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Abstract

Nonlinear algebraic equations (NAEs) occur in many areas of science and engineering. The process

of solving these NAEs is generally difficult, from finding a good initial guess that leads to a desired

solution to deciding on convergence criteria for the approximate solution. In practice, Newton’s

method is the only robust general-purpose method for solving a system of NAEs. Many variants

of Newton’s method exist. However, it is generally impossible to know a priori which variant of

Newton’s method will be effective for a given problem.

Many high-quality software libraries are available for the numerical solution of NAEs. However,

the user usually has little control over many aspects of what the library does. For example, the

user may not be able to easily switch between direct and indirect methods for the linear algebra.

This thesis describes a problem-solving environment (PSE) called pythNonfor studying the effects

(e.g., performance) of different strategies for solving systems of NAEs. It provides the researcher,

teacher, or student with a flexible environment for rapid prototyping and numerical experiments.

In pythNon, users can directly influence the solution process on many levels, e.g., investigation of

the effects of termination criteria and/or globalization strategies. In particular, to show the power,

flexibility, and ease of use of the pythNon PSE, this thesis also describes the development of a novel

forcing-term strategy for approximating the Newton direction efficiently in the pythNon PSE.
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Chapter 1

Introduction

Many problems of science and engineering can be reduced to a quantifiable form through the

process of mathematical modelling. For example, computational fluid dynamics (CFD) is a so-

phisticated technique based on mathematical modelling to predict fluid (i.e., liquid or gas) flow,

heat and mass transfer, chemical reactions, and other related phenomena. CFD allows biologists to

study the blood flow in the human body [59], meteorologists to predict weather [75], oceanographers

to simulate ocean currents [35], and engineers to study air flow around solid bodies for the design

of aircraft and cars [75].

These mathematical models are often described in terms of partial differential equations (PDEs).

For example, quasi-linear second-order PDEs appear in many applications. They are of particular

interest in CFD [32]. These PDEs can be classified as elliptic, parabolic, and hyperbolic, depending

only on the coefficients of the highest-order derivatives, and they represent most of the governing

equations in CFD, e.g., Laplace’s equation, the heat equation, and the wave equation. Laplace’s

equation is an elliptic PDE that can be used to describe, for example, the behavior of electric,

gravitational, and fluid potentials. It is fundamental to the fields of electromagnetism, astronomy,

and fluid dynamics [56]. The (unsteady) heat equation is a parabolic PDE used for example to

model the temperature distribution in a given region over time. It is important to the field of

thermodynamics [32]. The wave equation is a hyperbolic PDE used to model various types of wave

propagation, such as sound waves, light waves, and water waves. It is important to the fields of

acoustics, electromagnetics, and fluid dynamics [56].

The approximation of the solution of nonlinear algebraic equations (NAEs) is often required as

part of the solution of PDEs. Analytic (closed-form) solutions to PDEs typically do not exist, so
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we must approximate the solutions numerically. The method of lines is a popular method for the

numerical solution of PDEs. In this method the spatial derivatives are discretized, resulting in a

system of ordinary differential equations (ODEs). For parabolic equations in particular, the ODE

system is often very large and stiff, thus requiring the use of an implicit time integration method.

This leads to a very large system of NAEs to solve at each time step. Figure 1.1 shows an overview

of the steps taken from mathematical modelling to systems of NAEs.

Mathematical 
Modelling

PDEs

NAEs

Stiff ODEs

described by

discretized by
the method of lines

integrated by 
an implicit

time integration 
method

Figure 1.1: An overview of steps taken from mathematical modelling to systems
of NAEs.

We denote a system of NAEs by

F(x) = 0, (1.1)

where F : <m → <m is the nonlinear residual function, x ∈ <m is the vector of unknowns, and 0

is a vector of zeros. We often simply refer to F as the residual. Before attempting to solve (1.1),

it is fundamental to analyze the existence and uniqueness of solutions of the system. That is, the

system may have a unique solution, multiple solutions, or no solution. Accordingly, we expect to

have difficulty computing a solution that does not exist or converging to the desired solution if

there is more than one. For example, consider the single NAE

f(x) = x2 + α = 0, (1.2)

where x is a real variable, and α is a constant. Depending on the value of α, this equation can

have 0, 1, or 2 solutions. If α > 0, any numerical method should fail to find a solution because
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none exist. If α < 0, a method may or may not find the solution, depending on how well we know

the properties of the solution desired. For example, if α = −1, the roots of (1.2) are 1 and −1.

If α = 0, (1.2) has one solution. However, in this case the problem is said to be ill-posed. In

other words, if we perturb the equation by an arbitrarily small amount by adding a constant ε, the

system has no solution if ε > 0 or two solutions if ε < 0. This is a dramatic change in outcome

(i.e., the number of real roots) from a small change in the problem statement. Figure 1.2 shows

the solution plots of f(x) with different values of α. Equation (1.2) is relatively easy to analyze

because of its simple form and the fact that it is a one-dimensional problem. As the dimension of

the NAEs increases, analysis of existence and convergence of the numerical solution becomes much

more difficult. Moreover, there are no foolproof methods that are guaranteed to always converge

to a desired solution when there is more than one solution. Thus, systems of NAEs are generally

difficult to solve.

−2 −1 0 1 2
−2

−1

0

1

2

x

f(
x)

No solution (α = 1)

−2 −1 0 1 2
−2

−1

0

1

2

x

f(
x)

One solution (α = 0)

−2 −1 0 1 2
−2

−1

0

1

2

x

f(
x)

Two solutions (α = −1)

Figure 1.2: The solution plots of f(x) = x2 + α with different values of α.

In practice, Newton’s method is the only mature and efficient method for solving a system of

NAEs [63, 5]. Given an initial guess x(0), the classical version of Newton’s method for approximating

a desired solution x to (1.1) is formally defined by the iteration

x(n+1) = x(n) − J−1
F (x(n))F(x(n)), n = 0, 1, 2, . . . , (1.3)

where x(n) is the nth approximation to the solution of (1.1), and JF(x(n)) is the Jacobian matrix
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evaluated at x(n). The (i, j)-element of the Jacobian matrix JF(x) of is defined by

[JF(x)]ij :=
∂Fi

∂xj
(x),

that is, the partial derivative of the ith component of the residual with respect to the jth unknown.

Inversion of the Jacobian matrix is not performed in practice; rather (1.3) is implemented via

solution of the following system of linear equations at each iteration:

JF(x(n))d(n) = −F(x(n)), (1.4a)

followed by the update

x(n+1) = x(n) + d(n), (1.4b)

where d(n) is called the Newton direction. The success of Newton’s method is based on the following

theorem [16] that describes its local convergence to a solution of (1.1):

Theorem 1 (Standard Local Convergence Theorem) Let N(x, r) be an open neighbourhood

of radius r around x; i.e., N(x, r) = {x̃ ∈ <m : ‖x̃ − x‖ < r}. Denote the closed line segment

connecting x, x̄ ∈ <m by [x, x̃]. D ⊂ <m is called a convex set if for every x, x̃ ∈ D, [x, x̃] ⊂ D.

Let F : <m → <m be continuously differentiable in an open convex set D ⊂ <m. Assume that

there exists a solution x∗ ∈ <m to (1.1), and that there exists constants ε, β, L > 0, where ε is

sufficiently small, such that N(x∗, ε) ⊂ D, ‖J−1
F (x∗)‖ ≤ β, and JF is Lipschitz continuous at x∗;

i.e., for all y ∈ N(x∗, ε),

‖JF(x∗)− JF(y)‖ ≤ L‖x∗ − y‖.

Then for all x(0) ∈ N(x∗, ε), the sequence x(1), x(2), . . . generated by (1.3) is well defined. Moreover,

the Newton iteration (1.3) converges to x∗ according to

‖x(n+1) − x∗‖ ≤ βL‖x(n) − x∗‖2. (1.5)

The convergence of the classical Newton iteration described by (1.5) is called q-quadratic; i.e., the

error in the approximate solution is squared at each iteration.

We note that Theorem 1 is widely cited in practice because the convergence of Newton’s method

based on the assumptions of this theorem has an attractive quadratic convergence. Other local
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convergence theorems exist for describing the local convergence of Newton’s method, such as the

Newton-Kantorovich theorem (see, e.g., [16]), which makes no assumption about the existence of

x∗ or the nonsingularity of JF(x∗), and the contractive mapping theorem (see, e.g., [16]), which

applies to any iterative method of the form x(n+1) = G(x(n)), i.e., G(x) := x − J−1
F (x)F(x) for

Newton’s method. However, the assumptions in these theorems result in slower rate of convergence

of Newton’s method that is not observed in practical computation [16].

Many variants of Newton’s method exist for solving systems of NAEs. Solving a system of

NAEs requires three major steps: testing for termination of the Newton iteration, computation

of the Newton direction, and approximation to the solution based on the Newton direction [38].

Different decisions made in each major step form a variant of Newton’s method. For example,

computation of the Newton direction requires solving a system of linear equations (1.4a) at each

iteration. We can either evaluate and factorize the Jacobian matrix by a direct method, or we can

approximate the solution using an indirect method [38]. Figure 1.3 shows some of the choices one

can make to form a variant of Newton’s method. Many other variants exist as well; see Chapter 2.

Some variants of Newton’s method are available in public domain software packages, such as

MINPACK [7], NITSOL [55], NKSOL[12], KINSOL [69], and PETSc [8, 9]. MINPACK is a Newton

solver that uses direct methods, which are best for solving systems of NAEs that are relatively

small because such systems typically have Jacobians that are dense. On the other hand, NITSOL,

NKSOL, and KINSOL are Newton solvers that use indirect methods, which are best for solving

large systems of NAEs that have Jacobians that are large and sparse. Finally, the SNES library

of PETSc is a high-performance Newton solver that contains both direct and indirect methods; it

can thus solve systems of NAEs that are small or large and sparse.

Selecting a suitable variant of Newton’s method is crucial for solving a system of NAEs efficiently

because the nature of a system of NAEs may differ markedly from one problem to another. For

example, systems resulting from discretization of PDEs are large; thus storing the Jacobian matrices

or their factors is expensive. Indirect methods are better than direct methods to solve such systems

5



Solving NAEs

Solution Approximated

Direct Methods?

Evaluate the Residual

Compute the Newton Direction

Jacobian Factorization

Freezing Jacobian?

Yes

Approximate the Jacobian

Solution Converged?

No

No

Yes

Yes/No

Figure 1.3: Forming a variant of Newton’s method.
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because they do not require full storage of Jacobians; rather only the effect of a Jacobian-vector

product needs to be computed. These methods are therefore also called matrix-free methods [38].

Chapter 4 shows an example where a direct method is infeasible to solve a system of NAEs because

its Jacobian is too large to store.

However, none of the software packages we have described provides a friendly environment for

forming a suitable variant of Newton’s method. In other words, we cannot conveniently formulate

and experiment with different methods and strategies in the solution process of NAEs. In fact, many

of these packages are delivered as highly optimized software libraries for large-scale simulations

with massive amounts of data in high-performance computing (HPC) facilities. This means that

performance is more important than the convenience and flexibility of switching methods and

strategies within the software packages. Moreover, they do not share the same interface or standard

file format such as the Matrix Market Exchange Format [48]. Thus, switching from one variant

of Newton’s method to another generally means switching from one software package to another.

