in-

tegral component of the fuel cell; the gas diffusion layer (GDL). In

subsequent sections we discuss the implementation of this model with

BACOL, a high-order adaptive method of lines package based on B-spline

collocation, compare the results with a fixed mesh implementation in

Matlab by Stockie, and look forward to some future directions.

2. The PEM Fuel Cell

The basic elements of a PEM fuel cell (Figure (1)) are the anode,

the cathode, the proton exchange membrane, and the catalyst. The
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Figure 1. Schematic of the PEM fuel cell

anode is where the hydrogen gas is introduced to the catalyst through

a gas diffusion layer. The GDL is a highly porous material (such as

carbon fiber paper) which evenly distributes the reactant gas to the

catalyst. A catalyst is a substance that changes the rate of a chemical

reaction by providing an alternate pathway to the final product. In the

case of PEM fuel cells the catalyst is usually platinum powder. When

the hydrogen gas (H2) meets the catalyst, it splits into two H+ ions

and two electrons (e−). The electrons are conducted by the anode to

an external circuit where they travel to the cathode. It is this flow of

electrons that produces the energy. The hydrogen ions travel through a

proton exchange membrane, a special material that will only permit the

passage of positively charged ions, to the cathode. At the cathode side,

oxygen (O2) from the atmosphere flows through a GDL towards its
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own catalyst where it splits into two negatively charged oxygen atoms.

The negative charge of these atoms pulls the hydrogen ions through the

PEM. These ions, after traversing the PEM, combine with the oxygen

atoms and the electrons that have travelled the external circuit to form

water (H2O).

2.1. Chemistry. The complete chemical reaction is:

Anode side : 2H2 ⇒ 4H+ + 4e−

Cathode side : O2 + 4H+ + 4e− ⇒ 2H2O

Net reaction : 2H2 + O2 ⇒ 2H2O.

This reaction in a single cell only produces about 0.7 volts, so to achieve

a usable voltage many cells are combined to form a fuel cell stack. This

entire stack is often referred to as a fuel cell.

One challenge with this technology lies in its use of hydrogen gas.

Hydrogen is not a readily available fuel and is dangerous to store in

pure form. It is clear that we need an inexpensive and safe way to

provide the hydrogen to the anode. This is done through a device

called a reformer. A reformer extracts hydrogen from widely available

fuels such as alcohol or methanol. Unfortunately, the reformer also
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produces waste gases such as CO2
1 during this conversion, and so the

hydrogen gas that reaches the GDL is actually in a mixture of other

gases.

2.2. Gas Diffusion Layer. The constituents and relative quantities

of these other gases in the mixture, along with the composition of

the GDL can largely govern the efficiency of a fuel cell. Clearly, it

would be useful to have an accurate model of what is happening at this

crucial stage of a fuel cell’s operation: the transport of the gas mixture

through the GDL. There has been much research done in this area,

often treating the gas flow in 2-dimensions ([4] and [8] for example) and

concentrating on various complexities, such as temperature dependence

and condensation. These models look to the behavior of simple 1-

dimensional models for calibration and verification. The remainder

1One would be justified in raising the following question at this point. Since

pollution control is one of our objectives, how are fuel cells any cleaner than the

internal combustion engine if they end up producing CO2 anyway? The answer

lies in the efficiency of the energy production. The production of mechanical work

in a fuel cell powered car is about 32% efficient (and improving), while a gasoline

powered car is about 20% efficient. The overall efficiency is further improved when

we consider that a fuel cell powered car can be much lighter, since much of the

weight of a common automobile is the internal combustion engine itself.
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Figure 2. Transport through the GDL

of this report will deal with one such simple 1-d model, suggested by

Stockie in [5].

3. GDL Model

Consider the cross-section of the PEM fuel cell shown in Figure (2).

Let our spatial co-ordinate be y ∈ [0, H]. Although in Figure (2) we

have [0, H] labelled on the anode side, the model is equally applicable

to the cathode side, with the constants changed to appropriate values.

The governing equations are the porous medium equation,

(3.1)
∂C

∂t
− ∂

∂y

(
ΓC

∂C

∂y

)
= 0,
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and the convection-diffusion equation,

(3.2)
∂R

∂t
− ∂

∂y

[
ΓR

∂C

∂y
+ DC

∂

∂y

(
R

C

)]
= 0,

where the variables are defined in the following table.

C mixture concentration

R reactant concentration

D diffusivity

Γ KRT
εµ

K permeability

R gas constant

T temperature

ε porosity

µ viscosity

The boundary conditions at y = 0 are

(3.3) C = C and ∂
∂y

(
R
C

)
= − r0

DC
(R−R)

and the boundary conditions at y = H are

(3.4) ∂
∂y

(
R
C

)
= − rHR

DC
(R−R) and ∂C

∂y
= − νrHR

Γ(C−νR)

where C and R are the constant mixture and reactant concentrations

within the flow channel at y = 0, ν = −1 at for the cathode and 1
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for the anode, r0 is the bottom transfer rate and rH is the top transfer

rate. Stockie suggests default values for all these parameters in [5] for

both the anode and cathode cases.

3.1. Fixed Mesh Discretization. Stockie suggests ([5],[4]) solving

the nonlinear system of PDEs (3.1), (3.2) by first discretizing in space

using the method-of-lines. The domain [0, H] is divided into n cells of

size h = H/n. Concentrations are taken at the cell centers yi+1/2 =

(i+1/2)/h where i = 0, 1, . . . , n−1. The following system is obtained:

dRi+1/2

dt
=

Γ

h2
[Ri+1(Ci+3/2 − Ci+1/2)

− Ri(Ci+1/2 − Ci−1/2)]

+
d

h2

[
Ci+1

(
Ri+3/2

Ci+3/2

−
Ri+1/2

Ci+1/2

)
− Ci

(
Ri+1/2

Ci+1/2

−
Ri−1/2

Ci−1/2

)]
dCi+1/2

dt
=

Γ

h2
[Ci+1(Ci+3/2 − Ci+1/2)

− Ci(Ci+1/2 − Ci−1/2)].

