
PARSING PARAMETER ESTIMATION PROBLEMS FROM

EASY-FIT TO SOCS

by

Matthew W. Donaldson

SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

BACHELOR OF SCIENCE, HONOURS

AT

DALHOUSIE UNIVERSITY

HALIFAX, NOVA SCOTIA

APRIL 8, 2005

c© Copyright by Matthew W. Donaldson, 2005

DALHOUSIE UNIVERSITY

DEPARTMENT OF MATHEMATICS STATISTICS AND COMPUTER SCIENCE

The undersigned hereby certify that they have read and recommend

to the Faculty of Graduate Studies for acceptance a thesis entitled “PARSING

PARAMETER ESTIMATION PROBLEMS FROM EASY-FIT TO SOCS”

by Matthew W. Donaldson in partial fulfillment of the requirements for the

degree of Bachelor of Science, Honours.

Dated: April 8, 2005

Supervisor:
Dr. Raymond Spiteri

Reader:
Dr. Jason Brown

ii

DALHOUSIE UNIVERSITY

Date: April 8, 2005

Author: Matthew W. Donaldson

Title: PARSING PARAMETER ESTIMATION PROBLEMS

FROM EASY-FIT TO SOCS

Department: Mathematics Statistics and Computer Science

Degree: B.Sc. (Hon) Convocation: May Year: 2005

Permission is herewith granted to Dalhousie University to circulate and to have

copied for non-commercial purposes, at its discretion, the above title upon the request of

individuals or institutions.

Signature of Author

The author reserves other publication rights, and neither the thesis nor extensive extracts
from it may be printed or otherwise reproduced without the author’s written permission.

The author attests that permission has been obtained for the use of any copyrighted material
appearing in the thesis (other than brief excerpts requiring only proper acknowledgement in scholarly
writing) and that all such use is clearly acknowledged.

iii

Table of Contents

List of Tables vi

List of Figures vii

Abstract viii

Acknowledgements ix

Chapter 1 Introduction 1

Chapter 2 Parameter Estimation Problems 3

2.1 Explicit Model Functions . 4

2.2 Ordinary Differential Equations . 5

2.3 Differential-Algebraic Equations . 6

Chapter 3 Parser Design 8

3.1 Input Format for EASY-FIT . 8

3.1.1 Input of Explicit Model Functions 11

3.1.2 Input of Ordinary Differential Equations 12

3.1.3 Input of Differential-Algebraic Equations 13

3.2 Input Format for SOCS . 15

3.3 Sample Problem . 18

Chapter 4 Results and Discussion 21

Chapter 5 Conclusions and Future Work 29

Appendix A Measurement Data for Model TP333 31

Appendix B Problem Data for Model TP333 32

iv

Appendix C SOCS Code for Problem TP333 34

Bibliography 46

v

List of Tables

Table 4.1 Experimental Data for problem INTEG X 22

Table 4.2 Results obtained from EASY-FIT and SOCS for explicit model

functions. 24

Table 4.3 Results obtained from EASY-FIT and SOCS for ordinary differ-

ential equation models. 25

Table 4.4 Parser results obtained from EASY-FIT and SOCS for differen-

tial algebraic equation models. 28

vi

List of Figures

Figure 3.1 Organization of SOCS for Sparse Optimal Parameter Estimation 17

Figure 4.1 Plot of experimental data versus theoretically predicted model

values obtained from SOCS for explicit model function INTEG X. 23

Figure 4.2 Plot of experimental data versus theoretically predicted model

values obtained from SOCS for ODE parameter estimation prob-

lem COMPET. 26

Figure 4.3 Plot of experimental data versus theoretically predicted model

values obtained from SOCS for DAE parameter estimation prob-

lem BOND. 27

vii

Abstract

In many cases, mathematical models involve parameters that must be fit to experi-

mental data. These so-called parameter estimation problems have many applications

that may involve differential equations, optimization, and control theory. In this

thesis we consider only parameter estimation problems that involve explicit model

functions, ordinary differential equations, and differential-algebraic equations.

This thesis reviews two software packages, EASY-FIT and SOCS, which are used

to solve parameter estimation problems [5], [3]. We discuss the design of a parser

used to translate EASY-FIT input into SOCS input so that is it possible to quickly

test SOCS on a number of parameter estimation problems varying both in size and

difficulty.

After parsing a small subset of parameter estimation problems from each of the

three categories given above, we find that the parser performs very well. We are

able to test SOCS on this subset of problems in a matter of seconds. This is a small

fraction of the time it would take to code each problem separately in SOCS. Although

there were differences in some of the solutions found by EASY-FIT and SOCS, they

do not appear to be a result of the parser.

viii

Acknowledgements

I would like to acknowledge the following people for all the help they have given me

and which has led to making this thesis a great success:

Dr. Raymond J. Spiteri, Dr. John T. Betts, and Dr. Klaus Schittkowski.

ix

Chapter 1

Introduction

Optimal control problems are most often governed by ordinary differential equations

(ODEs) and arise in a wide range of applications. One particular field where op-

timal control problems are common is the aerospace industry. Aerospace engineers

have been solving optimal control problems for trajectory optimization, spacecraft

altitude control, jet thruster control, missile guidance, and many other applications

for decades [2].

The particular type of optimal control problem that is considered in this thesis

is the parameter estimation problem. Models that are used to match experimental

data belong to an area of mathematics called parameter estimation. Parameter esti-

mation is most important in models where a finite number of unknown parameters

are difficult to measure directly from an experimental data set.

Methods for obtaining solutions to these parameter estimation problems are al-

most as numerous as the applications themselves. In this thesis we consider two

software packages, EASY-FIT and SOCS, which approximate the solutions of such

problems.

The Sparse Optimal Control Software (SOCS) package is a collection of FOR-

TRAN 77 subroutines designed to solve optimal control problems [3]. The package

implements the direct transcription or collocation method to convert the continuous

control problem into a discrete one. The discretization gives a finite-dimensional non-

linear programming (NLP) problem, which is solved by SOCS using, for example, a

sequential programming (SQP) method. A detailed description of the methods used

by SOCS to solve NLP problems is given in [2], [3]. SOCS is supported on most

UNIX and Windows systems. Perhaps one of the major disadvantages of SOCS is

that the software does not have a graphical user interface (GUI).

1

2

EASY-FIT is an interactive software system used to estimate parameters in ex-

plicit model functions and dynamical systems of equations [5]. A dynamical system is

usually described mathematically by a set of ODEs. The mathematical background

of the numerical algorithms implemented in EASY-FIT is described in [8] in the form

of a comprehensive textbook. EASY-FIT is implemented in the form of a relational

database under Microsoft Access running under Microsoft Windows (2000 or higher).

The underlying numerical algorithms are coded in FORTRAN and are executable

independently from the interface.

In this thesis, we wish to test SOCS on a large number and also a wide variety of

parameter estimation problems. To accomplish this goal, we take advantage of the

over 1000 parameter estimation problems based on academic and real life examples

included in EASY-FIT. To limit the amount of work required to test SOCS on such a

large number of problems, we design a parser that allows for translation of EASY-FIT

input into SOCS input. Specifically, the parser’s job is to take a parameter estimation

problem from the EASY-FIT database and output the executable SOCS code. As

a result of this parser, we have access to a large database of parameter estimation

problems without the need to consult multiple sources for problems, such as journals,

textbooks, and other references.

The remainder of thgis thesis is as follows. In Chapter 2, we give details on

the problem formulations of parameter estimation problems involving explicit model

functions, ordinary differential equations, and differential-algebraic equations. In

Chapter 3, the focus then is shifted to the input requirements for SOCS and EASY-

FIT. We also give a simple example of how the parser works on a parameter estimation

problem involving an explicit model function. Finally, in Chapter 4 we present the

results for a number of each of the three types of parameter estimation problems.