It is even more troubling to have to extend the functionality of Newton’s method in one software

package when such functionality already exists in another.

In this thesis, we describe a problem-solving environment (PSE) called pythNon that provides

all the computational facilities for studying the effects (e.g., performance) of different strategies for

solving systems of NAEs numerically. Other examples of PSEs for solving a more diverse range of

problems include MATLAB, Octave, Maple, COMSOL Multiphysics, and Mathematica. Instead of

building on an existing PSE, we create a standalone PSE specifically for the numerical solution of

NAEs so that the integration of this new PSE as a subsystem of a more sophisticated or specialized

PSE is possible. For example, a specialized PSE for the numerical solution of initial value problems

in ODEs may use pythNon to solve systems of NAEs in an implicit time integration method without

the need to include any other PSE. Moreover, pythNon is open source; thus it is freely available to

the public for use, evaluation, and feedback.

In pythNon, the user may find a suitable variant of Newton’s method to approximate solutions

of NAEs, validate these approximate solutions, and detect numerical difficulties in the solution

7



process early on. Once the user has found a suitable variant of Newton’s method for solving a

system of NAEs, in particular for large systems, the user may then easily transfer the variant to a

high-performance environment, that is, optimizing and delivering the code as a software library for

HPC. Figure 1.4 shows the process of transferring a prototype code to a high-performance software

library.

The pythNon PSE

Formulation of NAEs

High-Performance
Software Library

Solution of NAEs

Validate Solution /
Detect Numerical Difficulties

Modification of
Newton's Method

Sufficiently
Accurate/Efficient?

Prototype Transfer and
Code Optimization

Satisfactory

Unsatisfactory

Figure 1.4: NAEs and its solution process.

Users can directly influence the solution process on many levels in pythNon. For example, users

may specify the termination criterion, the method for solving systems of linear equations (1.4a), and

the globalization strategy; see Chapter 2. NAEs and variants of Newton’s method may be defined

through a text file or a graphical user interface (GUI). Users may exploit standard (default) settings

without the need to specify each level of the solution process. Moreover, pythNon comes with a

test suite of benchmark problems for the convenient assessment of new and/or different variants of

Newton’s method.

To demonstrate the power, flexibility, and ease of use of the pythNon PSE, we implement and

8



evaluate different forcing-term strategies for approximating the Newton direction; see Chapter 4 for

details. We have found pythNon to be very effective for determining the best forcing-term strategy

on a given problem. By solving a number of benchmark problems in pythNon, we have found that

one of the most popular strategies by Eisenstat and Walker [21] can suffer from undersolving ; i.e.,

the strategy fails to approximate a sufficiently accurate d(n) for the Newton iteration to converge.

We have also found that the strategy by An et al. [3] can suffer from oversolving ; i.e., the strategy

imposes too much accuracy on d(n) when the local linear model F(x(n)) + JF(x(n))d(n) poorly

approximates the residual F(x(n+1)); thus Newton’s method may fail to converge to a solution. We

have proposed a modification to this strategy that ameliorates the effect of oversolving. We have

also proposed a new forcing-term strategy that is generally robust and efficient; i.e., it ameliorates

the effects of both undersolving and oversolving. Finally, we have found that an adaptive forcing-

term strategy should not reduce the forcing term simply based on the agreement of the residual

and its local linear model; i.e., the strategy must consider other factors. This unintuitive and hence

surprising result brings new insight to the problem of constructing an ideal forcing-term strategy.

Chapter 2 describes a general version of Newton’s method and its variants. Chapter 3 describes

the design of the pythNon PSE. Chapter 4 demonstrates the power, flexibility, and ease of use of the

pythNon PSE by describing a comprehensive study of forcing-term strategies for Newton’s method,

including the development of a novel forcing-term strategy for approximating the Newton direction.

Finally Chapter 5 discusses our conclusions and future work.
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Chapter 2

Newton’s Method

Newton’s method is by far the most mature and efficient method for solving a system of NAEs

in practice, yet the structure among many variants of Newton’s method has not been examined

formally. In this chapter we first give a brief description of the historical development of Newton’s

method. We then describe a general algorithm for Newton’s method such that any variant of

Newton’s method is an instance of this algorithm. Finally, we examine some popular variants of

Newton’s method, in particular Newton direct methods and Newton indirect methods.

2.1 Historical Development of Newton’s Method

According to Kollerstrom [42] and Ypma [76], Newton’s method is more appropriately referred as

the Newton-Raphson-Simpson method because of the major contributions by Isaac Newton (1643-

1727), Joseph Raphson (1648-1715), and Thomas Simpson (1710-1761). In the following sections,

we give a brief description of their contributions and the historical development of Newton’s method.

2.1.1 Vieta’s Method

Francois Vieta (1540-1603) designed a perturbation technique for approximating the solution of

the scalar polynomial equations by adding a correcting term (see Section 2.1.2 for an example)

to the approximate solution of (1.1) [18]. Vieta’s method adds one decimal place of accuracy

to the approximate solution at each step by calculating successive polynomials of the successive

perturbations [76]. We note that the precise origins of this method are not completely clear because

certain ancient Greek, Babylonian, and Arabic methods also have this form [76].
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2.1.2 Newton’s Method

Isaac Newton improved Vieta’s method by linearizing the successive polynomials, that is, ignoring

terms higher than linear at each perturbation. Newton demonstrated his method by solving the

cubic equation

f(x) = x3 − 2x− 5 = 0 (2.1)

with x(0) = 2. Using Vieta’s perturbation technique, let the exact solution be 2 + p, where p is a

correcting term with some small value. Substituting 2+p into (2.1) gives the polynomial equation

p3 + 6p2 + 10p− 1 = 0. (2.2)

Newton’s method ignores terms higher than linear in (2.2) since p is small. This leads to the

approximate solution 10p− 1 = 0 or p = 0.1. Next, the method perturbs the approximate solution

p with 0.1+ q, where q is a correcting term with some smaller value, and forms another polynomial

equation

q3 + 6.3q2 + 11.23q + 0.061 = 0. (2.3)

By ignoring terms higher than linear, this leads to the approximate solution q ≈ −0.0054. Here

Newton’s method only keeps the first few significant digits of the approximate solution q. Newton

observed that the number of significant digits of accuracy of the approximate solution doubled at

each perturbation: this is known as quadratic convergence [46].

2.1.3 Raphson’s Method

Both Vieta’s method and Newton’s method approximate the solution of polynomial equations by

generating intermediate polynomials, such as (2.2) and (2.3), that have the form of the original

polynomial at each step. However, these methods become impractical to approximate solutions

having higher accuracy because they generate many intermediate polynomials [18]. Joseph Raphson

addressed this issue by providing a fully iterative scheme that is similar to (1.3). Unlike Newton’s

method, which uses only the first few significant digits of the approximate solution at each step,

Raphson’s method retains all the significant digits. Raphson demonstrated his method by also
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solving (2.1) with x(0) = 2. Thus, the approximate solution to (2.1) is defined by the following

iteration:

x(n+1) = x(n) − (x(n))3 − 2x(n) − 5
3(x(n))2 − 2

.

This iteration terminates when x(n+1) meets the desired accuracy.

2.1.4 Simpson’s Method

Like Vieta’s method and Newton’s method, Raphson’s method forms the equations algebraically

rather than using the rules of calculus to form a derivative term. Raphson wrote out the algebraic

expressions corresponding to the original function f(x) and its derivative f ′(x) in full as polynomials

[76]. Thomas Simpson then introduced the use of derivative terms and generalized the iterative

method for systems of NAEs (including nonpolynomials) as in (1.3) [76]. Simpson’s formulation is

now generally referred to as “Newton’s Method” [76].

2.2 A General Algorithm

Solving a system of NAEs is sometimes called root-finding because solutions x∗ to (1.1) can be

called roots, and we are interested in finding some or all of them. In Chapter 1 we formally define

the classical version of Newton’s method shown in (1.4), and we see that it requires the solution

of a system of linear equations (1.4a) at each iteration. In practice, the classical Newton iteration

(1.4) must be augmented by a termination criterion to ensure that the approximate solution is

sufficiently accurate, a computationally efficient (or at least feasible) method for solving (1.4a), and

a globalization strategy to ensure that Newton’s method converges to a solution, when one exists,

for any initial guess. Algorithm 1 shows the practical version of Newton’s method. This algorithm

is a template for many existing variants of Newton’s method, such as the methods described in

Section 2.3 and Section 2.4.

The input arguments of Algorithm 1 are the initial iterate x(0), the residual function F, the

absolute error tolerance τa, and the relative error tolerance τr.
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Algorithm 1 Practical version of Newton’s Method.

Input: initial iterate x(0), residual function F, absolute tolerence τa, and relative tolerance τr.

Output: the approximate solution x

1: x← x(0)

2: while (termination criterion is not met) do

3: Choose a forcing term η that determines the appropriate accuracy with which to compute d;

see Section 2.2.3

4: Find d such that ‖F(x) + JF(x)d‖ ≤ η‖F(x)‖

5: If d cannot be found, terminate with failure

6: Find a step length λ

7: x← x + λd

8: end while

9: return x

2.2.1 Choosing an Initial Iterate

Choosing a good initial iterate is important for finding the desired solution. Recall that in Chapter

1, a system of NAEs may have more than one solution. For example, (1.2) with α = −1 has

two roots: −1 and 1. Suppose the initial iterate is x(0) = −1. This iterate satisfies (2.5) and

thus terminates the Newton iteration. The resulting root is then x∗ = −1. This initial iterate is

good (indeed the best possible) if the desired root is x∗ = −1 because the algorithm terminates

in only one iteration. On the other hand, this initial iterate is bad if the desired root is x∗ = 1.

Thus, choosing a good initial iterate allows the algorithm to converge rapidly and avoid undesired

solutions. Unfortunately, no general strategy exists for choosing a good initial iterate; in general it

is only recommended to choose one that has as many properties of the desired solution as possible;

e.g., NAEs that describe a distribution of chemical concentrations require the approximate solution

to be nonnegative, and hence a good initial iterate would also likely to be nonnegative [38].
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2.2.2 Terminating the Newton Iteration

A termination criterion controls the number of Newton iterations and determines whether a solution

is accurate enough. Deuflhard [18] describes three classes of criteria for terminating the Newton

iteration, namely by minimizing

• the residual norm ‖F(x(n))‖,

• the error norm ‖e(x(n))‖, where e(x(n)) := x∗ − x(n), or

• the energy norm ‖e(x(n))‖J :=
√

e(x(n))T JF(x(n))e(x(n)) when the Jacobian matrix is sym-

metric positive definite.