The boundary conditions are approximated through the use of ghost

points y−1/2 and yn+1/2 which lie at one half point outside the bound-

aries. This allows the y = 0 boundary condition to be second order

accurate in space, as are the discretized equations. The y = 0 boundary
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conditions become

(3.5)
C1/2 + C−1/2

2
= C ⇒ C−1/2 = 2C − C1/2

1

h

(
R1/2

C1/2

−
R−1/2

C−1/2

)
= − r0

DC

(
R− 1

2
(R−1/2 + R1/2)

)
⇒(3.6)

R−1/2 =

(
1

C−1/2

+
hr0

2DC

)−1 [
R1/2

C1/2

+
hr0

DC

(
R−

R1/2

2

)]
.

Stockie found the y = H boundary to be more of an issue as a nonlinear

system needs to be solved in order to calculate the ghost points by a

2nd order method. Instead, without encountering any instability, he

employs a 1st order upwind approximation at this boundary:

(3.7) Cn+1/2 = Cn−1/2 −
νhrHRn−1/2

Γ(Cn−1/2 − νRn−1/2)
,

(3.8)
Rn+1/2

Cn+1/2

=
Rn−1/2

Cn−1/2

−
hrHRn−1/2

DCn−1/2

.

3.2. Stiffness. Stockie notes in [4] that the solution of the PDE sys-

tem (3.1), (3.2) has both fast and slow time scales, suggesting a very

stiff problem. Initially, the solution is dominated by rapidly varying

transients, necessitating a small time step while at later times the solu-

tion slowly approaches steady state and larger steps can be taken. The

fixed spatial mesh approach just described is implemented by Stockie

in a Matlab code resulting from [4]. In this code, the discretized ODE
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Figure 3. Matlab solution with fixed spatial mesh

system is solved by Matlab’s ode15s, a variable-order (1 to 5) NDF

(numerical differentiation formula) package. This implicit solver uses

quasi-constant step sizes and is well suited to stiff problems [1]. The

results from the Matlab implementation are shown in Figure (3) (R is

shown as a fraction of the mixture). The fast initial time scale is evi-

denced by the need for a log scale in time to resolve the initial features.
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4. BACOL

As an alternative to Stockie’s fixed mesh approach, we solve the

system (3.1), (3.2) with an adaptive mesh package. BACOL, authored

by Rong Wang [7], is a high-order adaptive method-of-lines package

for solving 1-dimensional parabolic partial differential equations of the

form

ut(x, t) = F (t, x, u(x, t), ux(x, t), uxx(x, t)), xa ≤ x ≤ xb, t ≥ t0,

with initial conditions given by

u(x, t0) = u0(x), xa ≤ x ≤ xb,

and separated boundary conditions of the form

bL(t, u(xa, t), ux(xa, t)) = 0, t ≥ t0,

bR(t, u(xb, t), ux(xb, t)) = 0, t ≥ t0.

The u can be vectors (for systems of PDEs). BACOL requires that the

uxx term not vanish in the right-hand side of the PDEs. Our system

(3.1),(3.2) clearly conforms to these conditions.

BACOL uses collocation with a B-spline basis for the spatial discretiza-

tion, then feeds the resulting DAE system to a DAE solver (a modified
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version of DASSL) to integrate in time. Both the spatial and temporal

error are controlled.

4.1. B-splines. As BACOL employs B-spline collocation for its spatial

discretization, it may useful at this point to present a brief introduction

to B-spline theory.

A spline function is an interpolating function constructed by piecing

together low order polynomials satisfying certain smoothness condi-

tions. The degree of a spline function indicates the degree of its com-

posing polynomials. B-splines, first introduced in 1947 by Curry and

Schoenberg [3], form a basis for the set of all splines. Every spline of

degree p can be formed by a linear combination of B-splines of degree

p.

Consider the mesh x0 < x1 < · · · < xN . We would define a B-spline

of degree 0 as

B0
i (x) =


1 x ∈ [xi, xi+1)

0 elsewhere

We note the following properties of B0
i (which hold for the higher de-

grees).

(1) While a discontinuous function, we note that B0
i is continuous

from the right at all points.
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(2) The support of B0
i (where B0

i 6= 0) the half open interval

[xi, xi+1).

(3) B0
i ≥ 0 for all x and i

(4)
∑∞

i=−∞ B0
i = 1 for all x

Any spline S of degree 0 can be formed by a linear combination of the

splines B0
i ,

S =
∞∑

i=−∞

biB
0
i ,

and we can generate higher degrees recursively according to the formula

Bp
i =

x− xi

xi+p − xi

Bp−1
i +

xi+p+1 − x

xi+p+1 − xi+1

Bp−1
i+1 .

We notice that each new degree is based on a linear combination of

B-splines of the previous degree, and our support increases with each

new degree. For each B-spline of degree p, the support is composed of

p + 1 subintervals.

4.2. Spatial Discretization. The following discussion of BACOL’s spa-

tial discretization approach is adapted from [7]. We consider a mesh

consisting of N + 1 points in the domain [0, 1] where

0 = x0 < x1 < x2 < · · · < xN = 1.
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We introduce no loss of generality by considering the interval [0, 1] as we

can map any domain in our problem class onto this. For each subinter-

val [xi−1, xi] there is an associated polynomial of degree p. We impose

continuity conditions (C1-continuity) at each internal mesh point xi

and the dimension of the piecewise polynomial subspace, Sp, becomes

dim(Sp) = NP = N(p− 1) + 2.

Wang chooses to use a B-spline basis for the polynomial subspace due

to favorable condition numbers on the resulting Jacobians for parabolic

PDEs, however any polynomial basis could be chosen in theory. We

denote the b-spline basis for Sp by {Bi(x)}NC
i−1. We saw in the previous

section that the support for a degree p B-spline is p+1 subintervals. It

follows that for any x in [xk−1, xk), 1 ≤ k ≤ N , at most p + 1 B-spline

basis functions have nonzero values (specifically, {Bi(x)}k(p−1)+2
i=(k−1)(p−1)+1).