Chapter 2

Parameter Estimation Problems

Parameter estimation is very important in areas such as natural science, engineer-

ing, and many other disciplines. The key idea is to estimate unknown parameters

p1, . . . , pn of a mathematical model that often describes a real life situation by min-

imizing the distance of known experimental data from theoretically predicted values

of a model function at certain time values. Therefore, model parameters that cannot

be measured directly can be identified by a least-squares fit [8].

In simplified notation, we want to solve a least-squares problem of the form

min
p

l∑

i

(h(p;y(p; ti), ti) − yi)
2 ,

plb ≤ p ≤ pub , p ∈ R
n ,

(2.1)

where h(p;y, t) is a fitting function depending on the unknown parameter vector

p, the time t, and the solution y(p; t) of a dynamical system. A typical dynamical

system is given by differential equations that describe a time-dependent process and

that depend on the parameter vector p. In this chapter, we summarize in detail how

the model functions depend on the solution of a dynamical system. Moreover, we

describe a couple of extensions of the data-fitting problem and the dynamical system

that allow us to treat more complex practical models.

In general, parameter estimation problems often involve one the following cate-

gories,

• explicit model functions,

• Laplace transformations,

• dynamical systems of equations,

• systems of ordinary differential equations,

3

4

• systems of differential-algebraic equations,

• systems of one-dimensional, time-dependent partial differential equations,

• systems of one-dimensional partial differential-algebraic equations.

These are the sets of problems that can be found in the EASY-FIT software

package. Of these 7 categories, the parser thus far has been designed to deal only

with explicit model functions, systems of ordinary differential equations, and systems

of differential-algebraic equations. We now turn to a more in-depth look at the first

of these categories.

2.1 Explicit Model Functions

Problems where the vector-valued model function is available in explicit form belong

to the class of parameter estimation problems known as explicit model functions.

Associated with explicit models is an additional variable called time, and optionally

another variable called concentration.

As described by [8], we begin with r experimental data sets

(ti, cj, y
k
ij), i = 1, . . . , lt, j = 1, . . . , lc, k = 1, . . . , r , (2.2)

where lt time values, lc concentration values, and l = ltlcr corresponding measurement

values are defined. We may also have nonlinear restrictions in the form of equality or

inequality constraints on the parameters to be estimated,

gj(p) = 0, j = 1, . . . ,me ,

gj(p) ≥ 0, j = me + 1, . . . ,mr .
(2.3)

We assume that all constraint functions are continuously differentiable with respect

to p. Together with a vector-valued model function

h(p; t, c) = (h1(p; t, c), . . . , hr(p; t, c))T , (2.4)

5

we get the resulting least-squares problem of the form

min
p

r∑

k=1

lt∑

i=1

lc∑

j=1

(wk
ij(hk(p; ti, cj) − yk

ij))
2

gj(p) = 0, j = 1, . . . ,me ,

gj(p) ≥ 0, j = me + 1, . . . ,mr .

plb ≤ p ≤ pub , p ∈ R
n .

(2.5)

We assume that there are weight factors wk
ij ≥ 0 given by the user that reflect the

individual influence of a measurement value. Weights may be set to zero if there are

measurements not available for a particular time value.

We wish to minimize the distance between the model function at certain time

and concentration values and the corresponding measurement values. This distance

is called the residual.

Note that for each of the three types of parameter estimation problems described

in this Chapter it is possible to have a global scaling strategy in addition to the

individual weight factors for each measurement value. The four options are:

• 0: no additional scaling

• 1: division of residuals by square root of sum of squares of all measurement

values

• -1: division of each single residual by corresponding absolute measurement value

• -2: division of each single residual by corresponding squared measurement value

2.2 Ordinary Differential Equations

As with the explicit data-fitting model and as described by [8], we begin with r data

sets,

(ti, cj, y
k
ij), i = 1, . . . , lt, j = 1, . . . , lc, k = 1, . . . , r , (2.6)

where lt time values, lc concentration values, and l = ltlcr corresponding measurement

values are defined. We may also have nonlinear restrictions in the form of equality or

6

inequality constraints on the parameters to be estimated,

gj(p) = 0, j = 1, . . . ,me ,

gj(p) ≥ 0, j = me + 1, . . . ,mr .
(2.7)

We assume that all constraint functions are continuously differentiable with respect

to p. The vector-valued model function

h(p;y(p; t, c), t, c) = (h1(p;y(p; t, c), t, c), . . . , hr(p;y(p; t, c), t, c))T , (2.8)

depends on the concentration parameter c and in addition on the solution y(p; t, c)

of a system of m ordinary differential equations with initial values,

ẏ1 = F1(p; y, t) , y1(0) = y0

1
(p) ,

...

ẏm = Fm(p; y, t) , ym(0) = y0

m(p) .

(2.9)

Without loss of generality, we assume that the initial time is zero. The initial values

of the system of differential equations y0

1
(p; c), . . . , y0

m(p; c) may depend on one or

more of the system parameters to be estimated and on the concentration parameter

c.

We then get the resulting least-squares problem of the form

min
p

r∑

k=1

lt∑

i=1

lc∑

j=1

(wk
ij(hk(p;y(p; ti, cj), ti, cj) − yk

ij))
2

gj(p) = 0, j = 1, . . . ,me ,

gj(p) ≥ 0, j = me + 1, . . . ,mr .

plb ≤ p ≤ pub , p ∈ R
n .

(2.10)

2.3 Differential-Algebraic Equations

Assuming the same problem formulation as given by (2.6) and (2.7), we now add

algebraic equations to the system of differential equations (2.9). The resulting fitting

7

criterion h(p;y(p; t, c), z(p; t, c), t, c) depends on md differential variables y(p; t, c)

and ma algebraic variables z(p; t, c). The system of equations is now

ẏ1 = F1(p;y, z, t) , y1(0) = y0

1
(p) ,

...

ẏmd
= Fmd

(p;y, z, t) , ymd
(0) = y0

md
(p) ,

0 = G1(p;y, z, t) , z1(0) = z0

1
(p) ,

...

0 = Gma
(p;y, z, t) , yma

(0) = y0

ma
(p) ,

(2.11)

Again without loss of generality, we assume that the initial time is zero. The initial

values of the differential equations y0

1
(p; c), . . . , y0

md
(p; c) and of the algebraic equa-

tions z0

1
(p; c), . . . , z0

ma
(p; c) may depend on the system parameters to be estimated

and on the concentration parameter c.

The least-squares problem for differential-algebraic equations has the form

min
p

r∑

k=1

lt∑

i=1

lc∑

j=1

(wk
ij(hk(p;y(p; ti, cj), z(p; ti, cj), ti, cj) − yk

ij))
2

gj(p) = 0, j = 1, . . . ,me ,

gj(p) ≥ 0, j = me + 1, . . . ,mr .

plb ≤ p ≤ pub , p ∈ R
n .

(2.12)

y(p; t, c) and z(p; t, c) are solution vectors of a system of md + ma differential-

algebraic equations (DAEs). The system is called an index-1 problem or an index-1

DAE if the algebraic equations can be solved for z for all t. For simplicity, we

consider only problems of index-1. EASY-FIT has an implicit solver that is able to

solve index-2 DAEs and index-3 DAEs by transforming the higher-index problem to

index-1 by successive differentiation of the algebraic equations. This transformation

is performed because of the numerical instability of high-index DAEs. For more on

DAEs with higher-index, see [6].