We note that e(x(n)) cannot be evaluated in practice; however it is often possible to estimate it

[38]. Depending on the method used for computing the Newton direction in step 4 of Algorithm 1,

each variant of Newton’s method must have an appropriate norm for the termination criterion. For

example, Newton-GMRES is a Newton variant that computes the Newton direction by minimizing

the residual norms over some Krylov subspace (see Section 2.4.1), thus requiring a termination

criterion that minimizes the residual norm; see Section 2.4.1. Moreover, depending on the rate of

convergence of the Newton variant, one may choose one termination criterion over another that both

minimize the same type of norm. For example, the chord method or modified Newton method, which

only uses JF(x(0)) throughout the Newton iterations, uses a more stringent terminination criterion

than a standard implementation of Newton’s method would use because its rate of convergence is

slower [18]. The termination criterion for the chord method [18] is

‖F(x(n))‖ ≤
√

1− 4θ FTOL,

where 0 < θ < 1
4 is a user-defined constant, and FTOL is a user-defined residual error toler-

ance, is more restrictive than the termination criterion for a standard implementation of Newton’s

method [18]

‖F(x(n))‖ ≤ FTOL.
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As previously mentioned, the local convergence theory for Newton’s method requires that all

approximate solutions x(n) for n = 0, 1, 2, . . . , be sufficiently near the solution x∗ and that the

Jacobian be nonsingular (or more precisely, well conditioned [40, page 64]). If so, then the following

condition holds [38]:

‖e(x(n))‖
4κ(JF(x∗))‖e(x(0))‖

≤ ‖F(x(n))‖
‖F(x(0))‖

≤ 4κ(JF(x∗))‖e(x(n))‖
‖e(x(0))‖

, (2.4)

where

κ(JF(x∗)) = ‖JF(x∗)‖‖(J−1
F (x∗))‖

is the condition number of JF(x∗). That is, (2.4) compares a relative reduction in the norm of

the error with a relative reduction in the norm of the residual [38]. If the Jacobian is nonsingular,

that is, κ(JF(x∗)) is not very large, then (2.4) leads to the following termination criterion that is

well-suited for most variants of Newton’s method [38]:

‖F(x(n))‖ ≤ τr‖F(x(0))‖+ τa, (2.5)

where ‖ · ‖ is a suitable norm. That is, Algorithm 1 terminates the iteration when ‖F(x(n))‖ is

relatively small compared to ‖F(x(0))‖. Equation (2.5) requires an absolute error tolerance (τa > 0)

because an initial iterate that is near the solution may make (2.5) impossible to satisfy. It also

requires a relative error tolerance (τr > 0) because an initial iterate too far away from the solution

may lead to premature termination of the Newton iteration [38].

If Algorithm 1 satisfies the termination criterion in (2.5), x will be the approximate solution

upon output.

2.2.3 Choosing the Forcing Term

Having chosen an initial iterate, we may use an indirect method to compute the Newton direction

that satisfies the inexact Newton condition

‖LF(x(n))‖ ≤ η(n)‖F(x(n))‖, (2.6)

where LF(x(n)) := F(x(n)) + JF(x(n))d(n) is called the local linear model. The parameter η(n)

is called the forcing term, which can be varied at each Newton iteration [38]. If we use a direct
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method to solve (1.4a) for the Newton direction d(n) to within roundoff errors, then the forcing

term is zero, and (2.6) holds with equality. If we approximate the Newton direction with an

indirect method, then the forcing term is chosen based on the properties of the solution and the

system. A good choice of forcing term leads to rapid convergence of the iteration. However, no

general strategy exists for choosing the forcing term that leads to an optimal convergence of the

iteration. In Chapter 4 we investigate the effects of different strategies for choosing the forcing

term. We also capitalize on the flexibility offered by pythNon to make new observations on well-

known forcing-term strategies, propose a modification to improve an existing forcing-term strategy,

and ultimately propose a new forcing-term strategy (4.17) that performs well compared to other

well-known forcing-term strategies.

2.2.4 Globalization Strategies

According to Theorem 1, if the approximate solution x(n) is far from x∗, Newton’s method may

fail to converge to a solution. In particular, it is possible that ‖F(x(n))‖ > ‖F(x(n−1))‖. To achieve

an acceptable level of robustness and general applicability, Newton’s method must be augmented

by a globalization strategy to ensure that for any given initial iterate, the iteration converges to a

solution. Methods such as line search methods [17, 20, 37, 53], trust region methods [17, 57, 31],

and continuation methods [14, 74] are available to accomplish this.

Line search methods search for a decrease in the residual norm ‖F(x(n))‖ along the line segment

[x(n),x(n) + d(n)]. In other words, these methods determine a fraction λ of the full Newton step

d(n) so that ‖F(x(n) + λd(n))‖ < ‖F(x(n))‖. The quantity λ is often called step length, and λd(n)

is called the Newton step. For example, Armijo’s rule [4] is a line search method that terminates

with the smallest l ≥ 0 such that

‖F(x(n) + λ(l)d(n))‖ ≤ (1− νλ(l))||F(x(n))‖, (2.7)

where λ(0) = 1, and ν ∈ (0, 1) that makes (2.7) easy to satisfy [38]. Following Dennis and Schnabel

[16], the default value of ν in pythNon is 10−4; thus the line search method may terminate with

only a modest reduction in the residual. A common way to determine λ(l), l ≥ 1, is to minimize
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the merit function

φ(λ) =
1
2
‖F(x + λd)‖2

using a quadratic polynomial that interpolates values of φ(λ) [16]. The step length λ(l) is then

taken to be the minimum of this polynomial; see Section 4.4.5 for an example.

Instead of moving along the original Newton direction d(n) in a line search method, trust region

methods search for a solution inside a “trusted region” described by the linear model

F(x(n)) + λJF(x(n))d̃(n),

where d̃(n) is typically selected as a linear combination of two or more candidate directions, one

of which approximates d(n). Generally, we choose λ such that it minimizes the norm of this linear

model [41].

We note that both line search and trust region methods require a reduction in the norm of

the residual at each step. Accordingly, they lead to iterations that either converge to a solution,

diverge to infinity, or stagnate at a point where the Jacobian is singular (e.g., at a discontinuity

of F(x)) [14]. Continuation methods, on the other hand, allow an increase in the residual. These

methods embed the given problem in a family of problems. For example, a continuation method

can be defined by solving a sequence of NAEs

F̃(x;µ(k+1)) := F(x) + (µ(k+1) − 1)F̃(x(k);µ(k)) = 0,

where µ(k) is an artificial parameter, and x(k) is the approximate solution to F̃(x;µ(k)) = 0. For

certain values of µ(k), these NAEs can be solved more easily. For example, by construction, x(0) is

a solution of F̃(x; 0) = 0. The solution of F̃(x; 1) = 0 is the solution of (1.1) [65]. The idea is to

increment µ(k) using a step selection scheme and use the solution to F̃(x;µ(k)) = 0 as the initial

guess for solving F̃(x;µ(k+1)) = 0. For example, the switched evolution relaxation (SER) method

increments the step in inverse proportion to residual norm progress [47]:

µ(k+1) = µ(k) · ‖F̃(x(k−1);µ(k−1))‖
‖F̃(x(k);µ(k))‖

.

Algorithm 2 shows a typical implementation of Newton’s method with continuation methods as

globalization strategies. Note that we do not discuss these methods in further detail because we
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only include line search methods such as Armijo’s rule for computing step length within pythNon;

however, the functionality exists such that the user may easily specify other line search methods

within pythNon.

Algorithm 2 Newton’s method with continuation method as globalization strategy.

Input: initial iterate x(0), initial step size µ(0), residual function F, absolute tolerence τa, and

relative tolerance τr.

Output: the approximate solution x

1: x← x(0)

2: µ← µ(0)

3: while (µ ≤ 1) do

4: while (termination criterion is not met) do

5: Choose a forcing term η that determines the appropriate accuracy with which to compute

d; see Section 2.2.3

6: Find d such that ‖F̃(x;µ) + JF̃(x)d‖ ≤ η‖F̃(x;µ)‖

7: If d cannot be found, terminate with failure

8: x← x + d

9: end while

10: Update µ with a step selection scheme

11: end while

12: return x

2.2.5 Computation of the Newton Direction

Most of the computational cost in Newton’s method is the computation of the Newton direction

d(n) in step 4 of Algorithm 1. This requires the storage and factorization of the Jacobian matrix in

the case of a direct method or the approximation of the Newton direction in the case of an indirect

method. In other words, in order to minimize the overall computational cost of solving a system of

NAEs, we should minimize the combined cost of computing the Newton direction and the number
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of iterations required for convergence. Kelley [38] points out that some of the most important

issues in selecting a variant of Newton’s method are the size of the problem, the cost of evaluating

the residual and the Jacobian matrix, and the way of solving (1.4a). In the next two sections, we

discuss how one can approximate a solution to (1.4a) by rapidly prototyping a computationally

efficient (or at least feasible) variant of Newton’s method based on these issues.

2.3 Newton Direct Methods

If the size of the problem is small, i.e., it requires a relatively small amount of computer resources

(e.g., memory), and the computation of the residual is inexpensive, direct methods are often ade-

quate to solve (1.4a) efficiently. The advantages are that direct methods are generally more robust

than indirect methods because they do not have the possible convergence failure of an indirect

method [38].

Direct methods require the formation and storage of the Jacobian matrix in Newton’s method.

A convenient way to approximate the Jacobian matrix is via the use of finite differences [38].

Depending on the nature of the problem, the resulting Jacobian matrix can be stored in different

forms, e.g., as a dense matrix or a banded matrix. Alternatively, one may provide a code to evaluate

the Jacobian matrix or use automatic differentiation (AD) [30] to compute an analytical Jacobian

matrix. AD is an algorithm that applies the chain rule of differentiation to the floating-point

evaluation of a function and its derivatives [66]. It is more robust than finite differences because

the resulting derivative values are accurate to within round-off and do not contain discretization

and cancellation errors. It also does not have the possible human errors of a user-defined Jacobian.

The LU decomposition [27] is a popular method to factorize the Jacobian matrix. Depending

on the nature of the problems, other factorizations such as the Cholesky decomposition, the QR

decomposition, and the Singular Value Decomposition (SVD) [70] exploit the special properties of

the Jacobian matrix.

Because the formation and storage of the Jacobian matrix are costly, the chord method or

modified Newton method stores and uses only the initial Jacobian JF(x(0)) throughout the Newton
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iteration. Such a strategy will only work if JF(x(0)) closely approximates JF(x∗). Similarly,

Shamanskii’s method [38] updates the Jacobian only if it is inaccurate or the rate of convergence of

the residual is too slow. This may require more iterations to approximate the solution, but because

the Jacobians and/or their factorizations can be stored from one iteration to the next, each iteration

is much less expensive, and the overall cost for solving the problem is often lower [38].

2.4 Newton Indirect Methods

2.4.1 Newton-Krylov Methods

When the problem size is large, i.e., it requires a relatively large amount of computer resources,

storing the Jacobian matrices and/or its factors may not be feasible. Newton-Krylov methods are

iterative methods that can be used to solve such systems. These methods do not require storage of

Jacobians or its factors; rather only the effect of a Jacobian-vector product needs to be computed.