The approximate solution to our system, U(x, t), can be expressed as

a linear combination of B-splines. The s-th component of the solution

us(x, t) is approximated by the piecewise polynomial

Us(x, t) =
NC∑
i=1

Bi(x)yi,s(t),

where s = 1, . . . , NPDE (number of PDEs). We then collocate at the

boundary points and internal Gauss points on each subinterval. These
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points over the entire domain are:

ξ1 = 0

ξl = xi−1 + hiρj, l = 1 + (i− 1)(p− 1) + j

ξNC = 1,

where hi = xi − xi−1, the ρi are the internal Gauss points, and i =

1, . . . , N ,j = 1, . . . , p − 1. The approximation Us is required to sat-

isfy the PDEs at the Gauss points, resulting in N(p − 1) collocation

equations for each PDE component:

(4.1)
d

dt
Us(ξl, t) = f(t, ξl, U(ξl, t), Ux(ξl, t), Uxx(ξl, t)).

We recall that for each Gauss point, there are at most p + 1 nonzero

B-spline basis functions, and so the linear combination is

Us(ξl, t) =

i(p−1)+2∑
m=(i−1)(p−1)+1

Bm(ξl)ym,s(t).

We substitute this into (4.1) and get our collocation system

i(p−1)+2∑
m=(i−1)(p−1)+1

Bm(ξl)y
′
m,s(t) = fs(t, ξl, U(ξl, t), Ux(ξl, t), Uxx(ξl, t)),

where l = 1, . . . , NC and s = 1, . . . , NPDE.

We are now left to consider how to treat our boundary conditions.

One option would be to differentiate the BCs with respect to time

and add these resulting ODEs to our system and solve with any of
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the available ODE solvers. The other option, chosen in BACOL, is to

leave the boundary conditions as they are, treating them as algebraic

constraints. The boundary conditions, coupled with our collocated

system form a differential algebraic equation (DAE) system. This DAE

system is now integrated in time with a modified version of DASSL, a

public domain DAE solver based on backward differentiation formulas

(BDF).

4.3. Spatial Adaptivity. In BACOL, the spatial mesh is adapted ac-

cording to error tolerance violations. With no analytic solution avail-

able for every system in our problem class, error estimates are cal-

culated by solving the system with B-splines at degree p and also at

degree p + 1. The two systems are

bL(t, U(0, t), Ux(0, t)) = 0,

i(p−1)+2∑
m=(i−1)(p−1)+1

Bm(ξl)y
′
m,s(t) = fs(t, ξl, U(ξl, t), Ux(ξl, t), Uxx(ξl, t)),

bR(t, U(1, t), Ux(1, t)) = 0,

bL(t, U(0, t), Ux(0, t)) = 0,

ip+2∑
m=(i−1)(p−1)+1

Bm(ξl)y
′
m,s(t) = fs(t, ξl, U(ξl, t), Ux(ξl, t), Uxx(ξl, t)),

bR(t, U(1, t), Ux(1, t)) = 0,
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where l = 1, . . . , N and s = 1, . . . , NPDE. Rather than solve these

these independently, they are given to DASSL as a single system. The

error estimate is then calculated a posteriori with the solutions to the p

and p+1 degree systems. the normalized error for the s-th component

of the PDE system (over the whole domain) is given by

||Es|| =

√∫ 1

0

(
Us − U s

ATOLs + RTOLs|Us|

)2

dx,

where ATOLs and RTOLs denote the absolute and relative tolerances

for the s-th component of the system. The error in each subinterval is

also calculated:

||Ês|| =

√√√√NPDE∑
s=1

∫ 1

0

(
Us − U s

ATOLs + RTOLs|Us|

)2

dx,

where i = 1, . . . , N .

With the errors in hand, the following parameters are calculated

r1 = max
1≤i≤N

||Êi||
1

(p+1) ,

r2 =

∑N
i=1 ||Êi||

1
(p+1)

N
.

The maximum subinterval error is given by r1 while the average error

over the subintervals is given by r2. If r1 >> r2 then the mesh is

determined to be poorly distributed. BACOL checks if

r1

r2

> 2



18 GREG LUKEMAN

or if

||E|| = max
0≤s≤NPDE

||Es|| ≥ 1.

Should either of these conditions hold, the mesh is refined according to

a global equidistribution strategy (see [7] for details).

5. Conclusions and Future Work

5.1. Results. We solve the PDE system in BACOL with the constants

set to anode values as prescribed by Stockie in [5] and the error toler-

ance (both absolute and relative for all PDE components) set to 10−8.

These are the same values used in the Matlab implementation. The

driving programs and user supplied subroutines can be found in the

Appendix. We initialize BACOL with a spatial grid of 32 points in [0, H]

but BACOL will end up adapting this grid as solution stiffness dictates.

The final temporal mesh is not available as output from BACOL so for our

comparison in time, we read in the temporal mesh used in the Stockie’s

Matlab program and call BACOL once for each time it contains. Chang-

ing the IDID flag keeps BACOL from repeating any work done. In this

way, we are able to compare results of both implementations at the

same times (Figure (4)). We see that the mole fractions (R/C) and

mixture concentrations, C, are similar but do have a somewhat sig-

nificant difference in the sloping portion of the curve. This difference
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Figure 4. BACOL versus Matlab implementation

may be due to increased accuracy achieved by using an adaptive mesh

code rather than a fixed mesh code but without actual fuel cell data

to compare both against, it is difficult to reach any firm conclusion.

Runs of the Matlab code with the spatial mesh changed from 32 points

in the domain to 10000 points in the domain changed the result only

mildly, and certainly not enough to account for the difference between

BACOL and Matlab. This issue requires further study.

Both solution components in time are shown in Figure (5) and the

shape of the solution in both space and time is shown in Figure (6).

The spatial shape compares well with the relevant figures in [4].
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Figure 5. Components of solution in time (C and R)

5.2. Convergence Analysis. In order to test the convergence of the

solution as the error tolerance is decreased, we run BACOL with error

tolerances from 10−6 to 10−14. These curves are plotted in Figure (7).

We see some significant deviation where the steep portion of the solu-

tion flattens out (from t = 0.01 to t = 0.1) as the tolerance drops from

10−6 to 10−9 but the stricter tolerances are nearly indistinguishable.

This behavior is depicted in Figures (8) and (9) which show the aver-

age (over space and time) of the absolute change in the solution as the

tolerance decreases. For both solution components, we see that we
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Figure 6. Reactant mole fraction (R/C) in space and time

converge (for higher tolerances) to a single solution as the tolerance de-

creases. We note that floating point exceptions (underflow) are raised

for the tolerances 10−13 and 10−14.