Chapter 3

Parser Design

Given that EASY-FIT has 780 parameter estimation problems of the sort described

in Chapter 2, the design of a parser to translate these problems into SOCS input is

essential when considering the amount of time required to code even the simplest of

parameter estimation problems in SOCS. This automated process of reading input

from EASY-FIT and writing an output file which is directly executable by SOCS

saves time as well as coding errors on the users part when it comes to solving such a

large number of problems with SOCS.

In this Chapter, we consider the input requirements for EASY-FIT and SOCS.

A list of function, variable, and other declarations used in the EASY-FIT input that

are not supported by the parser are given. Finally, we present a sample EASY-FIT

input file for an explicit model function along with the output file generated by the

parser.

3.1 Input Format for EASY-FIT

This section is the exact description as given by [8] of the modelling language used by

EASY-FIT called PCOMP. For a more complete description of PCOMP, see [8], [4].

All model functions are defined in the PCOMP modelling language, and, they are

interpreted and evaluated during run time. The PCOMP-language is a subset of

FORTRAN with a few extensions. In particular, the declaration and executable

statements must satisfy the usual FORTRAN input format; e.g., they must start at

column 7 or subsequently. A statement line is read in until column 72. Comments,

denoted with C in the first column, may be included in a program text wherever

needed. Statements may be continued on subsequent lines by including a continuation

mark in column 6. Either capital or small letters are allowed for identifiers of the user

and key words of the language, i.e., PCOMP is not case sensitive. The length of an

8

9

identifier must be smaller than 20 tokens.

In contrast to FORTRAN, however, most variables are declared implicitly by their

assignment statements. Variables and functions must be declared separately only if

they are used for automatic differentiation. PCOMP possesses special constructs to

identify program blocks.

* PARAMETER

Declaration of constant integer parameters to be used throughout the program,

particularly for dimensioning index sets.

** SET OF INDICES

Definition of index sets that can be used to declare data, variables, and functions

or to define sum or prod statements.

* INDEX

Definition of an index variable, which can be used in a FUNCTION program

block.

* REAL CONSTANT

Definition of real data, either without index or with one- or two- dimensional

index. An index may be a variable or a constant number within an index set.

Also arithmetic expressions may be included.

* INTEGER CONSTANT

Definition of integer data, either without index or with one- or two-dimensional

index. An index may be a variable or a constant number within an index set.

Also arithmetic integer expressions may be included.

* TABLE <identifier>

Assignment of constant real numbers to one- or two-dimensional array elements.

In subsequent lines, one has to specify one or two indices followed by one real

value per line in a free format (starting at column 7 or later).

* VARIABLE

Declaration of variables with up to one index, with respect to which automatic

10

differentiation is to be performed.

* CONINT <identifier>

Declaration of a piecewise constant interpolation function.

* LININT <identifier>

Declaration of a piecewise linear interpolation function.

* SPLINE <identifier>

Declaration of a spline interpolation function.

* MACRO <identifier>

Definition of a macro function, an arbitrary set of PCOMP statements that

define an auxiliary function to be inserted into subsequent function declaration

blocks. Macros are identified by a name that can be used in any right-hand side

of an assignment statement.

* FUNCTION <identifier>

Declaration of functions either with up to one index, for which function and

derivative values are to be evaluated. The subsequent statements must assign

a numerical value to the function identifier.

* END

End of the program.

From the above list, the parser recognizes only the following declarations:

PARAMETER, REAL CONSTANT, VARIABLE, FUNCTION <identifier>, and END. Although

this appears to be a small subset of the possible declarations in the PCOMP language,

most EASY-FIT input files do fall into this category and therefore can be handled by

the parser. If one of the declarations that is not recognized by the parser is used, a

warning is given and this part of the input file is ignored, likely resulting in an output

file that is missing crucial information.

The following 3 subsections deal with the input format of the model functions

that must be defined in EASY-FIT using the PCOMP language. The parser has

been designed to follow the same rules as PCOMP, and so based on the importance

11

of understanding these rules, we provide them as a reference. Again, for a more

complete description see [8].

3.1.1 Input of Explicit Model Functions

To define explicit fitting functions in PCOMP, certain guidelines for the declaration

of parameters and functions must be followed. The order in which these items are

defined is essential for the interface between the input file and the data-fitting code.

For defining variables, we need the following rules:

• The first variable names are identifiers for the n independent parameters to be

estimated, i.e., for p1, . . . , pn.

• If a concentration variable c exists, then a corresponding variable name must

be added next.

• The last variable name identifies the independent time variable t for which

measurements are available.

• Any other variables are not allowed to be declared.

Similarly, there are rules for the order in which model functions are defined:

• First, r fitting criteria h1(p; t, c), . . . , hr(p; t, c) must be defined depending on

p, t, and optionally on c.

• The subsequent mr functions are the constraints g1(p), . . . , gmr
(p), if they exist.

They may depend only on the parameter vector p to be estimated.

• No other functions are allowed to be declared.

The constants n, r, and mr are defined in the database of EASY-FIT. These

constants along with many other problem-specific constants are contained in a file

separate from the PCOMP code. Each problem has associated with it a PCOMP file

as well as a file defining these constants.

12

3.1.2 Input of Ordinary Differential Equations

For defining variables, we have the following rules:

• The first variables are identifiers for the n independent parameters to be esti-

mated, p1, . . . , pn.

• The subsequent m names identify the state variables of the system of ordinary

differential equations, y1, . . . , ym.

• If a concentration variable exists, then an identifier name must be added next

that represents c.

• The last variable name identifies the independent time variable t, for which

measurements are available.

• No other functions are allowed to be declared.

Similarly, we have rules for the order in which model functions are defined:

• The first m functions are the right-hand sides of the system of differential equa-

tions, the functions F1(p;y, t, c), . . . , Fm(p;y, t, c).

• The subsequent m functions define the initial values, which may depend on the

parameters to be estimated, and the concentration variable, y0

1
(p; c), . . . , y0

m(p; c).

• Next, r fitting functions h1(p;y, t, c), . . . , hr(p;y, t, c) are defined depending on

p, y, t, and c, where y denotes the state variable of the system of differential

equations.

• The final mr functions are the constraints gj(p) for j = 1, . . . ,mr, if they exist

at all, depending on the parameter vector p to be estimated.

• Any other functions are not allowed to be declared.

The constants n, m, r, and mr are defined in the database of EASY-FIT. The last

of the n parameters to be estimated are considered as switching points if they have

been declared to describe certain model changes. Also nb, the number of constant or

13

variable break points, must be defined beforehand.

Note: Presently, the parser is not designed to accommodate the use of switching or

break points.

3.1.3 Input of Differential-Algebraic Equations

The following order of PCOMP variables is required:

• The first variable names are identifiers for n parameters to be estimated, p1, . . . , pn.

• The subsequent md names identify the differential variables y1, . . . , ymd
.

• The subsequent ma names identify the algebraic variables z1, . . . , zma
.

• If a concentration variable exists, another identifier must be added next to

represent c.

• The last variable name defines the independent time variable t for which mea-

surements are available.

• No other functions are allowed to be declared.

Similarly, we have rules for the order in which the model functions are defined:

• The first md functions define the differential equations,

F1(p;y, z, t, c), . . . , Fmd
(p;y, z, t, c).

• The subsequent ma functions are the right-hand sides of the algebraic equations,

i.e., functions G1(p;y, z, t, c), . . . , Gma
(p,y, z, t, c).

• Subsequently, md functions define initial values for the differential equations,

which may depend on the parameters to be estimated, and the concentration

variable, y0

1
(p; c), . . . , y0

md
(p; c).