These methods are therefore also called matrix-free methods [38]. These methods often require

preconditioners to speed up the convergence of the iterative solution to (1.4a); in fact, the iteration

may not converge at all otherwise. That is, we left-multiply (1.4a) by a preconditioner M so that

an indirect method to solve the linear system

MJF(x(n))d(n) = −MF(x(n))

converges rapidly. Section 4.4.4 shows an example where an indirect method requires a precondi-

tioner in order to obtain a solution for a two-dimensional steady-state convection-diffusion equation.

A discussion of different preconditioners is beyond the scope of this thesis; see e.g., Trefethen and

Bau [70] for further details.

Given an initial iterate d(0), a Krylov iterative method for approximating the solution to (1.4a)

is defined by the iteration

d(k) = d(0) + K(k)c(k),
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where

K(k) =
[

r(0) JF(x(n))r(0) . . . Jk−1
F (x(n))r(0)

]
,

r(0) := −F(x(n)) − JF(x(n))d(0), and the initial iterate is generally d(0) = 0 [38]. The Jacobian-

vector products Jk
F(x(n))r(0) for k = 0, 1, 2, . . . form a basis for the Krylov subspace

Kk = span(r(0),JF(x(n))r(0), . . . ,Jk−1
F (x(n))r(0)).

The method computes the coefficients c(k) ∈ <k by minimizing ‖K(k)c(k) − r(0)‖ and terminates

with an approximate Newton direction d(n) from (1.4a) where d(n) satisfies the inexact Newton

condition (2.6).

GMRES [61] is a popular Krylov method for solving linear equations. It minimizes ‖r(k)‖2 over

Kk. GMRES requires an accumulation of the history of the linear iteration as an orthonormal basis

for the Krylov subspace [38]. In other words, if the number of iterations gets very large, which often

happens for large problems, the method may exhaust the available fast memory, such as cache, which

is often relatively small in size. Any given implementation of GMRES may arbitrarily limit the

number of iterations, but then the approximate solution may be poor. Low-storage Krylov methods

are available, such as BiCGSTAB [71] and TFQMR [23], where the overall strategy is modified so

that only a fixed number of basis vectors for the Krylov subspace are stored. Discussion of the

details of the various iterative solvers is beyond the scope of this thesis. We note that the storage

of the linear iterations in GMRES is still much less compared to the storage of the Jacobian matrix

in direct methods because it is assumed that the Jacobian matrix is large and sparse.

2.5 Selecting a Newton Variant

Sections 2.2–2.4 show that selecting a suitable variant of Newton’s method is crucial for solving a

system of NAEs efficiently. Despite its importance, it is generally impossible to know a priori which

variant of Newton’s method will be effective on a given problem. We now describe in Chapter 3 a

PSE that provides a flexible environment for studying the effects of different variants of Newton’s

method on a given problem.
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Chapter 3

A PSE for the Numerical Solution of NAEs

Mathematical software libraries represent a classical way to deliver and support the reuse of high-

quality software [60]. Public domain software repositories, such as ACM CALGO [1] and Netlib

[49], and commercial libraries, such as IMSL [34] and NAG [51], give access to a comprehensive

array of mathematical software libraries. The user usually goes through an iterative process to

search, download, and familiarize themselves with these software repositories to find a suitable

library. The user may use the GAMS on-line catalogue and advisory system [25] that provides

a standard framework for indexing and classifying mathematical software to speed up the search

process. However, one may be forced to change from one library to another as the computer

resources or the problem sizes change [60]. For example, a user would change from LAPACK [43]

to ScaLAPACK [62] when solving systems of linear equations on multicomputer systems, or from

LAPACK to SuperLU [68] when solving very large and sparse systems of linear equations of size on

the order of millions [19]. Unfortunately, the time and cost of acquiring, learning, and configuring

a mathematical software library are beyond what the average scientist and engineer would like to

invest [60].

Although software libraries are usually well-tested and provide some form of abstraction and

code reuse [60], the user usually has little control over what the library does. MINPACK [7],

NITSOL [55], NKSOL[12], KINSOL [69], and PETSc [8, 9] are numerical libraries that differ in

their factorization and storage of the Jacobian matrix for solving systems of NAEs. However, for

example none of these software libraries offers the flexibility to choose a different strategy in each

step of Algorithm 1. The user may wish to choose or compare different strategies for computing

the forcing term in Newton’s method for better performance. In fairness, these libraries often aim
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for computing with massive amounts of data, so performance and efficiency of the software package

are more important than flexibility and extensibility.

These issues have led to a different concept in software reuse, namely the problem-solving

environment (PSE). Rice and Boisvert have given the following description of a PSE [60]:

A PSE is a computer system that provides all the computational facilities necessary
to solve a target class of problems efficiently. The facilities include advanced solution
methods, automatic or semiautomatic selection of solution methods, and ways to easily
incorporate novel solution methods. They also include facilities to check the formulation
of the problem posed, to automatically (or semiautomatically) select computing devices,
to view or assess the correctness of solutions, and to manage the overall computational
process. Moreover, PSEs use the terminology of the target class of problems, so users
can solve them without specialized knowledge of the underlying computer hardware,
software, or algorithms. In principle, PSEs provide a framework that is all things to
all people; they solve simple or complex problems, support both rapid prototyping and
detailed analysis, and can be used both in introductory education or at the frontiers of
science.

An example of such a PSE is PELLPACK [33]. It is a software system for solving elliptic PDEs on

single and multicomputer systems. This PSE comes with a rich set of PDE solvers, a graphical user

interface (GUI), and a knowledge-based system to select a solution method for a given problem

automatically. Other examples of PSEs for solving a more diverse range of problems include

MATLAB, Maple, COMSOL Multiphysics, and Mathematica.

To implement and evaluate the effectiveness of different variants of Newton’s method on a given

problem, we have built a PSE called pythNon. It is a PSE that provides all the computational

facilities necessary for studying the performance of different variants of Newton’s method for solv-

ing systems of NAEs numerically. It provides the researcher, teacher, or student, with a flexible

environment for rapid prototyping and numerical experiments.

The pythNon PSE is a research tool. In pythNon, users can directly influence the process for

solving NAEs on many levels including experimentation with different methods of computing the

Newton direction d(n) and investigation of the effects of termination criteria and/or globalization

strategies. NAEs and variants of Newton’s method may be defined through a text file or an easy-to-

use GUI. Standard (default) settings may be exploited without the need for the user to specifically

address each step in Algorithm 1. Moreover, pythNon comes with a test suite of benchmark problems

for convenient testing of new and/or different variants of Newton’s method.
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The pythNon PSE is a teaching tool. The teacher or student may wish to investigate more

well-understood concepts, such as the benefit of storing and manipulating a banded Jacobian over

a dense Jacobian or the efficiency of an indirect method over a direct method by experimenting

with different choices easily through the GUI in pythNon. Thus, they can focus on appreciating

high-level concepts without concerning themselves with the underlying implementation.

In this chapter we briefly describe some popular software packages for solving a system of NAEs

and compare their features with pythNon. Then we describe the flexible and extensible architecture

in pythNon. Finally, we describe the problem-solving process in pythNon by means of examples.

3.1 pythNon and Public Domain Software Packages

A variety of software packages such as MINPACK [7], NITSOL [55], NKSOL [12], KINSOL [69], and

PETSc (the SNES library) [8, 9] are available to solve a system of NAEs. These software packages

are mathematical software libraries that come with some predefined variants of Newton’s method.

However, the user is responsible for choosing a suitable library for a given problem. Moreover, these

software packages do not share the same interface or file format; thus switching from one variant

of Newton’s method means switching from one software package to another. On the other hand,

pythNon offers the flexibility to switch or choose a different strategy in each step of Algorithm 1

easily. Table 3.1 compares the variants of Newton’s method in pythNon with those in the public

domain software packages. We note that the KINSOL library is a successor of the NKSOL library;

thus we exclude the NKSOL library in the comparison. This table shows that pythNon not only

offers the option to define a new or different strategy for Newton’s method, but it also includes the

common methods and strategies among the public domain software packages.

Table 3.2 shows a comparison of the software features in the public domain software packages

mentioned in relation to pythNon. Each of these features forms an essential part of an easy-to-use

PSE [60]. This table shows that the pythNon PSE is more than just a mathematical software

library. It is a software environment that provides the user the facilities to solve problems more

easily and efficiently. For example, the user may prototype a Newton variant or change from one
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Table 3.1: Newton variants in both pythNon and the public domain software
packages.

Options pythNon MINPACK NITSOL KINSOL PETSc

Termination
Criterion

User-definable Fixed Fixed Fixed User-definable

Forcing Term
Strategy

Cai et al. [13],
Dembo and
Steihaug [15],
Brown and
Saad [12],
Eisenstat and
Walker [20],
An et al. [3],
Gomes-
Ruggiero
et al. [28],
user-definable

N/A Fixed Eisenstat and
Walker [20]

Eisenstat and
Walker [20]

Globalization
strategy

Line search,
user-definable

Trust region Line search Line search Line search,
trust region

Computing
Jacobian

Finite
difference,
user-definable

Finite
difference,
user-definable

Finite
difference,
user-definable

Finite
difference,
user-definable

Finite
difference,
AD, user-
definable

Jacobian
factorization

LU,
Cholesky,
QR, SVD,
user-definable

QR N/A LU LU,
Cholesky,
QR, SVD,
user-definable

Jacobian
updating
strategy

Modified
Newton
method,
Shamanskii’s
method,
user-definable

Modified
Newton
method

N/A Modified
Newton
method

Modified
Newton
method

Method for
approximating
d(n)

GMRES,
BiCGSTAB,
TFQMR,
user-definable

N/A GMRES,
BiCGSTAB,
TFQMR

GMRES,
BiCGSTAB,
TFQMR

GMRES,
BiCGSTAB,
TFQMR,
user-
definable.
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Table 3.2: A comparison of the software features in the public domain software
packages in relation to pythNon.

Features pythNon MINPACK NITSOL KINSOL PETSc

Rapid prototyping of Newton variants Yes No No No No

Easy to change problem definition Yes No No No No

Easy to change solver settings Yes No No No Limited

Choice of predefined or custom settings Yes Limited Limited Limited Limited

Load and save settings of problem and
solver settings

Yes No No No No

GUI Yes No No No No

Automated test suite Yes No No No No

Suite of benchmark problems Yes No Basic No No

Easy access to a wide range of numerical
libraries

Yes No No No Limited

Newton variant to another rapidly and conveniently through a text file or a GUI. On the other hand,

these public domain software packages (e.g., NITSOL) often require the user to acquire, learn, and

understand the source code to form a new or different variant of Newton’s method. We note that

Section 3.2.1 and Section 3.3 show how users can take advantage of features in pythNon such as

easily changing problem definition and solver settings for solving a system of NAEs through a GUI.

3.2 Architecture and Design

The pythNon PSE is a software environment to implement and evaluate different variants of New-

ton’s method that emphasizes the principles of ease of use and flexibility. The design of pythNon ad-

dresses the following requirements:

1. It shall allow the user to conveniently construct multiple NAE solvers in order to experiment

with different solvers on a given problem. For example, the user can compare the approximate

solutions from a direct method with those of an indirect method.