5.3. Project Goals. My initial goals for this project were to imple-

ment Stockie’s discretized model in Matlab (indpendent of Stockie’s

own Matlab implementation), validate the results and, should time al-

low, add another level of complexity to the model. My initial impulse

was to use Matlab’s bvp4c however, it proved exceedingly difficult to
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Figure 7. Convergence Analysis. Reactant mole frac-

tions versus time are plotted for error tolerances of

10−6, 10−7, 10−8, 10−9, 10−10, 10−11, 10−12, 10−13, and

10−14

configure the problem to fit the solver, especially since we were im-

posing a fixed spatial mesh by our discretization. Upon Dr. Spiteri’s

suggestion, I solved the PDE system outright with Rong Wang’s BACOL

software. Without actual data to test against, I validated the results

by noting the relative agreement with the results from Stockie’s Mat-

lab code. Adding additional complexity to the model within the time

frame of this project proved overly optimistic, however we now have
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Figure 8. Change in C with decreasing tolerance

a solid base from which we can work towards adding a condensation

component or another spatial dimension to the model.

5.4. Future Work. There is much potential with the 1-d fuel cell

problem for future developments.

5.4.1. Validation. A desirable next step would be to obtain some bench-

mark (perhaps real data) against which we can compare both BACOL’s

and Stockie’s Matlab results. This would tell us if the BACOL imple-

mentation is indeed an improvement as suspected, or if there is more
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Figure 9. Change in R with decreasing tolerance

work to do to get improved results. So far, the most we can say about

our results is that they are credible.

5.4.2. Condensation. Once we are confident in the BACOL implementa-

tion, Stockie suggests adding condensation to the 1-d model. Recall

that one of the advantages of fuel cells is the ability to operate at rela-

tively low temperatures. As the operating temperature falls, we begin

to see the involved gases condensing (especially the resulting water

vapour). We now have to concern ourselves not just with a multi-

component gas, but a multicomponent, multiphase mixture. Stockie
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develops a two-dimensional model that includes condensation in [6]. It

would be desirable to have a simple 1-d model that could more easily

couple with other fuel cell components.

5.4.3. 2-Dimensional Problem. Another direction this research could

take has been suggested by Dr. Paul Muir in conversations with Dr.

Spiteri. A method of lines discretization could be done by hand in the

other spatial dimension with some periodic boundary conditions and

each component of the resulting system solved with BACOL. This 2-d

model could then be tested against other 2-d approaches. We would

also need to determine if this approach using BACOL would yield any

advantages over using a 2-d PDE solver, such as VLUGR2 by Blom

and Verwer [2], outright.

5.4.4. Modification of BACOL. One of the main advantages of BACOL is

that it is free to develop it’s own mesh in space and time. Studying the

resulting meshes can often yield useful information about the nature of

the solution and exactly where the difficult areas lie. Currently, BACOL

only returns the spatial mesh it determines when solving the problem.

Introducing the option of outputting the temporal mesh would be a

useful modification, especially for the fuel cell problem. This would

likely involve further modification of the time integrator DASSL to
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obtain the step sizes which, in private communication, Wang cites as

“very hard, even for the advanced user”.
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6. Appendix

6.1. BACOL Driving Program.

C-----------------------------------------------------------------------

C CONSTANTS:

INTEGER KCOL

C KCOL IS THE NUMBER OF COLLOCATION POINTS

C TO BE USED IN EACH SUBINTERVAL, WHICH IS

C EQUAL TO THE DEGREE OF THE PIECEWISE

C POLYNOMIALS MINUS ONE.

C 1 < KCOL < 11.

PARAMETER (KCOL = 3)

INTEGER NPDE

C NUMBER OF PDES

PARAMETER (NPDE = 2)

INTEGER NINTMX

C MAXIMAL NUMBER OF INTEVALS ALLOWED

PARAMETER (NINTMX = 2000)

INTEGER MAXVEC

C THE DIMENSION OF THE VECTOR OF

C BSPLINE COEFFICIENTS

PARAMETER (MAXVEC = NPDE*(NINTMX*KCOL+2))

INTEGER LRP

C SEE THE COMMENT FOR RPAR

PARAMETER (LRP =134+NINTMX*(35+35*KCOL+31*NPDE

+ +38*NPDE*KCOL+8*KCOL*KCOL)+14*KCOL

+ +79*NPDE+NPDE*NPDE*(21

+ +4*NINTMX*KCOL*KCOL+12*NINTMX*KCOL

+ +6*NINTMX))

C

INTEGER LIP

C SEE THE COMMENT FOR IPAR

PARAMETER (LIP = 115+NPDE*((2*KCOL+1)*NINTMX+4))

INTEGER LENWRK

C THE DIMENSION OF ARRAY WORK WHEN WE

C CALL VALUES

PARAMETER (LENWRK =(KCOL+2)+KCOL*(NINTMX+1)+4)

INTEGER NUOUT

C THE DIMENSION OF UOUT

PARAMETER (NUOUT = NPDE*101)

DOUBLE PRECISION XA

C THE LEFT BOUNDARY POINT

PARAMETER (XA = 0.0D0)

DOUBLE PRECISION XB

C THE RIGHT BOUNDARY POINT

PARAMETER (XB = 0.05D0)

C-----------------------------------------------------------------------

DOUBLE PRECISION T0, TVEC(45)

C T0 < TOUT IS THE INITIAL TIME.

C

DOUBLE PRECISION TOUT

C TOUT IS THE DESIRED FINAL OUTPUT TIME.

C

DOUBLE PRECISION ATOL(NPDE)

C ATOL IS THE ABSOLUTE ERROR TOLERANCE
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C REQUEST AND IS A SCALAR QUANTITY IF

C MFLAG(2) = 0.

C

DOUBLE PRECISION RTOL(NPDE)

C RTOL IS THE RELATIVE ERROR TOLERANCE

C REQUEST AND IS A SCALAR QUANTITY IF

C MFLAG(2) = 0.

C

INTEGER NINT

C NINT IS THE NUMBER OF SUBINTERVALS

C DEFINED BY THE SPATIAL MESH X.

C

DOUBLE PRECISION X(NINTMX+1)

C X IS THE SPATIAL MESH WHICH DIVIDES THE

C INTERVAL [X_A,X_B] AS: X_A = X(1) <

C X(2) < X(3) < ... < X(NINT+1) = X_B.