• Then ma functions define initial values for the algebraic equations, which may

depend on the parameters to be estimated, and the concentration variable,

z0

1
(p; c), . . . , z0

ma
(p; c).

14

• Next r fitting functions h1(p;y, z, t, c), . . . , hr(p;y, z, t, c) must be defined de-

pending on p, y, z, t, and c, where y and z are the differential and algebraic

state variables of the DAE.

• The final mr functions are the constraints gj(p), j = 1, ...,mr, if they exist.

They may depend on the parameter vector p to be estimated.

• Any other functions are not allowed to be declared.

The constants n, md, ma, r, and mr are defined in the database of EASY-FIT and

must coincide with the corresponding numbers of variables and functions, respectively.

The last nb fitting variables are considered as switching points, if they have been

declared beforehand to describe certain model changes.

Note: At present, the parser is not designed to accommodate the use of switching

points.

Many problem-specific constants are contained in a file separate from the PCOMP

code (see Appendix B). For the specific details of the content of this file, see [5]. We

provide only a brief summary of the important parts of the file used by the parser.

Note that the line numbers have been added to easier identify the important parts of

the file.

• Line 2: Model type (1 for explicit model, 4 for ordinary differential equations,

5 for differential-algebraic equations)

• Line 10: Number of unknown parameters

• Line 11: Number of inequality constraints

• Line 12: Number of equality constraints

• Line 13: Two integers (if present) defining concentration values to which the

constraints are applied (equality then inequality constraints are listed)

• Line 14: Number of differential equations

• Line 15: Number of concentration values

15

• Line 16: Number of time measurements

• Line 17: Number of measurement sets (dimension of fitting function)

• Line 34: Parameter data (parameter names, lower bound for parameter, initial

value for parameter, upper bound for parameter)

• Line 35: Scale type for weight factors

• Line 36: Data (time values, concentration values (if any), observation values,

weights)

3.2 Input Format for SOCS

In this section we give a brief description of the subroutines used by SOCS to solve

a parameter estimation problem. For complete details of these and other subroutines

in SOCS, see [3]. The software for solving optimal control and parameter estimation

problems can be divided into four classes:

1. the optimal control routine HDSOPE, which is called by the user to solve pa-

rameter estimation problems, and the input routine HHSOCS;

2. the user supplied subroutines needed to define the parameter estimation prob-

lem;

3. the optimization software needed to solve a sparse nonlinear programming sub-

problem;

4. the optimal control utility software available for special analysis and applica-

tions.

The following subroutines have generic names which may be changed by the user. In

this description we use names that are consistent with those in the SOCS manual [3].

The user must define the problem using a routine called as ODEINP. This subroutine

defines the phase-dependent problem input. It will be called once for each phase.

ODEIGS is an optional user-supplied subroutine which defines the initial guess of

the solution to an optimal control problem. Subroutine ODERHS permits the user

16

to define the right-hand sides of the differential-algebraic equations, and nonlinear

boundary conditions can be constructed in subroutine ODEPTF. Optional output

can be constructed in subroutine ODEPRT. Parameter estimation problems require

input of the measurement data using subroutine DDLOAD. The following subroutines

describe a collection of useful utility procedures available in the SOCS library, that

are commonly needed for many applications. In particular the subroutine AUXOUT

is an auxiliary output utility that can be used to display the optimal control solution

produced by SOCS at either a fixed step size during the phase or at a specified num-

ber of points. The subroutine OCSEVL is used to evaluate the the optimal control

solution at a few points. Subroutine AUXOUT may be more appropriate when the

user wishes to display a complete time history of the solution. The primary func-

tion of OCSRNG is to construct estimates for the upper and lower bounds for the

dynamic variables produced by SOCS. This information is often useful when con-

structing scale information as well as for display purposes. The subroutine LINKST

is useful for linking dynamic variables across a phase boundary. Subroutines PH-

SLNG, PNTCON, and PTHCON are utility routines to simplify the specification of

phase duration constraints, point functions, and path constraints, respectively. The

organization of the subroutines used by SOCS to solve parameter estimation prob-

lems is illustrated in Figure 3.1. User-supplied subroutines are shown with double

boxes. The optional subroutines are indicated by an asterisk. The user must call the

SOCS algorithm HDSOPE and define the problem using the subroutine ODEINP.

All other information is optional and may be supplied by the user or by using the

dummy routines included in the SOCS library.

17

M

A

I

N

P

R

O

G

R

A

M

HHSOCS*

HDSOPE

HDSLSQ
or

HDBLSQ

HDSFDJ

OCSEVL*,

OCSRNG*,

AUXOUT*

LINKST*, PHSLNG*,

PNTCON*, PTHCON*

DDLOAD

ODERHS*

ODEPTF*

ODEPRT*

ODEIGS*

ODEINP

Figure 3.1: Organization of SOCS for Sparse Optimal Parameter Estimation

18

3.3 Sample Problem

We now have sufficient background to fully understand the translation of an EASY-

FIT input file into a corresponding SOCS input file. As an example, we consider the

simplest type of parameter estimation problem, an explicit model function with no

constraint functions. For more examples, including parameter estimation problems

involving differential equations, see Chapter 4.

The explicit model function we describe is called TP333 in the EASY-FIT software

package. The experimental data can be found in Appendix A. The two integers on the

first line give the size of the measurement set. The first column of data represents the

time values, the second represents the observation values, and the third represents the

weights associated with each measurement value. Other problem-specific constants

are found in the data file in Appendix B. Following the problem formulation given in

Section 2.1, we have lt = 8 time values, lc = 1 concentration value, r = 1 measurement

set, and l = ltlcr = 8 corresponding measurement values. We wish to fit parameters

p = (x1, x2, x3)
T so that the data in Appendix A are approximated by the function

h(p; t) = x1 exp(−x2t) + x3 . (3.1)

From Appendix B we see that p(0) = (30, 0.04, 3)T and 0 ≤ x1 ≤ 1000, 0 ≤ x2 ≤ 1000,

and 0 ≤ x3 ≤ 1000. The least-squares data-fitting problem is

min
p

l∑

i=1

(h(p; ti) − yi)
2 ,

0 ≤ p ≤ 1000 , p ∈ R
3 .

(3.2)

The corresponding EASY-FIT PCOMP file is the following:

C

C--

C

C Problem: TP333

C

C Date: 02.03.1994

19

C

C--

C

C - Independent variables in the following order:

C 1. parameters to be estimated (x)

C 2. concentration variable, if exists (c)

C 3. time variable (t)

C

* VARIABLE

x1, x2, x3, t

C

C--

C

C - Fitting criteria:

C

* FUNCTION y

y = x1*exp(-x2*t) + x3

C

C--

C

C - Constraints (if exist):

C

c* FUNCTION G

c G = ...

C

C--

C

* END

C

C--

C

20

The parser-generated input file for SOCS is given in Appendix C. The parser

also creates a data file containing the measurement data (Appendix A). As we will

see, this data file is used by SOCS when solving the parameter estimation problem

TP333. Along with the call to the parameter estimation solver in SOCS, HDSOPE,

the program also makes use of the subroutines EXPRHS, EXPINP, and EXPDDL.

In the subroutine EXPRHS, we define the model function. Because SOCS can

only evaluate residuals on the state and/or algebraic variables and not functions of

them, we need to introduce an algebraic variable into the equation defining the right-

hand side of the fitting function. This equation then becomes a path constraint which

we define in the input subroutine. EXPINP is used to define initial and final times,

initial parameter values, parameter bounds, and the objective function. The user-

defined subroutine INIEXP is called from EXPINP so that the data in Appendix A

are loaded into the program. The data are then appropriately assigned to the correct

variables in the subroutine EXPDDL. Here, the time values, the measurement values,

and weights are assigned. If scaling of the residuals is needed, this is also done by

calculating the correct values for the weight array based on which scaling option is

chosen.