2. It shall allow the user to extend the functionality of the solver. For example, the developer

may implement another strategy for choosing a forcing term without having to rewrite code,
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such as the termination criterion or globalization strategy; see Chapter 4 for an example.

3. It shall provide facilities to monitor the Newton iterations and the solution accuracy.

4. It shall provide a suite of test problems for convenient assessment of new and/or different

variants of Newton’s method.

5. It shall provide an easy-to-use user interface (textual and/or graphical) to define or change

problem and solver settings.

The overall structure of pythNon adopts the layered model of software architecture [26] as shown

in Figure 3.1. In the top layer, the pythNon GUI provides the user with an interactive interface

to define a problem, specify the solution process, and display solution accuracy and CPU time of

pythNon solvers. In the second layer, the pythNon Controller processes the problem and solution

specification, generates instances of a pythNon solver, and computes solutions to the problems. In

the third layer, SciPy [64] provides the underlying linear algebra package for solving linear systems

of equations and gives access to a wide variety of numerical libraries, such as BLAS [11] and

LAPACK [43] for performing linear algebra operations and FFTW [24] for performing fast Fourier

transform (see Section 4.4.4). In the bottom layer, the Python Standard Library [73] contains

extensive and well-designed libraries, such as libraries for text processing and system programming.

pythNon GUI

pythNon Controller

SciPy

Python Standard Library

Figure 3.1: System overview of pythNon.

The layered approach supports the incremental development of pythNon. As a new layer is

developed, for example, a platform that supports parallel computing, the services provided by this
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layer may be made available to the bottom layer; see Figure 3.1. This architecture is also changeable

and portable [67]. For example, the pythNon Controller layer can be replaced by another layer, such

as a different software package for solving NAEs. As each layer only depends on its lower layer, it

is possible to provide multi-platform implementations of pythNon [67]. That is, only the bottom

layer needs to be changed to take account of the facilities of a different operating system. One

caveat of using the layered approach is that performance can suffer because a service request from

the top layer may have to be interpreted several times in different layers before it is processed, e.g.,

loading and saving solver settings from and to a file. To ameliorate this problem, pythNon makes

some exceptions to communicate directly with the lower layers; for example, the GUI layer calls

the Python Standard Library layer directly to load or save solver settings from or to a file.

3.2.1 The pythNon GUI

pythNon GUI

Controllers 
WindowSolver EditorProblem Editor Results

Window

Figure 3.2: The overall structure of the pythNon GUI components.

The structure of the pythNon GUI in Figure 3.2 includes four major components:

1. The Problem Editor is a text window that supports the process of defining the NAEs and

the initial iterate. Figure 3.3 shows an instance of the pythNon Problem Editor. This editor

provides a template with helpful instructions for defining both the NAE and the initial iterate.

It also provides some text editing facilities, such as syntax highlighting and code folding, to

help the user to define their problem quickly and conveniently. We note that the user may

create multiple instances of the Problem Editor for defining different problems.

2. The Solver Editor supports the process of defining different variants of Newton’s method.
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Figure 3.3: An instance of the pythNon Problem Editor.

Figure 3.4 shows an instance of the pythNon Solver Editor. In this editor, the user specifies a

pythNon controller that represents a variant of Newton’s method. The user may exploit the

standard settings or specifically address each step of Algorithm 1 in the Advanced Settings.

The user may also specify the output of the approximate solution and a reference solution for

numerical comparison. Again, these settings may be stored to a file for future use.

3. The Controllers Window contains a list of pythNon controllers defined by the user. Figure 3.5

shows the Controllers Window. The user may select a pythNon controller from the list to view

the settings of a Newton variant; e.g., Figure 3.5 shows the settings of a Newton direct method

with dense Jacobian. The user may add or remove any number of pythNon controllers from the

list. After defining and selecting a set of pythNon controllers, the user may run the controllers

for solving problems or stop the controllers during the solving process. The Controllers

Window also shows the current status of each pythNon controller, such as the elapsed time of

the running pythNon controller or whether the pythNon controller has terminated successfully.
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Figure 3.4: An instance of the pythNon Solver Editor.
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Figure 3.5: The pythNon Controllers Window.

4. The Results Window shows the solution accuracy obtained and CPU time (in seconds) re-

quired of each pythNon controller on a given problem. Figure 3.6 shows an instance of the

Results Window. Again, the user may select a pythNon controller from the list to view the

settings of a Newton variant. The user may save these results for further analysis.

3.2.2 The pythNon Controller

The architecture of the pythNon controller adopts the repository model [26] as shown in Figure 3.7.

The main idea is to create a central data structure that stores all information of a pythNon controller

and define a collection of independent modules. The Solver Dictionary module is the central data

structure for the pythNon controller. It stores the information for a Newton variant and the Newton

iteration, such as error tolerances and residuals. On the other hand, each independent module is

responsible for acquiring data from the Solver Dictionary module, processing the data, and updating

the data to the Solver Dictionary module. These independent modules are:
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Figure 3.6: The pythNon Results Window.

1. The Termination Criterion module defines the termination criterion of Newton’s method and

determines whether to terminate the Newton iteration.

2. The Jacobian module provides the facilities to compute or approximate the Jacobian, such

as by finite differences.

3. The Linear Solver module contains a set of linear equations solvers to compute and approxi-

mate the Newton direction d(n).

4. The Globalization Strategy module defines the globalization strategy so that Newton’s method

converges to a solution from an arbitrary initial guess (or terminates gracefully with an

appropriate error message).

5. The Input Parser module processes the input settings from a text file or GUI and initializes

the Solver Dictionary module.

6. The Automated Test Suite module compares the solution from the Solver Dictionary module
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with a reference solution for a suite of benchmark problems. The reference solution may be

given by the user or included as part of the test suite; see Section 3.4.

JacobianTermination 
Criterion Linear Solver

Solver
Dictionary

Globalization 
Strategy

Automated 
Test SuiteInput Parser

Legend: modules
calls

Figure 3.7: Architecture of the pythNon Controller.

The repository approach is an efficient way to share large amounts of data. For example, there

is no need to pass a large solution vector from one module to another. This architecture is also

extensible. For example, one can easily add a preconditioner module to the pythNon controller

given that it acquires and updates information from and to the Solver Dictionary module. One

caveat of this approach is that it may be difficult to distribute the Solver Dictionary module over

a number of machines. However, it is possible to distribute a logically centralized repository over

a distributed environment [67] using the distributed memory paradigm [72], such as pyMPI [58].

3.3 Problem-Solving in pythNon

The pythNon PSE is written in the Python programming language. Python is becoming increasingly

popular in the scientific computing community. Because Python is an interpreted language with a

concise syntax, the resulting programs are easy to read and understand. Similar to the MATLAB

PSE, pythNon can be run in interactive mode using the Python interpreter. This mode allows the

user to test small pieces of code easily and learn by trial-and-error [2]. With all these features,

pythNon enables users to prototype their problems rapidly and conveniently.
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Suppose we want to solve a simple NAE in pythNon, such as

F1(x) = x2
1 − x2 + 0.25, (3.1a)

F2(x) = −x1 + x2
2 + 0.25, (3.1b)

with an initial guess x(0) = 0. To solve this problem using pythNon, we would write the following

program in the interactive mode or to a text file.

# Load pythNon
import pythNon
# Define the Solver Dictionary
info = {}
# Define the nonlinear function
def f(x, residual):

residual[0] = x[0]**2 - x[1] + 0.25
residual[1] = -x[0] + x[1]**2 + 0.25

info[’function’] = f
# Define the initial guess
info[’initial_guess’] = zeros(2)
# Set up a pythNon Controller
controller = pythNon.Controller(info)

# Run the pythNon Controller
controller.Solve()

This simple program is concise and easy to read. It first defines the problem by providing both the

nonlinear residual function F and the initial iterate x(0). Then it passes the problem definition to

the Solver Dictionary. Finally, it sets up a pythNon controller with the Solver Dictionary and runs

the pythNon controller to solve the problem. The user may change the problem definition easily by

modifying the function f.

The simple program above shows that the minimum required input for solving a system of NAEs

in pythNon consists of the nonlinear function and the initial iterate. In other words, pythNon pro-

vides a set of predefined (default) settings of a Newton variant, such as termination criterion,

method for computing the Newton direction d(n), and globalization strategy. Figure 3.8 shows the

steps of using the pythNon PSE to solve a system of NAEs.

The pythNon PSE offers flexibility without compromising simplicity. The user may change the

solver settings to suit their problem-solving needs. For example, to change the (default) error

tolerances and the method for computing the Newton direction d(n), the user may define a text file
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residual function

Set initial iterate

Solve NAEs

Change settings?Customize pythNon

No

Yes
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Figure 3.8: Using pythNon to solve NAEs.

35



for pythNon to read in:

method = indirect
absolute tolerance = 1e-12
relative tolerance = 1e-12

This text file changes the method for solving the linear systems (1.4a) from the default direct

method to the default indirect method (GMRES) for approximating the Newton direction d(n) and

sets both absolute and relative tolerances to 10−12. Again, pythNon provides the standard (default)

settings; the user does not need to specifically define each solver setting. Table 3.3 shows some of

the predefined settings in pythNon.

As mentioned in Section 3.2.1, the user may define the problem, load, save, and change solver

settings easily through an easy-to-use GUI. Also included with pythNon is an automated test suite

so that the user may evaluate different solution methods and analyze the computed solutions by

comparing them with the reference solutions. The next section discusses the automated test suite

in detail.

3.4 Automated Test Suite

The pythNon PSE provides an environment to conveniently formulate and experiment with dif-

ferent variants of Newton’s method. The process of forming a variant of Newton’s method in

pythNon directly influences the solutions generated and the manner in which they are obtained.

Certain decisions in the solution process such as the initial iterate used, the way of computing the

Newton direction, and the globalization strategy, may lead to an undesired solution or no solution

at all. For example, Section 4.2 gives an example where a Newton direct method with dense LU

decomposition solver fails to return a solution when solving a large and sparse system of NAEs.

As mentioned in Chapter 1, a system of NAEs may have multiple solutions, and whichever one

is obtained by a numerical method will depend on the initial iterate; thus Newton’s method may

return a mathematically correct but undesired solution with no way to warn the user. This is

problematic because the user may not know how to go about obtaining the desired solution.

Another issue when forming a suitable variant of Newton’s method is computational efficiency.
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Table 3.3: Some predefined settings in pythNon.

Settings Options currently available Default setting

General

Absolute tolerance > 0 10−6

Relative tolerance > 0 10−3

Maximum number of Newton
iterations

≥ 1 40

Method for computing d(n) Direct, indirect Direct

Globalization strategy Armijo’s rule, backtracking Armijo’s rule

Direct methods

Computing Jacobian Finite difference, user-defined
Jacobian

Finite difference

Decomposition LU, Cholesky, QR, SVD LU

Storage type Dense, banded Dense

Jacobian updating strategy Modified Newton method,
Shamanskii’s method

Shamanskii’s method

Indirect methods

Method for approximating
d(n)

GMRES, BiCGSTAB,
TFQMR

GMRES

Forcing-term strategy User-defined constant, Cai
et al. [13], Dembo and
Steihaug [15], Brown and
Saad [12], Eisenstat and
Walker [20], An et al. [3],
Gomes-Ruggiero et al. [28]

Eisenstat and Walker [20]

Maximum number of linear
iterations

≥ 1 40

Globalization strategy

Maximum step length λmax 0 < λmax ≤ 1 1
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As mentioned in Chapter 1, the use of an implicit time integration method for solving stiff ODEs

requires solving a large system of NAEs at each time step. Thus, the user wants to find a variant

of Newton’s method that solves the system as efficiently as possible.