C

INTEGER MFLAG(5)

C THIS VECTOR OF USER INPUT DETERMINES

C THE INTERACTION OF BACOL WITH DASSL.

C

C WORK STORAGE:

DOUBLE PRECISION RPAR(LRP)

C RPAR IS A FLOATING POINT WORK ARRAY

C OF SIZE LRP.

C

INTEGER IPAR(LIP)

C IPAR IS AN INTEGER WORK ARRAY

C OF SIZE LIP.

C

C-----------------------------------------------------------------------

DOUBLE PRECISION Y(MAXVEC)

C ON SUCCESSFUL RETURN FROM BACOL, Y IS

C THE VECTOR OF BSPLINE

C COEFFICIENTS AT THE CURRENT TIME T0.

C

INTEGER IDID

C IDID IS THE BACOL EXIT STATUS FLAG

C WHICH IS BASED ON THE EXIT STATUS FROM

C DASSL ON ERROR CHECKING PERFORMED BY

C BACOL ON INITIALIZATION.

C-----------------------------------------------------------------------

DOUBLE PRECISION UOUT(NUOUT)

C THE APPROXIMATION SOLUTIONS AT A SET

C OF POINTS

DOUBLE PRECISION VALWRK(LENWRK)

C VALWRK IS A WORK ARRAY IN VALUES

DOUBLE PRECISION XOUT(101)

C XOUT IS A SET OF SPATIAL POINTS FOR

C OUTPUT

DOUBLE PRECISION GAMMA, D, NU, R0, RH, CBAR, RBAR

C MODEL PARAMETERS

COMMON /FUEL/ GAMMA, D, NU, R0, RH, CBAR, RBAR

INTEGER I, J

C-----------------------------------------------------------------------

C SUBROUTINES CALLED:

C BACOL

C VALUES
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C-----------------------------------------------------------------------

C SET THE REMAINING INPUT PARAMETERS.

T0 = 0.0D0

open(83,file=’times.dat’)

do 9 I=1,45

READ(83,*) TVEC(I)

9 continue

close(83)

print *, TVEC

TOUT = 5.0D-4

ATOL(1) = 1.D-8

RTOL(1) = ATOL(1)

NINT = 32

C

C SET THE MODEL PARAMETERS (as suggested by Stockie)

GAMMA = 3.24d7 ! CONVECTION

D = 0.29d0 ! DIFFUSIVITY

NU = 1.00d0 ! RETURN COEFFICIENT

R0 = 3.0 ! BOTTOM TRANSFER RATE

RH = 0.005 ! TOP TRANSFER RATE

CBAR = 3.475d-5 ! MIXTURE CONCENTRATION

RBAR = 2.780d-5 ! REACTANT CONCENTRATION

C DEFINE THE MESH BASED ON A UNIFORM STEP SIZE.

X(1) = XA

DO 10 I = 2, NINT

X(I) = XA + ((I-1) * (XB - XA)) / NINT

10 CONTINUE

X(NINT+1) = XB

C INITIALIZE THE MFLAG VECTOR.

DO 20 I = 1, 5

MFLAG(I) = 0

20 CONTINUE

WRITE(6,’(/A, I3, A, I4, 2(A, E8.2))’) ’KCOL =’, KCOL, ’ NINT =’,

& NINT, ’ ATOL(1) =’, ATOL(1), ’ RTOL(1) =’, RTOL(1)

WRITE(6, ’(/A, E8.2)’) ’GAMMA =’, GAMMA

XOUT(1) = XA

DO 30 I = 2, 100

XOUT(I) = XA + DBLE(I - 1) * (XB - XA)/100.D0

30 CONTINUE

XOUT(101) = XB

open(85,file=’fuel.txt’)

do 999 j = 1,45

CALL BACOL(T0, TOUT, ATOL, RTOL, NPDE, KCOL, NINTMX, NINT, X,

& MFLAG, RPAR, LRP, IPAR, LIP, Y, IDID)

C CHECK FOR AN ERROR FROM BACOL.
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C WRITE(6,’(A, I5)’) ’IDID =’, IDID

IF (IDID .LT. 2) GOTO 100

CALL VALUES(KCOL,XOUT,NINT,X,NPDE,101,0,1,UOUT,Y,VALWRK)

do 990 i=1,101

WRITE(85,*) i, UOUT(1+2*(i-1)), UOUT(i*2)

990 continue

if (j.lt.45) then

tout = tout + TVEC(j+1)

idid = 1

endif

999 continue

close(85)

GOTO 9999

100 CONTINUE

WRITE(6,’(A)’) ’CANNOT PROCEED DUE TO ERROR FROM BACOL.’

9999 STOP

END

6.2. Fuel Cell Problem Subroutines.

C-----------------------------------------------------------------------

SUBROUTINE F(T, X, U, UX, UXX, FVAL, NPDE)

C-----------------------------------------------------------------------

C PURPOSE:

C THIS SUBROUTINE DEFINES THE RIGHT HAND SIDE VECTOR OF THE

C NPDE DIMENSIONAL PARABOLIC PARTIAL DIFFERENTIAL EQUATION

C UT = F(T, X, U, UX, UXX).

C

C-----------------------------------------------------------------------

C SUBROUTINE PARAMETERS:

C INPUT:

INTEGER NPDE

C THE NUMBER OF PDES IN THE SYSTEM.

C

DOUBLE PRECISION T

C THE CURRENT TIME COORDINATE.

C

DOUBLE PRECISION X

C THE CURRENT SPATIAL COORDINATE.

C

DOUBLE PRECISION U(NPDE)

C U(1:NPDE) IS THE APPROXIMATION OF THE

C SOLUTION AT THE POINT (T,X).

C

DOUBLE PRECISION UX(NPDE)

C UX(1:NPDE) IS THE APPROXIMATION OF THE

C SPATIAL DERIVATIVE OF THE SOLUTION AT

C THE POINT (T,X).