Chapter 4

Results and Discussion

To test the parser as well as the SOCS software package, we run the parser on

explicit model functions, ODEs, and DAEs. Given that EASY-FIT contains over 700

problems of these three types and that the parser cannot translate some of these into

SOCS input, we only summarize the results for 5 explicit model functions, 5 ODEs,

and 2 DAEs. We describe in detail a single problem from each of these categories

and present solution plots.

We begin with an example of an explicit model function along with the results

obtained after using the parser to translate the EASY-FIT input file into SOCS input.

In the EASY-FIT problem INTEG X, there are lt = 5 time values, lc = 5 con-

centration values, r = 1 measurement set, and l = ltlcr = 25 corresponding mea-

surement values. The constant a is given the value 5.0. We wish to fit parameters

p = (b1, b2, b3)
T and concentration variable c so that the data in Table 4.1 are

approximated by the function

h(p; c, t) =
b1 exp(−c)

(1 − b2 exp(−a) + b3 exp(−t))
. (4.1)

We also have that p(0) = (10, 10, 10)T and 0 ≤ b1 ≤ 10, 0 ≤ b2 ≤ 20, and 0 ≤ b3 ≤ 20.

The least-squares data-fitting problem is

min
p

lt∑

i=1

lc∑

j=1

(h(p; cj, ti) − yij)
2 ,

0 ≤ b1 ≤ 10 ,

0 ≤ b2 ≤ 20 ,

0 ≤ b3 ≤ 20 , p ∈ R
3 .

(4.2)

The solution is summarized in Table 4.2. A plot of the experimental data and

21

22

SOCS solution for this problem is given in Figure 4.1.

ti ci yi wi

1 1 0.183400496840477 1
2 1 0.26373416185379 1
3 1 0.338522046804428 1
4 1 0.353820204734802 1
5 1 0.368568271398544 1
1 1 0.061604518443346 1
2 2 9.24699977040291E-02 1
3 2 0.120332285761833 1
4 2 0.133212581276894 1
5 2 0.134147644042969 1
1 3 2.48860493302345E-02 1
2 3 0.034145575016737 1
3 3 4.56701554358006E-02 1
4 3 4.88160811364651E-02 1
5 3 4.85896691679955E-02 1
1 4 9.15580242872238E-03 1
2 4 1.29939131438732E-02 1
3 4 0.01550810970366 1
4 4 1.84268802404404E-02 1
5 4 1.84248797595501E-02 1
1 5 3.28793190419674E-03 1
2 5 4.76185046136379E-03 1
3 5 5.66617911681533E-03 1
4 5 6.43186643719673E-03 1
5 5 6.62047695368528E-03 1

Table 4.1: Experimental Data for problem INTEG X

In the EASY-FIT ODE parameter estimation problem COMPET, we wish to fit

simulated data that model a competition between two, as species described in [1].

The exact parameter values p1, . . . , p4 are known to be p∗ = (1.0, 1.0, 1.0, 0.99)T . The

model functions are evaluated at l = ltr = 50 points and a uniformly distributed error

of 5% is added to the function values, giving the simulated data yi, for i = 1, . . . , 25.

23

1

2

3

4

5

1

2

3

4

5

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

conc.

time

h
(p

;c
,t

)
predicted values

experimental data

Figure 4.1: Plot of experimental data versus theoretically predicted model values
obtained from SOCS for explicit model function INTEG X.

The two ODEs used to model the simulated data are

ẏ1 =
p3y1(1 − y1)

2
− p1y1y2 , y1(0) = 0.02 ,

ẏ2 =
p4y2(1 − y2)

2
− p2y1y2 , y2(0) = 0.02 .

(4.3)

We then get the least-squares problem of the form

min
p

r∑

k=1

lt∑

i=1

(wk
i (hk(p;y(p; ti), ti) − yk

i))2

0 ≤ p ≤ 100 , p ∈ R
4 .

(4.4)

24

Problem p and obj. values EASY-FIT SOCS

INTEG X p1 0.967 0.972
p2 8.372 7.599
p3 2.819 2.834

obj. 2.339×10−4 4.242×10−4

TP70 p1 11.966 11.853
p2 4.770 4.880
p3 0.298 0.291
p4 2.091 2.120

obj. 1.880×10−3 1.834×10−3

TP333 p1 96.970 90.935
p2 0.074 0.067
p3 0.885 0.475

obj. 3.02×10−4 4.400×10−2

EXP P7 p1 0 2.037×10−5

p2 0 1.435×10−3

obj. 0 6.672×10−12

DNS p1 70.257 47.162
p2 0.050 1.358×104

p3 2.978×10−3 3.730×10−3

obj. 9.869×10−3 3.280×10−2

Table 4.2: Results obtained from EASY-FIT and SOCS for explicit model functions.

Beginning with the initial guess p(0) = (0.5, 0.5, 0.5, 0.5)T , we get the results summa-

rized in Table 4.3. A plot of the experimental data and SOCS solution to this ODE

parameter estimation problem is given in Figure 4.2.

The sample EASY-FIT parameter estimation problem involving a differential-

algebraic equation is called BOND. The model represents the transition of a photon

in a hydrogen-hydrogen bond [7]. There are r = 3 measurement sets with lt = 8

time values, and l = ltr = 24 measurement values. The unknown parameter vector is

p = (ks1, k2, k3, ks4)
T . The model functions

h1(p;x(p; t), y(p, t)) = x1,

h2(p;x(p; t), y(p, t)) = x2,

h3(p;x(p; t), y(p, t)) = y,

25

Problem p and obj. values EASY-FIT SOCS

COMPET p1 0.985 0.984
p2 0.999 0.999
p3 0.996 0.996
p4 0.991 0.991

obj. 0.0219 0.0212
STAR p1 100.741 14.027

p2 1.311 1.306
p3 -1.713 -1.717

obj. 0.173 0.172
EXP SIN p1 1.566×10−33 1.102×10−5

p2 1.954 1.972×10−2

obj. 4.685 4.628
MOON p1 1.000×10−8 1.246×10−8

obj. 8.288×10−2 8.286×10−2

WEIBEL p1 0.706 0.706
p2 0.456 0.457
p3 0.135 0.135

obj. 1.349×10−3 1.351×10−3

Table 4.3: Results obtained from EASY-FIT and SOCS for ordinary differential equa-
tion models.

depend on the solution x(p; t) and y(p; t) of a system of 2 ordinary differential equa-

tions and 1 differential-algebraic equation

ẋ1(p; x, y, t) = −k1x1 + k2y , x1(0) = 0 ,

ẋ2(p; x, y, t) = −k4x1 + k3y , x2(0) = 1 ,

0 = k1x1 + k4x2 − (k2 + k3)y , y(0) = 0 ,

where k1 = ks1 ·1×10−10 and k4 = ks4 ·1×10−10. The initial guess for the parameters

is p(0) = (10, 0.5, 5, 1×105)T with lower and upper bounds given by 0 ≤ p ≤ 1×106.

The least-squares data-fitting problem is

min
p

r∑

k=1

lt∑

i=1

(wk
i (hk(p;x(p; ti),y(p; ti), ti) − yk

i))2.

The solution is summarized in Table 4.4. A plot of the experimental data and

26

0 5 10 15 20 25
0

0.5

1

1.5

2

2.5

time

y
1
(p

,t
)

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

time

y
2
(p

,t
)

experimental data
predicted values

experimental data
predicted values

Figure 4.2: Plot of experimental data versus theoretically predicted model values
obtained from SOCS for ODE parameter estimation problem COMPET.