Testing is a key process to help the user to identify desired solutions and performance (i.e.,

CPU time) produced by pythNon. It also increases our level of confidence in both the variant

of Newton’s method used and the solutions produced. For example, by creating a test suite of

benchmark problems, the user can formulate new or different variants of Newton’s method and

verify the solutions with the test suite.

A problem with testing is that the number of test problems and configurations of pythNon can

be large. Repeating the testing manually can be slow, laborious, and error prone. To alleviate these

problems, we build a framework for testing that is automated and thus can be run conveniently

and frequently. We describe this framework next.

3.4.1 Automating the Tests

A common practice of testing is to maintain an automated test suite [10]. This test suite in

pythNon runs some tests and compares the results of the tests with the results from the reference

solutions automatically. For example, the test suite reads in a text file called the configuration

file that contains the settings of a pythNon controller, where each pythNon controller represents a

variant of Newton’s method. The test suite then runs the pythNon controller and directs its output

to a verification file. The test suite compares this verification file containing the generated solution

to another file containing the reference solution, that is, the desired solution provided by the user,

if applicable. The test is successful if the differences of the solutions in both files are acceptable.

Otherwise, the user should re-configure that pythNon controller and run the test again. Figure 3.9

shows the process of testing in pythNon.

To compare the solution accuracy obtained and CPU time required of a set of Newton variants

on a given problem, the user first defines a set of configuration files or generates them through the

GUI. Once the user provides the set of configuration files and the reference solution to the problem,
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Figure 3.9: Process of testing in pythNon.
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the test suite in pythNon automatically creates a set of pythNon controllers, runs them, records

their CPU time, and compares the generated solutions with the reference solutions automatically,

as shown in Algorithm 3. The output of this algorithm is a text file that allows the user to easily

examine the results of the testing. The user may view the solution accuracy and the CPU time

of each pythNon controller. The next section describes in detail a way to compute the solution

accuracy with the reference solution.

Algorithm 3 Steps in the testing.

Input: A set of configuration files and a reference file

Output: A text file that reports the solution accuracy and CPU time for each pythNon controller

1: for each configuration file do

2: Create a pythNon controller with the configuration file

3: Run the pythNon controller and record its CPU time

4: Compute the solution accuracy of the new solution with respect to the reference solution

5: Output the solution accuracy and the CPU time to the text file

6: end for

3.4.2 Verifying the Solutions

The user generally does not expect or even desire the generated solution to be as accurate as the

reference solution. To verify that a solution is the desired one, the user may assess the accuracy

of the computed solution by comparing the number of matching digits between the generated

solution and the reference solution within the test suite in pythNon. Algorithm 4 shows a way

for computing the number of matching digits between two floating-point numbers. We note that

for IEEE double-precision, the maximum number of matching decimal digits dmax between two

floating-point numbers is about 16. In practice, due to roundoff errors, this number is less.
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Algorithm 4 Comparing two floating-point numbers.

Input: Two floating-point numbers r1 and r2, and maximum matching decimal digits dmax

Output: Number of matching digits d

1: d← 0

2: while (d < dmax) do

3: r′1 ← r1 rounded to d decimal digits

4: r′2 ← r2 rounded to d decimal digits

5: if r′1 and r′2 are identical then

6: d← d + 1

7: else

8: return d

9: end if

10: end while

11: return d
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Chapter 4

Numerical Experiments

We show the power and flexibility of pythNon by means of the following numerical experiments.

All the experiments reported in Sections 4.1–4.3 were performed using a 1.33GHz PowerPC G4

processor with 768MB of RAM. The experiments in Section 4.4 were performed using an IBM

System x3550 with two 3.00GHz Dual-Core Intel Xeon processors and 2GB of RAM.

4.1 A Comparison of Dense and Banded Jacobians

To illustrate the advantages of storing and manipulating a banded Jacobian versus a dense Jacobian,

we wish to compute a nontrivial solution v(r) to the two-point boundary-value problem [6]:

v′′ +
4
r
v′ + (rv − 1)v = 0, 0 < r < 20, (4.1a)

v′(0) = 0, v(20) = 0. (4.1b)

To obtain a system of NAEs, we discretize (4.1) as follows. We first convert the second-order

system (4.1a) to a first-order system by defining

y =
(

y1

y2

)
=

(
v

v′

)
. (4.2)

Then (4.1a) becomes

y′(r) =
(

y2(r)
− 4

r y2(r)− (ry1(r)− 1)y1(r)

)
:= g(r,y(r)). (4.3)

We discretize (4.3) by the trapezoidal rule with an equally spaced mesh {ri}N+1
i=0 ; that is, ri = i∆r

for i = 0, 1, . . . , N + 1, where ∆r = 20
N+1 . This leads to

yi+1 − yi

∆r
=

1
2
(g(ri+1,yi+1) + g(ri,yi)), (4.4)
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where yi ≈ y(ri) for i = 0, 1, . . . , N . This yields 2(N + 1) equations for the 2(N + 2) unknowns

defined in (4.2). The remaining two equations are provided by the boundary conditions:

y0,2 = 0 and yN+1,1 = 0.

The problem can be expressed as a system of NAEs F(Y) = 0, where Y = (yT
0 ,yT

1 , . . . ,yT
N+1)

T.

From (4.4), it is apparent that the upper and lower bandwidths of the Jacobian are 2.

We consider solving the above system with a Newton direct method. An NAE solver that treats

all Jacobians as dense can only solve small systems in practice. As we increase the number of mesh

points in the system, the system of NAEs becomes large, and it may quickly become infeasible to

solve. In the pythNon PSE, the user may invoke a direct method that solves (1.4a) while exploiting

the banded structure, so it can solve even very large systems efficiently.

Figure 4.1 shows the run-time statistics for the two-point boundary-value problem (4.1) treated

with a dense Jacobian and with a banded Jacobian. Note that the x-axis in Figure 4.1 represents

the size of the system, and the y-axis is log-scaled and represents the CPU time for solving the

system. As we increase the number of mesh points, a direct method with dense LU decomposition

takes longer to solve the problem than a direct method with banded LU decomposition; it is about

52 times slower with 1800 mesh points. Moreover, the direct method with dense LU decomposition

fails to solve the system with 2000 mesh points in a reasonable amount of time.

This example shows that the teacher or student may conveniently investigate well-understood

concepts in the pythNon PSE, such as the benefit of storing and manipulating a banded Jacobian

over a dense Jacobian.

4.2 A Comparison of Newton Direct and Indirect Methods

For a given problem, it is sometimes not clear when it is more efficient to use a Newton direct

method or a Newton indirect method. In general, the smaller the problem, the more advantageous

a Newton direct method is to use. However, if the problem size grows, at some point it will be

more advantageous to use a Newton indirect method. To show the break-even point between a
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Figure 4.1: Run-time statistics for the two-point boundary-value problem with
dense Jacobian and banded Jacobian.

Newton direct method and a Newton indirect method, we consider solving the Ornstein-Zernike

(OZ) equations [52]. In their simplest isotropic form, the OZ equations consist of an integral

equation coupled with an algebraic constraint for two unknown functions h = h(r) and c = c(r).

The integral equation is

F (h, c)(r) = h(r)− c(r)− ρ(h ∗ c)(r) = 0, (4.5)

where (h ∗ c)(r) =
∫
<3 c(‖r − r′‖)h(‖r′‖)dr′, and ρ is a parameter. In practice, it is standard to

truncate the computational domain to be a sphere of radius R. Following Kelley [38], we take

R = 9. The algebraic constraint is

a(h, c)(r) = e−βu(r)+h(r)−c(r) − h(r)− 1 = 0, (4.6)

for all 0 ≤ r ≤ R, where u(r) = 4ε
[
(σ

r )12 − (σ
r )6

]
, and β, ε, and σ are parameters. Following Kelley

[38], we choose

β = 10, ρ = 0.2, ε = 0.1, and σ = 2.0.
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The convolution (h∗c) can be computed using only one-dimensional numerical quadratures through

the spherical-Bessel transform. Assuming h decays sufficiently rapidly, we let

ĥ(k) = H(h)(k) = 4π

∫ ∞

0

sin(kr)
kr

h(r)r2dr

and

h(r) = H−1(ĥ)(k) =
1

2π2

∫ ∞

0

sin(kr)
kr

ĥ(k)k2dk.

The convolution (h ∗ c) is then approximated by discretizing the equation

h ∗ c = H−1(ĥĉ) (4.7)

on a uniform mesh with grid points r := {ri}Ni=1; i.e., ri = i∆r for i = 1, 2, . . . , N , where ∆r =

R
N−1 , and ĥĉ(r) := ĥ(r)ĉ(r) is the pointwise product of functions. Defining vectors h and c with

components hi = h(ri) and ci = c(ri), respectively, (4.5) and (4.6) lead to

F(x) =
(

h− c
e−βu(r)+h−c − h− 1

)
+

(
0

ρ(h ∗ c)

)
= 0,

where x := (hT , cT )T , h, c ∈ <N are the unknowns, h ∗ c is the discretization of (4.7), 1 :=

(1, 1, . . . , 1) ∈ <N , and the equations are to be interpreted componentwise. We refer to Kelley and

Pettitt [39] for further implementational details.

Figure 4.2 shows that in terms of performance the break-even point between the Newton direct

method with dense LU decomposition and the Newton-GMRES method is at 128 mesh points. That

is, the Newton direct method with dense LU decomposition is faster than the Newton-GMRES

method for solving systems that are small, i.e., with fewer than 128 mesh points. However, as we

increase the number of mesh points, the Newton direct method takes much longer to compute,

about 121 times longer than a Newton indirect method for a mesh of 512 points. When it reaches

1024 mesh points, the system becomes so large that it is infeasible to solve with a Newton direct

method. On the other hand, the Newton indirect method continues to solve the system because it

does not require storage of the Jacobian.

This example shows that the user can identify the break-even point between Newton variants

and choose the appropriate Newton variant for solving the problem efficiently in the pythNon PSE.
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Figure 4.2: Run-time statistics for the Ornstein-Zernike equations with Newton
Direct method and Newton-GMRES method.

4.3 A Comparison of Newton Indirect Methods

In order to provide a comparison of Newton indirect methods, we solve the Chandrasekhar H-

equation [36], which is an integral equation that arises in radiative transfer theory:

H(µ)−
(

1− c

2

∫ 1

0

µH(ν)
µ + ν

dν

)−1

= 0. (4.8)

Equation (4.8) has exactly two solutions for 0 < c < 1 [38]. We discretize this problem by approx-

imating the integral by the composite midpoint rule on a uniform mesh with grid points {µi}m+1
i=0 .