C

DOUBLE PRECISION UXX(NPDE)

C UXX(1:NPDE) IS THE APPROXIMATION OF THE

C SECOND SPATIAL DERIVATIVE OF THE

C SOLUTION AT THE POINT (T,X).
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C

C OUTPUT:

DOUBLE PRECISION FVAL(NPDE)

C FVAL(1:NPDE) IS THE RIGHT HAND SIDE

C VECTOR F(T, X, U, UX, UXX) OF THE PDE.

C-----------------------------------------------------------------------

DOUBLE PRECISION GAMMA, D, NU, R0, RH, CBAR, RBAR

COMMON /FUEL/ GAMMA, D, NU, R0, RH, CBAR, RBAR

C-----------------------------------------------------------------------

C

C ASSIGN FVAL(1:NPDE) ACCORDING TO THE RIGHT HAND SIDE OF THE PDE

C IN TERMS OF U(1:NPDE), UX(1:NPDE), UXX(1:NPDE).

C

FVAL(1) = GAMMA*UX(1)**2 + GAMMA*U(1)*UXX(1)

FVAL(2) = GAMMA*UX(2)*UX(1) + GAMMA*U(2)*UXX(1) +

& D*UX(1)*( UX(2)/U(1) - U(2)*UX(1)/(U(1)**2) ) +

& D*U(1)*( UXX(2)/U(1) - 2.d0*UX(2)*UX(1)/(U(1)**2) +

& 2.d0*U(2)*UX(1)**2/(U(1)**3) - U(2)*UXX(1)/(U(1)**2) )

C

RETURN

END

C-----------------------------------------------------------------------

SUBROUTINE DERIVF(T, X, U, UX, UXX, DFDU, DFDUX, DFDUXX, NPDE)

C-----------------------------------------------------------------------

C PURPOSE:

C THIS SUBROUTINE IS USED TO DEFINE THE INFORMATION ABOUT THE

C PDE REQUIRED TO FORM THE ANALYTIC JACOBIAN MATRIX FOR THE DAE

C OR ODE SYSTEM. ASSUMING THE PDE IS OF THE FORM

C UT = F(T, X, U, UX, UXX)

C THIS ROUTINE RETURNS THE JACOBIANS D(F)/D(U), D(F)/D(UX), AND

C D(F)/D(UXX).

C

C-----------------------------------------------------------------------

C SUBROUTINE PARAMETERS:

C INPUT:

INTEGER NPDE

C THE NUMBER OF PDES IN THE SYSTEM.

C

DOUBLE PRECISION T

C THE CURRENT TIME COORDINATE.

C

DOUBLE PRECISION X

C THE CURRENT SPATIAL COORDINATE.

C

DOUBLE PRECISION U(NPDE)

C U(1:NPDE) IS THE APPROXIMATION OF THE

C SOLUTION AT THE POINT (T,X).

C

DOUBLE PRECISION UX(NPDE)

C UX(1:NPDE) IS THE APPROXIMATION OF THE

C SPATIAL DERIVATIVE OF THE SOLUTION AT

C THE POINT (T,X).

C

DOUBLE PRECISION UXX(NPDE)

C UXX(1:NPDE) IS THE APPROXIMATION OF THE
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C SECOND SPATIAL DERIVATIVE OF THE

C SOLUTION AT THE POINT (T,X).

C

C OUTPUT:

DOUBLE PRECISION DFDU(NPDE,NPDE)

C DFDU(I,J) IS THE PARTIAL DERIVATIVE

C OF THE I-TH COMPONENT OF THE VECTOR F

C WITH RESPECT TO THE J-TH COMPONENT

C OF THE UNKNOWN FUNCTION U.

C

DOUBLE PRECISION DFDUX(NPDE,NPDE)

C DFDUX(I,J) IS THE PARTIAL DERIVATIVE

C OF THE I-TH COMPONENT OF THE VECTOR F

C WITH RESPECT TO THE J-TH COMPONENT

C OF THE SPATIAL DERIVATIVE OF THE

C UNKNOWN FUNCTION U.

C

DOUBLE PRECISION DFDUXX(NPDE,NPDE)

C DFDUXX(I,J) IS THE PARTIAL DERIVATIVE

C OF THE I-TH COMPONENT OF THE VECTOR F

C WITH RESPECT TO THE J-TH COMPONENT

C OF THE SECOND SPATIAL DERIVATIVE OF THE

C UNKNOWN FUNCTION U.

DOUBLE PRECISION GAMMA, D, NU, R0, RH, CBAR, RBAR

COMMON /FUEL/ GAMMA, D, NU, R0, RH, CBAR, RBAR

C-----------------------------------------------------------------------

C

C ASSIGN DFDU(1:NPDE,1:NPDE), DFDUX(1:NPDE,1:NPDE), AND

C DFDUXX(1:NPDE,1:NPDE) ACCORDING TO THE RIGHT HAND SIDE OF THE PDE

C IN TERMS OF U(1:NPDE), UX(1:NPDE), UXX(1:NPDE).

C

DFDU(1,1) = GAMMA*UXX(1)

DFDUX(1,1) = 2.d0*GAMMA*UX(1)

DFDUXX(1,1) = GAMMA*U(1)

DFDU(1,2) = 0.d0

DFDUX(1,2) = 0.d0

DFDUXX(1,2) = 0.d0

DFDU(2,1) = D*UX(1)*(-UX(2)/(U(1)**2)+2.d0*U(2)*UX(1)/(U(1)**3))

& + D*(UXX(2)/U(1)-2.d0*UX(2)*UX(1)/(U(1)**2)

& + 2.d0*U(2)*UX(1)**2/(U(1)**3)-U(2)*UXX(1)/(U(1)**2))

& + D*U(1)*(-UXX(2)/(U(1)**2)+4.d0*UX(2)*UX(1)/(U(1)**3)

& - 6.d0*U(2)*UX(1)**2/(U(1)**4)

& + 2.d0*U(2)*UXX(1)/(U(1)**3) )

DFDUX(2,1) = GAMMA*UX(2)+D*(UX(2)/U(1)-U(2)*UX(1)/(U(1)**2))

& - D*UX(1)*U(2)/(U(1)**2)+D*U(1)*(-2.d0*UX(2)/(U(1)**2)

& + 4.d0*U(2)*UX(1)/(U(1)**3) )

DFDUXX(2,1) = GAMMA*U(2) - D*U(2)/U(1)

DFDU(2,2) = GAMMA*UXX(1)-D*UX(1)**2/(U(1)**2)

& + D*U(1)*(2.d0*UX(1)**2/(U(1)**3)-UXX(1)/(U(1)**2))

DFDUX(2,2) = GAMMA*UX(1)-D*UX(1)/U(1)

DFDUXX(2,2) = D

C
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RETURN

END

C-----------------------------------------------------------------------

SUBROUTINE BNDXA(T, U, UX, BVAL, NPDE)

C-----------------------------------------------------------------------

C PURPOSE:

C THE SUBROUTINE IS USED TO DEFINE THE BOUNDARY CONDITIONS AT THE

C LEFT SPATIAL END POINT X = XA.