SOCS solution to the EASY-FIT problem BOND is given in Figure 4.3.

Although it appears as if the solutions to the problems given by SOCS and EASY-

FIT always agree, with the exception of a few parameter values, this is certainly not

the case. There are many problems where SOCS finds a sub-optimal solution or

simply returns with an error. These two issues are rare when parsing explicit model

functions. However, for ordinary differential equation models, SOCS was able to find

an optimal solution with no errors in only less than half of the problems that we tried.

Because only a few differential-algebraic equations were attempted, it is difficult to

comment on the efficacy of SOCS when using parser input files. Early indication is

27

0 1 2 3 4 5 6 7 8

x 10
5

0

10

20

30

40

x
1

time

0 1 2 3 4 5 6 7 8

x 10
5

0

100

200

300

x
2

time

0 1 2 3 4 5 6 7 8

x 10
5

0

2

4

6

8
x 10

−4

y

time

experimental data
predicted values

experimental data
predicted values

experimental data
predicted values

Figure 4.3: Plot of experimental data versus theoretically predicted model values
obtained from SOCS for DAE parameter estimation problem BOND.

that the same errors encountered when parsing ordinary differential equations also

occur for differential algebraic equations. Perhaps some of the errors reported by

SOCS are because a local solution has been found rather than a global solution.

Also, in most cases we are using the default values in SOCS.

As for the parser itself, the only case where errors occurred in the output file

generated by the parser was when the EASY-FIT input file used a parameter or

variable name that was previously used in the SOCS subroutine. No other errors

appeared to be a direct result of the parser, assuming the conditions in Chapter 3.1

are valid.

28

Problem p and obj. values EASY-FIT SOCS

BOND p1 2.364×105 0
p2 0.307 0.297
p3 2.494 2.489
p4 8.780×104 8.765×104

obj. 7.617×10−4 7.233×10−4

RESPIR p1 1.969 1.971
p2 0.246 9.110×10−3

p3 4.969 4.968
obj. 1.859×10−3 1.829×10−3

Table 4.4: Parser results obtained from EASY-FIT and SOCS for differential algebraic
equation models.

A few additions are needed to the parser so that a larger subset of the differential-

algebraic equation models can be parsed. The most important addition is that of

accommodating parameters within the initial values of the differential variables. Also,

adding any of the PCOMP declarations given in Chapter 3.1 that are not already part

of the parser will allow for more types of problems to be parsed. It is unknown if all

PCOMP declarations can be successfully included as part of the parser. There may

be limitations of SOCS that will prevent the use of some PCOMP declarations.

Chapter 5

Conclusions and Future Work

The goal of this thesis was to describe the process of translating the input for EASY-

FIT into the corresponding input for SOCS. We began by introducing these two

software packages that are used for solving parameter estimation problems. We also

comment on the effectiveness of the translation in terms of comparing the solutions

produced by both software packages.

The goal was made possible by the design of a parser. Only a subset of the

parameter estimation problems included in EASY-FIT were parsed. Some problems

could not be handled by the parser because they contained statements or declarations

that were of an unknown format to the parser. Because a number of problems were

correctly translated by the parser, it is believed that the errors produced by SOCS

for some problems are not a result of incorrect translation. More research is needed

to verify that this is indeed the case. Solving optimal control problems numerically

can be challenging. Often very large parameter bounds can be the result of sub-

optimal solutions. Local solutions may also be found; therefore it would be wise to

use software with global optimization. However, the added computational expense

associated with global optimization methods generally makes them infeasible except

on small problems.

It would also be helpful to have more problems parsed to further investigate if

any parameter estimation problems produce errors during the parsing process. By

accommodating more PCOMP declarations than the current number, it will be pos-

sible to expand the range of problems that can currently be parsed. Furthermore,

a careful review of why SOCS is not able to solve some problems will be crucial in

designing a fast, reliable, and efficient parser.

It would also be useful to design a graphical user interface (GUI) for SOCS. This

would include a similar program such as the parser to convert user input into SOCS

29

30

input. An addition of this sort would greatly enhance the usability of SOCS. Based

on the amount of code in Appendix C that solves an explicit model problem, it is

quite obvious that a user new to the SOCS software will have significant difficulty

in coding even the simplest of problems. On the other hand, when using a GUI, the

user would need to know much less about the FORTRAN programming language and

spend less time writing the SOCS code to solve the same problem. To solve a given

problem, the user would only be required to input the problem into the GUI and

could avoid lengthy FORTRAN code.

Overall, the parser performs well on all EASY-FIT problems that contain only

the known declarations.

Appendix A

Measurement Data for Model TP333

8 3

4.00000E+00 7.210000000000E+01 1.00E+00

5.75000E+00 6.560000000000E+01 1.00E+00

7.50000E+00 5.590000000000E+01 1.00E+00

2.40000E+01 1.710000000000E+01 1.00E+00

3.20000E+01 9.800000000000E+00 1.00E+00

4.80000E+01 4.500000000000E+00 1.00E+00

7.20000E+01 1.300000000000E+00 1.00E+00

9.60000E+01 6.000000000000E-01 1.00E+00

31

Appendix B

Problem Data for Model TP333

1. problems\TP333

2. TP333 1

3. Exponential data fitting

4. Demo

5. Schittkowski

6. Experimental

7. Null

8. Null

9. t

10. NPAR = 003 0 000

11. NRES = 000

12. NEQU = 000

13.

14. NODE = 0

15. NCONC = 000

16. NTIME = 0008 0

17. NMEAS = 001

18. NPLOT = 0050

19. NOUT = 0

20. METHOD= 01 000 2 -1

21. OPTP1 = 00110

22. OPTP2 = 00030

23. OPTP3 = 02

24. OPTE1 = 1.0000E-12

25. OPTE2 = 1.0000E-12

26. OPTE3 = 1.0000E+00

27. ODEP1 = 0

28. ODEP2 = 1 0 0 0 0

29. ODEP3 = 00

30. ODEP4 = 0

31. ODEE1 = 0.0

32

33

32. ODEE2 = 0.0

33. ODEE3 = 0.0

34.

x1 0.000000E+00 3.000000E+01 1.000000E+03

x2 0.000000E+00 4.000000E-02 1.000000E+03

x3 0.000000E+00 3.000000E+00 1.000000E+03

35. SCALE = -1

36.

4.00000E+00 7.210000000000E+01 1.00E+00

5.75000E+00 6.560000000000E+01 1.00E+00

7.50000E+00 5.590000000000E+01 1.00E+00

2.40000E+01 1.710000000000E+01 1.00E+00

3.20000E+01 9.800000000000E+00 1.00E+00

4.80000E+01 4.500000000000E+00 1.00E+00

7.20000E+01 1.300000000000E+00 1.00E+00

9.60000E+01 6.000000000000E-01 1.00E+00

37. NLPIP 0

38. NLPMI 0

39. NLPAC 0.0

40. NDISCO= 0

y(t)

"Schittkowski K. (1987): More Test Examples for Nonlinear Programming,

Lecture Notes in Economics and Mathematical Systems, Vol. 282, Springer

Initial values:

3.00E+01 4.00E-02 3.00E+00"

Appendix C

SOCS Code for Problem TP333

PROGRAM EXPLICIT_MODEL

C

C ----THIS IS A PROGRAM FOR A PARAMETER ESTIMATION PROBLEM CHOSEN FROM

C THE EASY-FIT SOFTWARE PACKAGE (TP333)