Thus we take the unknowns to be

Hi+ 1
2
≈ H(µi+ 1

2
),

where µi+ 1
2

= µi + h
2 for i = 0, 1, . . . ,m, and h = 1

m+1 , this leads to

Fi(H) = Hi+ 1
2
−

1− c

2(m + 1)

m∑
j=0

µi+ 1
2
Hj+ 1

2

µi+ 1
2

+ µj+ 1
2

−1

,

where H =
(
H 1

2
,H 3

2
, . . . ,Hm+ 1

2

)T

. We start with an initial iterate x(0) = 1 := (1, 1, . . . , 1)T ∈ <m

that tends to converge to the solution of physical interest.
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We consider solving the above system with the Newton-GMRES, Newton-BiCGSTAB, and

Newton-TFQMR methods. Figure 4.3 shows that the Newton-TFQMR method is the most efficient

method overall for solving the above system with different numbers of mesh points. However, all

three methods appear to be competitive in terms of CPU time when solving the problem with a

large number of mesh points, e.g., when solving (4.8) on a mesh of 1800 points.

This simple example demonstrates that the pythNon PSE can help the user to easily identify the

most efficient Newton variant on a given problem. In the next section, we provide an in-depth study

of how the pythNon PSE enables the user to study the effects of different forcing-term strategies in

Newton’s method.
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Figure 4.3: Run-time statistics for the Chandrasekhar H-equation with Newton-
GMRES, Newton-BiCGSTAB, and Newton-TFQMR.

4.4 An Investigation of Forcing Terms

The inexact Newton condition (2.6) expresses a certain reduction in the local linear model LF(x(n))

of F(x(n+1)) assuming that LF(x(n)) closely approximates F(x(n+1)), and ‖LF(x(n))‖ is smaller

than ‖F(x(n))‖ by a factor of η(n).
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The forcing term η(n) controls the level of accuracy of solving the Newton direction d(n) in

(1.4a) [21]. That is, solving (1.4a) with a small forcing term η(n) results in an accurate approxi-

mation to the Newton direction d(n). In the case of direct methods, the forcing term η(n) = 0 for

all Newton iterations because direct methods solve (1.4a) to within roundoff errors. In the case of

indirect methods, the forcing term influences the number of linear iterations to be performed. If

the forcing term η(n) is too small, indirect methods may need to perform a large number of linear

iterations (or fail) to obtain a sufficiently accurate Newton direction d(n) to satisfy the inexact

Newton condition (2.6).

The forcing term also influences the rate of convergence and performance of Newton’s method.

Choosing η(n) too large may fail to produce a sufficiently accurate Newton direction d(n) for the

Newton iteration to converge and thus lead to undersolving (1.4a) [50]. If the approximate solution

x(n) is far from the solution x∗, LF(x(n)) may approximate F(x(n+1)) poorly [21]. Choosing η(n)

too small imposes too much accuracy on the Newton direction d(n), thus leads to oversolving (1.4a)

[21]. In other words, (1.4a) is solved to far more precision than is really needed [38]. In particular,

the additional accuracy desired in solving (1.4a) by an indirect method requires additional linear

iterations and is therefore more costly. Moreover, the rate of convergence of Newton’s method

suffers because oversolving results in little or no reduction in the residual [21]. We note that the

effects of undersolving and oversolving may occur when approximating the Newton direction d(n)

in (1.4a) using an indirect method. No precise quantitative definitions of these two phenomena

exist.

In the following sections, we review several representative strategies for choosing forcing terms,

investigate their effects, and compare their performance on several benchmark problems in the

pythNon PSE. We also demonstrate the pythNon PSE as a flexible and easy-to-use environment in

which to develop, implement, and evaluate different forcing-term strategies.
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4.4.1 Different Strategies for Choosing a Forcing Term

The main purpose of choosing a good forcing term is to achieve fast convergence and ameliorate the

effect of oversolving and undersolving [21]. However, no foolproof strategy is known for choosing

good forcing terms throughout the Newton iterations [54]. Several strategies for choosing forcing

terms have been suggested, e.g., Cai et al. [13], Dembo and Steihaug [15], Brown and Saad [12],

Eisenstat and Walker [21], An et al. [3], and Gomes-Ruggiero et al. [28]. We now summarize these

strategies.

Cai et al. [13] propose a small constant, η(n) ≡ 10−4 for each Newton iteration. It requires the

approximation of the Newton direction to be uniformly accurate [21]. Dembo and Steihaug [15]

propose the first adaptive forcing-term strategy η(n) = min{1/(n + 2), ‖F(x(n))‖}. It allows the

Newton direction d(n) to be relatively inaccurate for small n, thus requiring fewer linear iterations

to satisfy (2.6). The computation of the Newton directions is then less costly. It uses some

information about F(x(n)). However, this strategy depends on the scale of F(x(n)), and it does not

reflect the agreement of F(x(n)) and LF(x(n−1)) [21]. Brown and Saad [12] propose the strategy

η(n) = 1/2n+1. Again, this strategy allows the Newton direction d(n) to be relatively inaccurate

for small n. However, it does not use any information about F(x(n)).

Eisenstat and Walker [21] propose two adaptive forcing-term strategies that are at present the

most popular in practice:

1. Given η(0) ∈ [0, 1), choose

η(n) =
‖F(x(n))− LF(x(n−1))‖

‖F(x(n−1))‖
, (4.9)

or

η(n) =

∣∣‖F(x(n))‖ − ‖LF(x(n−1))‖
∣∣

‖F(x(n−1))‖
. (4.10)

2. Given γ ∈ [0, 1], α ∈ (1, 2], and η(0) ∈ [0, 1), choose

η(n) = γ

(
‖F(x(n))‖
‖F(x(n−1))‖

)α

. (4.11)
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The first strategy reflects the agreement between F(x(n)) and LF(x(n−1)). That is, this choice

allows the Newton direction d(n) to be relatively inaccurate when both F(x(n)) and LF(x(n−1))

disagree considerably. Equation (4.10) is used more often than (4.9) because indirect methods

may keep ‖LF(x(n−1))‖ when evaluating (2.6); thus (4.10) is more convenient and less costly to

evaluate [21]. The second strategy, on the other hand, does not reflect the agreement between

F(x(n)) and LF(x(n−1)) but depends on the reduction rate of ‖F(x(n))‖ relative to ‖F(x(n−1))‖.

The rationale is that if ‖F(x(n))‖ is relatively close to ‖F(x(n−1))‖, the approximate solution x(n)

may still be far from the solution x∗, thus the resulting η(n) allows the Newton direction d(n) to

be less accurate. Both γ and α are user-defined parameters that affect the rate of convergence of

Newton’s method. Eisenstat and Walker show that γ ≥ 0.9 and α ≥ (1 +
√

5)/2 offer an attractive

rate of convergence of the solution and have the best performances in practice [21]. However, our

experiments in Section 4.4.6 show that smaller values of γ and α are in fact necessary to successfully

solve the two-dimensional steady-state convection-diffusion equation.

In practice, these two strategies are combined with safeguards to prevent the forcing terms from

becoming too small too quickly [21]. The first strategy uses the safeguard

η(n) = max
{

η(n),
(
η(n−1)

)α}
, (4.12)

whenever
(
η(n−1)

)α
> 0.1. The second strategy uses the safeguard

η(n) = max
{

η(n), γ
(
η(n−1)

)α}
,

whenever γ
(
η(n−1)

)α
> 0.1. Following An et al. [3], we use α = (1 +

√
5)/2 for the first strategy

and α = 2 and γ = 0.9 for the second strategy.

An et al. [3] propose the strategy

η(n) =



1− 2p1, r(n−1) < p1,

s1η
(n−1), p1 ≤ r(n−1) < p2,

s2η
(n−1), p2 ≤ r(n−1) < p3,

s3η
(n−1), r(n−1) ≥ p3,

(4.13)

where 0 < s3 < s2 < s1 ≤ 1 are shrinking factors, 0 < p1 < p2 < p3 < 1 are user-defined
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parameters, and p1 ∈ (0, 0.5). r(n−1) is the ratio of the actual reduction

‖F(x(n−1))‖ − ‖F(x(n))‖

to the predicted reduction

‖F(x(n−1))‖ − ‖LF(x(n−1))‖

of F(x(n−1)) that often appears in trust region methods [3]. That is, if r(n−1) is close to 1, F(x(n))

and LF(x(n−1)) agree well. This may indicate some reduction in the residual ‖F(x(n−1))‖, thus the

forcing term η(n) should be relatively small. If r(n−1) is relatively small, F(x(n)) and LF(x(n−1))

disagree. This may indicate that the approximate solution is still far from the solution; thus the

forcing term should be relatively large, e.g., 1 − 2p1, to allow the approximation of the Newton

direction to be less accurate to ameliorate the effect of oversolving. If r(n−1) is negative, F(x(n))

and LF(x(n−1)) disagree. This only happens when the globalization strategy allows an increase

in the residual. If r(n−1) is relatively large, F(x(n)) and LF(x(n−1)) also disagree, but this also

indicates some reduction in the residual F(x(n)), thus a smaller forcing term imposes an accurate

approximation of the Newton direction for the Newton iteration to converge. From (4.13), r(n−1)

determines the forcing term η(n). In some cases, η(n) may not change throughout the iteration

because r(n−1) < p1 for some sequence of iterates. For example, if η(n) remains large for several

iterations, i.e., 1−2p1, the approximate Newton direction may not be accurate enough for Newton’s

method to converge to a solution. Thus An et al. introduce the following safeguard:

η(n) = s3η
(n−1) whenever η(n−2), η(n−1) > t and r(n−2), r(n−1) < p1. (4.14)

An et al. report that s1 = 1, s2 = 0.8, s3 = 0.5, p1 = 0.1, p2 = 0.4, p3 = 0.7, and t = 0.1 in (4.13)

and (4.14) are the most effective in their experiments [3].

Both the first strategy of Eisenstat and Walker and the strategy of An et al. determine the

forcing term based on F(x(n)) and LF(x(n−1)). If F(x(n)) and LF(x(n−1)) disagree, both strategies

choose a relatively large forcing term to ameliorate the effect of oversolving [21]. On the other hand,

if F(x(n)) and LF(x(n−1)) agree well, both strategies choose a relatively small forcing term. How-

ever, our experiments in Section 4.4.6 show that a good agreement between F(x(n)) and LF(x(n−1))
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does not imply that it is always advantageous to choose a smaller forcing term for the next Newton

iteration. This result runs counter to the intuition of many conventional forcing-term strategies.

In other words, some problems do not require high accuracy on the Newton direction for most of

the Newton iterations; thus the forcing term should be relatively large even though F(x(n)) and

LF(x(n−1)) agree well; see Section 4.4.7 for further discussion..