C B(T, U, UX) = 0

C

C-----------------------------------------------------------------------

C SUBROUTINE PARAMETERS:

C INPUT:

INTEGER NPDE

C THE NUMBER OF PDES IN THE SYSTEM.

C

DOUBLE PRECISION T

C THE CURRENT TIME COORDINATE.

C

DOUBLE PRECISION U(NPDE)

C U(1:NPDE) IS THE APPROXIMATION OF THE

C SOLUTION AT THE POINT (T,XA).

C

DOUBLE PRECISION UX(NPDE)

C UX(1:NPDE) IS THE APPROXIMATION OF THE

C SPATIAL DERIVATIVE OF THE SOLUTION AT

C THE POINT (T,XA).

C

C OUTPUT:

DOUBLE PRECISION BVAL(NPDE)

C BVAL(1:NPDE) IS THE BOUNDARY CONTIDITION

C AT THE LEFT BOUNDARY POINT.

C-----------------------------------------------------------------------

DOUBLE PRECISION GAMMA, D, NU, R0, RH, CBAR, RBAR

COMMON /FUEL/ GAMMA, D, NU, R0, RH, CBAR, RBAR

C-----------------------------------------------------------------------

BVAL(1) = U(1)-CBAR

BVAL(2) = UX(2)/U(1) - U(2)*UX(1)/(U(1)**2)

& + R0*(RBAR-U(2))/(D*CBAR)

C

RETURN

END

C-----------------------------------------------------------------------

SUBROUTINE BNDXB(T, U, UX, BVAL, NPDE)

C-----------------------------------------------------------------------

C PURPOSE:

C THE SUBROUTINE IS USED TO DEFINE THE BOUNDARY CONDITIONS AT THE

C RIGHT SPATIAL END POINT X = XB.

C B(T, U, UX) = 0

C

C-----------------------------------------------------------------------

C SUBROUTINE PARAMETERS:

C INPUT:

INTEGER NPDE

C THE NUMBER OF PDES IN THE SYSTEM.

C

DOUBLE PRECISION T
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C THE CURRENT TIME COORDINATE.

C

DOUBLE PRECISION U(NPDE)

C U(1:NPDE) IS THE APPROXIMATION OF THE

C SOLUTION AT THE POINT (T,XB).

C

DOUBLE PRECISION UX(NPDE)

C UX(1:NPDE) IS THE APPROXIMATION OF THE

C SPATIAL DERIVATIVE OF THE SOLUTION AT

C THE POINT (T,XB).

C

C OUTPUT:

DOUBLE PRECISION BVAL(NPDE)

C BVAL(1:NPDE) IS THE BOUNDARY CONTIDITION

C AT THE RIGHT BOUNDARY POINT.

C-----------------------------------------------------------------------

DOUBLE PRECISION GAMMA, D, NU, R0, RH, CBAR, RBAR

COMMON /FUEL/ GAMMA, D, NU, R0, RH, CBAR, RBAR

C-----------------------------------------------------------------------

BVAL(1) = UX(2)/U(1) - U(2)*UX(1)/(U(1)**2)+ RH*U(2)/(D*U(1))

BVAL(2) = UX(1) + NU*RH*U(2)/( GAMMA*( U(1)-NU*U(2) ) )

C

RETURN

END

C-----------------------------------------------------------------------

SUBROUTINE DIFBXA(T, U, UX, DBDU, DBDUX, DBDT, NPDE)

C-----------------------------------------------------------------------

C PURPOSE:

C THE SUBROUTINE IS USED TO DEFINE THE DIFFERENTIATED BOUNDARY

C CONDITIONS AT THE LEFT SPATIAL END POINT X = XA. FOR THE

C BOUNDARY CONDITION EQUATION

C B(T, U, UX) = 0

C THE PARTIAL DERIVATIVES DB/DU, DB/DUX, AND DB/DT ARE SUPPLIED

C BY THIS ROUTINE.

C

C-----------------------------------------------------------------------

C SUBROUTINE PARAMETERS:

C INPUT:

INTEGER NPDE

C THE NUMBER OF PDES IN THE SYSTEM.

C

DOUBLE PRECISION T

C THE CURRENT TIME COORDINATE.

C

DOUBLE PRECISION U(NPDE)

C U(1:NPDE) IS THE APPROXIMATION OF THE

C SOLUTION AT THE POINT (T,X).

C

DOUBLE PRECISION UX(NPDE)

C UX(1:NPDE) IS THE APPROXIMATION OF THE

C SPATIAL DERIVATIVE OF THE SOLUTION AT

C THE POINT (T,X).

C

C OUTPUT:

DOUBLE PRECISION DBDU(NPDE,NPDE)

C DBDU(I,J) IS THE PARTIAL DERIVATIVE

C OF THE I-TH COMPONENT OF THE VECTOR B

C WITH RESPECT TO THE J-TH COMPONENT
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C OF THE UNKNOWN FUNCTION U.

C

DOUBLE PRECISION DBDUX(NPDE,NPDE)

C DBDUX(I,J) IS THE PARTIAL DERIVATIVE

C OF THE I-TH COMPONENT OF THE VECTOR B

C WITH RESPECT TO THE J-TH COMPONENT

C OF THE SPATIAL DERIVATIVE OF THE

C UNKNOWN FUNCTION U.

C

DOUBLE PRECISION DBDT(NPDE)

C DBDT(I) IS THE PARTIAL DERIVATIVE

C OF THE I-TH COMPONENT OF THE VECTOR B

C WITH RESPECT TO TIME T.