C

C **

IMPLICIT DOUBLE PRECISION (A-H,O-Z)

PARAMETER (MXIW=10000000,MXRW=10000000,MXC=100000)

PARAMETER (MXDP=100, MXPHS=1)

C

COMMON /ODEWRK/ WORK(MXRW)

COMMON /ODEIWK/ IWORK(MXIW)

COMMON /ODESPL/ CSTAT(MXC)

DIMENSION IPCPH(MXPHS+1),DPARM(MXDP),IPDPH(MXPHS+1)

PARAMETER (MAXRWD=8, MAXCLD=3)

C

EXTERNAL DUMYPF, DUMYPR, EXPINP, EXPRHS, EXPDDL, DUMYIG

C

C **

C

C ----WORKING ARRAYS USED BY HDSOPE ROUTINE

C

NIWORK = MXIW

NWORK = MXRW

MAXCS = MXC

MAXDP = MXDP

MAXPHS = MXPHS

34

35

C

C **

C

C ----SETS EVERY OPTIONAL PARAMETER FOR THE SUBROUTINES HDSOCS AND

C HDSOPE TO ITS DEFAULT VALUE

C

CALL HHSOCS(’DEFAULT’)

C

C ----MAXIMUM NUMBER OF DISCRETE DATA VALUES PER PHASE

C

CALL HHSOCS(’MXDATA=1000’)

C

C ----MAXIMUM NUMBER OF PARAMETERS PER PHASE

C

CALL HHSOCS(’MXPARM=3’)

C

C ----OPTIMAL CONTROL OUTPUT LEVEL (HIGHEST)

C

CALL HHSOCS(’IPGRD=20’)

C

C ----SPARSE NLP OUTPUT LEVEL (SET TO INTERPRETIVE OUTPUT)

C

CALL HHSNLP(’IOFLAG=20’)

C

C ----MAXIMUM NUMBER OF ITERATIONS

C

CALL HHSNLP(’NITMAX=500’)

C

C ----OUTPUT UNIT NUMBER

C

36

IPU = 6

C

C ----CALL HDSOPE WITH THE APPROPRIATE ARGUMENTS FOR THE PROBLEM

C

CALL HDSOPE(EXPINP,DUMYIG,EXPRHS,DUMYPF,DUMYPR,EXPDDL,

& IWORK,NIWORK,WORK,NWORK,MAXPHS,

& CSTAT,MAXCS,IPCPH,DPARM,MAXDP,IPDPH,NEEDED,IER)

C

STOP

END

C

C

SUBROUTINE EXPRHS(IPHASE,t^M,YVEC,NYVEC,PARM,NPARM,FRHS,NRHS,

& IFERR)

C

C ----EVALUATE RIGHT HAND SIDE OF DATA FITTING FUNCTION(S)

C

C **

IMPLICIT DOUBLE PRECISION (A-H,O-Z)

C

DIMENSION YVEC(NYVEC),FRHS(NRHS),PARM(NPARM)

C

PARAMETER (NCONC=1)

C

DOUBLE PRECISION x1, x2, x3, t

C

COMMON /CONPAR/ CONC(NCONC)

C

C **

C

C ----LOAD PARAMETER VECTOR

C

x1 = PARM(1)

37

x2 = PARM(2)

x3 = PARM(3)

C

C ----COMPUTE VALUES FOR FITTING FUNCTION(S)

C

y = x1*exp(-x2*t) + x3

C

FRHS(1) = YVEC(1) - y

C

IFERR = 0

C

RETURN

END

C

C

SUBROUTINE EXPINP(IPHASE,NPHS,METHOD,NSTG,NCF,NPF,NPV,NAV,NGRID,

& INIT,MAXMIN,MXPARM,P0,PLB,PUB,PLBL,

& MXSTAT,Y0,Y1,YLB,YUB,STSKL,STLBL,MXPCON,CLB,CUB,

& CLBL,MXTERM,COEF,ITERM,TITLE,IER)

C

C ----INITIALIZE DATA FITTING PROBLEM

C

C **

IMPLICIT DOUBLE PRECISION (A-H,O-Z)

C

C ARGUMENTS:

INTEGER IPHASE,NPHS,METHOD,NSTG,NCF(5),NPF(2),NPV,NAV,NGRID,

& INIT,MAXMIN,MXPARM,MXSTAT,MXPCON,MXTERM,

& ITERM(4,MXTERM),IER

DIMENSION P0(MXPARM),PLB(MXPARM),PUB(MXPARM),Y0(0:MXSTAT),

& Y1(0:MXSTAT),YLB(-1:1,0:MXSTAT),YUB(-1:1,0:MXSTAT),

& STSKL(0:MXSTAT+MXPARM,2),CLB(MXPCON),CUB(MXPCON),

& COEF(MXTERM)

38

CHARACTER TITLE(3)*60,PLBL(MXPARM)*80,STLBL(0:MXSTAT)*80,

& CLBL(0:MXPCON)*80

C

COMMON /PESTCM/ TFINAL

PARAMETER (MAXRWD=8,MAXCLD=3,NTIME=8)

COMMON /EXPCM/ STDAT(MAXRWD,MAXCLD),NROWS

PARAMETER (NCONC=1)

COMMON /CONPAR/ CONC(NCONC)

C

CHARACTER*60 LABEL

DATA LABEL(1:60) /’ ’/

C

C **

C

C ----DEFINE INITIAL AND FINAL TIME

C

TINITIAL = 4.000000D0

TFINAL = 96.000000D0

C

C ----NUMBER OF PHASES

C

NPHS = 1

C

C ----NUMBER OF GRID POINTS

C

NGRID = NTIME

C

C ----SUCCESS/ERROR CODE

C

IER = 0

C

NTERM = 0

NKON = 0

39

TITLE(1) = ’PARAMETER ESTIMATION PROBLEM: TP333’

TITLE(2) = ’SOLVED USING LEAST SQUARES’

STLBL(0) = ’TIME Time’

C

C ----SET INTREGRATION METHOD TO HERMITE-SIMPSON

C

NSTG = 1

METHOD = 3

C

C ----INITIALIZE PROBLEM DATA

C

CALL INIEXP

C

PLBL(1) = ’p1 Parameter 1’

PLBL(2) = ’p2 Parameter 2’

PLBL(3) = ’p3 Parameter 3’

C

C ----GUESS FOR INITIAL PARAMETER VALUES AND BOUNDS

C

P0(1) = 30.000000D0

P0(2) = 0.040000D0

P0(3) = 3.000000D0

PLB(1) = 0.000000D0

PUB(1) = 1000.000000D0

PLB(2) = 0.000000D0

PUB(2) = 1000.000000D0

PLB(3) = 0.000000D0

PUB(3) = 1000.000000D0

C

C ----INITIALIZE PROBLEM VARIABLES

C NAV - NUMBER OF ALGEBRAIC VARIABLES

C NPV - NUMBER OF DISCRETE PARAMETERS

C NDE - NUMBER OF DIFFERENTIAL EQUATIONS

40

C NDF - NUMBER OF DATA FITTING FUNCTIONS

C

NAV = 1

NPV = 3

NDE = 0

NDF = 1

C

C ----NUMBER OF DIFFERENTIAL EQUATIONS

C

NCF(1) = NDE

C

C ----NUMBER ALGEBRAIC EQUATIONS

C

NCF(2) = 0

C

C ----NUMBER OF DISCRETE DATA FUNCTIONS

C

NCF(5) = NDF

C

C ----INITIAL GUESS TYPE FOR INTERNAL STATES: LINEAR GUESS

C SEE SOCS MANUAL FOR DESCRIPTION AND OTHER OPTIONS

C

INIT = 1

C

C ----SET INITIAL AND FINAL TIME

C

Y0(0) = TINITIAL

Y1(0) = TFINAL

C

C ----FIX INITIAL AND FINAL TIME

C

YLB(-1,0) = Y0(0)