DOUBLE PRECISION GAMMA, D, NU, R0, RH, CBAR, RBAR

COMMON /FUEL/ GAMMA, D, NU, R0, RH, CBAR, RBAR

C-----------------------------------------------------------------------

C-----------------------------------------------------------------------

C

C ASSIGN DBDU(1:NPDE,1:NPDE), DBDU(1:NPDE,1:NPDE), AND DBDT(1:NPDE)

C ACCORDING TO THE RIGHT BOUNDARY CONDITION EQUATION IN TERMS OF

C U(1:NPDE), UX(1:NPDE), UXX(1:NPDE).

C

DBDU(1,1) = 1

DBDUX(1,1) = 0

DBDU(1,2) = 0

DBDUX(1,2) = 0

DBDU(2,1) = -UX(2)/(U(1)**2)+2.d0*U(2)*UX(1)/(U(1)**3)

DBDUX(2,1) = -U(2)/(U(1)**2)

DBDU(2,2) = -UX(1)/U(1)**2 - R0/( D*CBAR )

DBDUX(2,2) = 1/U(1)

DBDT(1) = 0

DBDT(2) = 0

C

RETURN

END

C-----------------------------------------------------------------------

SUBROUTINE DIFBXB(T, U, UX, DBDU, DBDUX, DBDT, NPDE)

C-----------------------------------------------------------------------

C PURPOSE:

C THE SUBROUTINE IS USED TO DEFINE THE DIFFERENTIATED BOUNDARY

C CONDITIONS AT THE RIGHT SPATIAL END POINT 1 = XB. FOR THE

C BOUNDARY CONDITION EQUATION

C B(T, U, UX) = 0

C THE PARTIAL DERIVATIVES DB/DU, DB/DUX, AND DB/DT ARE SUPPLIED

C BY THIS ROUTINE.

C

C-----------------------------------------------------------------------

C SUBROUTINE PARAMETERS:

C INPUT:

INTEGER NPDE

C THE NUMBER OF PDES IN THE SYSTEM.

C

DOUBLE PRECISION T
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C THE CURRENT TIME COORDINATE.

C

DOUBLE PRECISION U(NPDE)

C U(1:NPDE) IS THE APPROXIMATION OF THE

C SOLUTION AT THE POINT (T,X).

C

DOUBLE PRECISION UX(NPDE)

C UX(1:NPDE) IS THE APPROXIMATION OF THE

C SPATIAL DERIVATIVE OF THE SOLUTION AT

C THE POINT (T,X).

C

C OUTPUT:

DOUBLE PRECISION DBDU(NPDE,NPDE)

C DBDU(I,J) IS THE PARTIAL DERIVATIVE

C OF THE I-TH COMPONENT OF THE VECTOR B

C WITH RESPECT TO THE J-TH COMPONENT

C OF THE UNKNOWN FUNCTION U.

C

DOUBLE PRECISION DBDUX(NPDE,NPDE)

C DBDUX(I,J) IS THE PARTIAL DERIVATIVE

C OF THE I-TH COMPONENT OF THE VECTOR B

C WITH RESPECT TO THE J-TH COMPONENT

C OF THE SPATIAL DERIVATIVE OF THE

C UNKNOWN FUNCTION U.

C

DOUBLE PRECISION DBDT(NPDE)

C DBDT(I) IS THE PARTIAL DERIVATIVE

C OF THE I-TH COMPONENT OF THE VECTOR B

C WITH RESPECT TO TIME T.

DOUBLE PRECISION GAMMA, D, NU, R0, RH, CBAR, RBAR

COMMON /FUEL/ GAMMA, D, NU, R0, RH, CBAR, RBAR

C-----------------------------------------------------------------------

C-----------------------------------------------------------------------

C

C ASSIGN DBDU(1:NPDE,1:NPDE), DBDU(1:NPDE,1:NPDE), AND DBDT(1:NPDE)

C ACCORDING TO THE RIGHT BOUNDARY CONDITION EQUATION IN TERMS OF

C U(1:NPDE), UX(1:NPDE), UXX(1:NPDE).

C

DBDU(1,1) = -UX(2)/(U(1)**2) + 2.d0*U(2)*UX(1)/(U(1)**3)

& - RH*U(2)/( D*U(1)**2 )

DBDUX(1,1) = -U(2)/(U(1)**2)

DBDU(1,2) = -UX(1)/(U(1)**2) + RH/( D*U(1) )

DBDUX(1,2) = 1/U(1)

DBDU(2,1) = -NU*RH*U(2)/( GAMMA*( U(1)-NU*U(2) )**2 )

DBDUX(2,1) = 1

DBDU(2,2) = NU*RH/( GAMMA*( U(1)-NU*U(2) ) )

& + NU**2*RH*U(2)/( GAMMA*( U(1)-NU*U(2) )**2 )

DBDUX(2,2) = 0

DBDT(1) = 0

DBDT(2) = 0

C

RETURN

END
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C-----------------------------------------------------------------------

SUBROUTINE UINIT(X, U, NPDE)

C-----------------------------------------------------------------------

C PURPOSE:

C THIS SUBROUTINE IS USED TO RETURN THE NPDE-VECTOR OF INITIAL

C CONDITIONS OF THE UNKNOWN FUNCTION AT THE INITIAL TIME T = T0

C AT THE SPATIAL COORDINATE X.

C

C-----------------------------------------------------------------------

C SUBROUTINE PARAMETERS:

C INPUT:

DOUBLE PRECISION X

C THE SPATIAL COORDINATE.

C

INTEGER NPDE

C THE NUMBER OF PDES IN THE SYSTEM.

C

C OUTPUT:

DOUBLE PRECISION U(NPDE)

C U(1:NPDE) IS VECTOR OF INITIAL VALUES OF

C THE UNKNOWN FUNCTION AT T = T0 AND THE

C GIVEN VALUE OF X.

C-----------------------------------------------------------------------

DOUBLE PRECISION GAMMA, D, NU, R0, RH, CBAR, RBAR

COMMON /FUEL/ GAMMA, D, NU, R0, RH, CBAR, RBAR

C-----------------------------------------------------------------------

C

C ASSIGN U(1:NPDE) THE INITIAL VALUES OF U(T0,X).

C

U(1) = CBAR

U(2) = RBAR

C

RETURN

END

C-----------------------------------------------------------------------
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