YUB(-1,0) = Y0(0)

41

YLB(1,0) = Y1(0)

YUB(1,0) = Y1(0)

C

C ----DEFINE GUESSES FOR INITIAL CONDITIONS FOR STATE VARIABLES

C

Y0(1) = 0.D0

C

C ----DEFINE GUESSES FOR FINAL CONDITIONS FOR STATE VARIABLES

C

Y1(1) = 0.D0

C

C ----DEFINE OBSERVATION PATH CONSTRAINT

C

CALL PTHCON(NTERM,NKON,NCF,IPHASE,ITERM,MXTERM,COEF,

$ CLB,CUB,CLBL,MXPCON,0.D0,0.D0,1.D0,’ACON1’,

$ ’Algebraic constraint 1: u1 = 0’,IERPTH)

C

C ----DEFINE LEAST SQUARES OBJECTIVE

C

MAXMIN = 2

CLBL(0) = ’LSQ DISCRETE DATA’

C

DO KK = 1,NDF

NTERM = NTERM + 1

C

C TERM KK IS PART OF NLP OBJECTIVE FUNCTION

C

ITERM(1,NTERM) = 0

C

C TERM KK IS COMPUTED IN IPHASE

C

ITERM(2,NTERM) = IPHASE

C

42

C TERM KK IS ASSIGNED TO DISCRETE DATA

C

ITERM(3,NTERM) = 2

C

C TERM KK IS DISCRETE DATA FUNCTION KK

C

ITERM(4,NTERM) = KK

ENDDO

C

RETURN

END

C

C

SUBROUTINE INIEXP

C

C ----DATA FOR PARAMETER EXTIMATION PROBLEM

C PROBLEM DATA IS READ IN FROM FILE TP333.DAT

C

C **

IMPLICIT DOUBLE PRECISION (A-H,O-Z)

C

COMMON /PESTCM/ TFINAL

PARAMETER (MAXRWD=8,MAXCLD=3,NTIME=8)

COMMON /EXPCM/ STDAT(MAXRWD,MAXCLD),NROWS

CHARACTER*80 DATFL1

SAVE DATFL1

DATA DATFL1 /’../Datasets/datafiles/TP333.dat’/

C

C **

C

IPN = 3

OPEN(IPN,FILE=DATFL1,STATUS=’UNKNOWN’)

READ(IPN,*) NROWS,NCOLS

43

IF(NROWS.GT.MAXRWD) THEN

PRINT *,’NROWS GT MAXRWD; NROWS =’,NROWS

STOP

ENDIF

DO I = 1,NROWS

READ(IPN,*) (STDAT(I,JCOL),JCOL=1,NCOLS)

ENDDO

CLOSE(IPN)

C

RETURN

END

C

C

SUBROUTINE EXPDDL(IPHASE,NDD,NDDST,MXDATA,TDATA,DATA,WTDATA,

& NDATA,IER)

C

C ----LOAD DISCRETE DATA FOR PARAMETER ESTIMATION PROBLEM

C

C **

IMPLICIT DOUBLE PRECISION (A-H,O-Z)

C

PARAMETER (MAXRWD=8,MAXCLD=3,NTIME=8)

COMMON /EXPCM/ STDAT(MAXRWD,MAXCLD),NROWS

DIMENSION TDATA(MXDATA),DATA(MXDATA),WTDATA(MXDATA)

PARAMETER (NCONC=1)

COMMON /CONPAR/ CONC(NCONC)

C

C **

C

C ----RESET ERROR/SUCCESS CODE TO 0

C

IER = 0

C

44

C ----LOAD STATE NDD TARGET VALUES

C

NDATA = NTIME

SIZEDATA = NROWS

IF(MXDATA.LT.SIZEDATA) THEN

IER = -1

RETURN

ENDIF

NDDST = NDD+0

C

SUM_OF_SQRS = 0.D0

C

C ----SET TIME VALUES TO FIRST COLUMN IN DATA FILE,

C CONCENTRATION VALUES TO SECOND, FUNCTION VALUES TO THIRD,

C AND WEIGHTS TO FOURTH. . .

C

DO 310 I = 1,NTIME

TDATA(I) = STDAT(I+(IPHASE-1)*NTIME,1)

DATA(I) = STDAT(I+(IPHASE-1)*NTIME,2*NDD)

WTDATA(I) = STDAT(I+(IPHASE-1)*NTIME,1+2*NDD)

SUM_OF_SQRS = SUM_OF_SQRS + DATA(I)**2

310 CONTINUE

C

C ----SCALING OF RESIDUALS (IF NEEDED)

C

C 0 - NO ADDITIONAL SCALING

C 1 - DIVISION OF RESIDUALS BY SQUARE ROOT OF SUM

C OF SQUARES OF ALL MEASUREMENTS VALUES

C -1 - DIVISION OF EACH SINGLE RESIDUAL BY CORRESPONDING

C ABSOLUTE MEASUREMENT VALUE

C -2 - DIVISION OF EACH SINGLE RESIDUAL BY CORRESPONDING

C SQUARED MEASUREMENT VALUE

C

45

SCALE = -1

C

DO 320 I = 1,NTIME

IF(SCALE.EQ.1) THEN

IF(SUM_OF_SQRS.NE.0.D0) THEN

WTDATA(I) = 1.D0/SQRT(SUM_OF_SQRS)

ENDIF

ELSEIF(SCALE.EQ.-1) THEN

IF(DATA(I).NE.0.D0) THEN

WTDATA(I) = 1.D0/ABS(DATA(I))

ELSE

WTDATA(I) = 1.D0

ENDIF

ELSEIF(SCALE.EQ.-2) THEN

WTDATA(I) = 1.D0/(DATA(I)**2)

ENDIF

320 CONTINUE

C

RETURN

END

Bibliography

[1] E. Beltrami, Mathematics for Dynamic Modeling, Academic Press, Orlando, 1987.

[2] J.T. Betts, Practical Methods for Optimal Control Using Nonlinear Programming,
SIAM, United States of America, 2001.

[3] J.T. Betts and W.P. Huffman, Sparse Optimal Control Software SOCS, Math-
ematics and Engineering Analysis Tech. Document MEA-LR-085, Boeing
Information and Support Services, The Boeing Company, PO Box 3707, Seattle,
WA 98124-2207, July 1997.

[4] M. Dobmann, M. Liepelt, K. Schittkowski, C. Traßl, PCOMP: A Fortran code for

automatic differentiation, language description and users guide, Report, Dept. of
Mathematics, University of Bayreuth, Germany, 1995.

[5] EASY-FIT, Software for parameter estimation. http://www.uni-bayreuth.de/
departments/math/kschittkowski/easy fit.htm.

[6] E. Hairer, G. Wanner, Solving Ordinary Differential Equations II. Stiff and

Differential-Algebraic Problems, Springer Series Computational Mathematics,
Vol. 14, Springer, Berlin, 1991.

[7] L. Lapidus, R.C. Aiken, Y.A. Liu, The occurence and numerical solution of phys-

ical and chemical systems having widely varying time constants, in: Willoughby
E.A. (ed.): Stiff Differential Systems, Plenum Press, 187-200, 1973.

[8] K. Schittkowski, Numerical Data Fitting in Dynamical Systems - A Practical

Introduction with Applications and Software, Kluwer Academic Publishers,
Dordrecht, Boston, London, 2002.

46