Gomes-Ruggiero et al. [28] propose a forcing-term strategy that based on the reduction rate of

the residual and the net computational cost of the number of linear iterations and the number of

function evaluations:

η(n) = [1/(n + 1)]ρ cos2(θ(n))
‖F(x(n))‖
‖F(x(n−1))‖

, (4.15)

where ρ ∈ (1, 2] is a user-defined constant. The term cos(θ(n)) is a measure of the trade off between

the rate of convergence and computational costs [28]:

cos(θ(n)) =
b(n)√

(a(n))2 + (b(n))2
,

a(n) := log10 ‖F(x(n))‖ − log10 ‖F(x(n−1))‖,

b(n) := log10(c
(n) − c(n−1)),

where θ(n) ∈ (−π/2, π/2), and c(n) is the sum of the total number of linear iterations and the total

number of function evaluations at the nth Newton iteration. That is, if cos(θ(n)) is negative or close

to −1, the residual decreases; thus choosing a smaller forcing term allows the approximation of the

Newton direction d(n) to be more accurate. If cos(θ(n)) is close to zero, the net computational

cost may be high or there is a risk of oversolving; thus choosing a larger forcing term allows the

approximation of the Newton direction to be less accurate. If cos(θ(n)) is positive, the residual

increases. This should not occur unless the globalization strategy allows an increase in the residual.

We note that (4.15) is similar to (4.10) except that γ in (4.10) is constant. Following Gomes-

Ruggiero et al. [28], we use ρ = 1.1.

4.4.2 Modification to the strategy of An et al.

The strategy of An et al. (4.13) determines the forcing term by comparing the ratio of the actual

reduction to the predicted reduction of the residual, i.e., r(n) to the values of p1, p2, and p3. In
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particular, if r(n−1) � 1, F(x(n)) and LF(x(n−1)) disagree greatly. This generally happens when

the approximate solution is far from the solution. According to the strategy of An et al. (4.13),

when r(n−1) > 1, η(n) = s3η
(n−1), where s3 = 0.5. However, it is possible that this forcing term

is too small, thus leading to oversolving and very little or no reduction in the residual. Section

4.4.7 shows an example where the Newton variant with the strategy of An et al. (4.13) fails when

r(n−1) � 1.

To ameliorate the effect of oversolving when r(n−1) � 1, we augment the strategy of An et al.

(4.13) with the following safeguard:

η(n) = η(n−1) whenever r(n−1) > 1. (4.16)

Section 4.4.7 shows an example where this safeguard is generally more effective.

4.4.3 A New Forcing-Term Strategy

Forcing-term strategies that do not consider the agreement between F(x(n)) and LF(x(n−1)), such

as those suggested by Cai et al. [13], Dembo and Steihaug [15], Brown and Saad [12], Eisenstat and

Walker (second strategy (4.11)) [21], and Gomes-Ruggiero et al. [28], may suffer from oversolving

because these strategies may impose an accuracy on the approximate Newton direction that results

in a disagreement between F(x(n)) and LF(x(n−1)) [21].

Both the first strategy of Eisenstat and Walker (4.10) and the strategy of An et al. (4.13),

however, consider the agreement between F(x(n)) and LF(x(n−1)) and can thus ameliorate the

effect of oversolving. To use the strategy of An et al. (4.13) to approximate the Newton direction

efficiently, one has to choose a good set of values for s1, s2, s3, p1, p2, p3, and t in (4.13) based

on the nature of the problem. Although An et al. provide a set of values that is effective in their

experiments, it is generally impossible for the user to know a priori what values will be effective

for a given problem.

The first strategy of Eisenstat and Walker (4.10) requires only a user-defined parameter for

safeguarding such as the value of α in (4.12), but it can suffer from undersolving [50]. That is,

if the approximate solution is far from the solution and F(x(n)) and LF(x(n−1)) disagree consid-
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erably, the strategy may determine a forcing term that is too large to approximate a sufficiently

accurate Newton direction. This results in very little or no reduction in the residual, thus leading

to stagnation in the Newton iterations; see Section 4.4.6 for an example.

To ameliorate the effects of oversolving and undersolving, we propose a new strategy that not

only considers the agreement between F(x(n)) and LF(x(n−1)) but also the forcing term in the

previous Newton iteration. In other words, this strategy attempts to prevent the forcing term from

becoming too large or too small too quickly by determining a fraction of the forcing term in the

previous Newton iteration. This new strategy can be viewed as a modification to the first strategy

of Eisenstat and Walker (4.10). Given η(0) ∈ [0, 1), choose

η(n) =

∣∣‖F(x(n))‖ − ‖LF(x(n−1))‖
∣∣

‖F(x(n−1))‖
η(n−1). (4.17)

We note that we have found that it is crucial to select a suitable initial forcing term η(0) for all

adaptive forcing-term strategies that require one so that oversolving does not occur in the early

Newton iterations. Section 4.4.6 shows an example where a poor choice of η(0) results in stagnation

of the Newton iterations. Unfortunately, no known strategies exist in general for choosing a good

initial forcing term. However, suppose that the new strategy (4.17) begins with a good initial

forcing term η(0). If the approximate solution is far from the solution and F(x(n)) and LF(x(n−1))

disagree considerably, the fraction in (4.17) can be relatively large. To prevent the forcing term

from becoming too large too quickly, the resulting forcing term is bounded by the forcing term in

the previous Newton iteration, thus ameliorating the effect of undersolving.

This new forcing-term strategy is robust. Unlike the strategy of An et al. (4.13), it does

not require the user to define and change parameters in the forcing-term strategy. It also does

not require safeguarding because the forcing term is bounded by the forcing term in the previous

Newton iteration, and the forcing term is less than η(0) throughout the Newton iterations. We

leave the proof of its rate of convergence to future work.

In the following sections, we compare and evaluate the effects of this new strategy with other

forcing-term strategies on a suite of benchmark problems in the pythNon PSE.
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4.4.4 The Test Problems

We use 5 benchmark problems to evaluate the effects of different forcing-term strategies. Following

An et al. [3], we use the first three problems, in particular the “Tridiagonal” system, to show that

the first strategy of Eisenstat and Walker (4.10) can suffer from undersolving. The fourth problem

shows that the strategy of An et al. (4.13) can suffer from oversolving. We note that the first four

problems come with standard initial guesses xs and have the exact solution x∗ = 1.

Generalized function of Rosenbrock [3]

F1(x) = −4c(x2 − x2
1)x1 − 2(1− x1), (4.18a)

Fi(x) = 2c(xi − x2
i−1)− 4c(xi+1 − x2

i )xi − 2(1− xi), i = 2, 3, . . . ,m− 1, (4.18b)

Fm(x) = 2c(xm − x2
m−1), (4.18c)

with c = 2, m = 5000, and xs = (1.2, 1.2, . . . , 1.2)T ∈ <m.

“Tridiagonal” system [44]

F1(x) = 4(x1 − x2
2), (4.19a)

Fi(x) = 8xi(x2
i − xi−1)− 2(1− xi) + 4(xi − x2

i+1), i = 2, 3, . . . ,m− 1, (4.19b)

Fm(x) = 8xm(x2
m − xm−1)− 2(1− xm), (4.19c)

with m = 6000 and xs = (12, 12, . . . , 12)T ∈ <m.
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“Pentadiagonal” system [44]

F1(x) = 4(x1 − x2
2) + x2 − x2

3, (4.20a)

F2(x) = 8x2(x2
2 − x1)− 2(1− x2) + 4(x2 − x2

3) + x3 − x2
4, (4.20b)

Fi(x) = 8xi(x2
i − xi−1)− 2(1− xi) + 4(xi − x2

i+1) + x2
i−1 − xi−2 (4.20c)

+ xi+1 − x2
i+2, i = 3, 4, . . . ,m− 2,

Fm−1(x) = 8xm−1(x2
m−1 − xm−2)− 2(1− xm−1) + 4(xm−1 − x2

m) (4.20d)

= + x2
m−2 − xm−3,

Fm(x) = 8xm(x2
m − xm−1)− 2(1− xm) + x2

m−1 − xm−2, (4.20e)

with m = 5000 and xs = (2, 2, . . . , 2)T ∈ <m.

Extended Rosenbrock Function [45]

F2i−1 = 10(x2i − x2
2i−1), (4.21a)

F2i = 1− x2i−1, (4.21b)

with i = 1, 2, . . . ,m/2, m = 32768 (m is a multiple of 2), and xs = (−1.2, 1, . . . ,−1.2, 1)T ∈ <m.

Following An et al. [3], we solve the first three problems with 10 different initial guesses to

illustrate the effects of different strategies, i.e., x(0) = jxs for j = 1, 2, . . . , 5, x(0) = j1 with 1 :=

(1, 1, . . . , 1)T ∈ <m for j = 2, 3, . . . , 5, and x(0) = 0. We note that we only solve the “pentadiagonal”

system with 9 different initial guesses because xs is equivalent to 2, where 2 := (2, 2, . . . , 2)T ∈ <m.

We solve the extended Rosenbrock problem with 5 different initial guesses, i.e., x(0) = jxs for

j = 1, 2, . . . , 5.

To show that an ideal forcing-term strategy should not reduce the forcing term simply based on

the agreement of F(x(n)) and LF(x(n−1)) and that constant forcing-term strategies may sometimes

outperform adaptive forcing-term strategies, we consider solving the two-dimensional steady-state

convection-diffusion equation [38]

−∇2u + κu(ux + uy) = f(x, y) (4.22)
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with homogeneous Dirichlet boundary conditions on the unit square (0, 1)× (0, 1), where ∇2 is the

Laplacian operator

∇2 =
∂2

∂x2
+

∂2

∂y2
,

and f(x, y) has been constructed so that the exact solution u∗ is

u∗ = 10xy(1− x)(1− y)ex4.5
.

We discretize (4.22) on a 100× 100 uniform grid using centered difference to obtain a system of

m equations for m unknowns, where m = 104. The m unknowns of this system are the values of u

at these grid points. Each column of the unknowns u is stored in the one-dimensional vector x of

size m. That is, u(ih, jh) = xi+(j−1)
√

m for i, j = 1, . . . ,
√

m, where h = 1/(
√

m + 1). We note that

(4.22) is a quasi-linear PDE. That is, it is (generally) a nonlinear PDE; however, its highest-order

derivative terms appear linearly. Because of this, it is possible to use a preconditioner M = −∇−2

to aid in obtaining a numerical solution. Such preconditioning is a necessity in order to solve the

system of NAEs arising from the discretization of (4.22) in practice. Operating with M on the left

and noting −M∇2u = u, we obtain the preconditioned equation

u + κM(u(ux + uy))−Mf = 0. (4.23)

The discrete version of (4.23) defines the residual for this problem.

In practice, approximation of the effect of M on the discrete version of (4.23) is realized by

means of a fast Poisson solver, i.e., a numerical routine that uses the fast Fourier transform to

solve the Poisson equation ∇2w(x, y) = g(x, y) for w(x, y) with a uniform mesh on the unit square

and subject to homogeneous Dirichlet conditions; see, e.g., [38] for more details.

Following Kelley [38], we set both the absolute and relative tolerances to h2/10.

The initial guess for this problem is x(0) = 0. We consider 7 test cases: κ = 100, 300, 500,

700, 1000, 2000, and 7000. We note that the initial guess is farther from the solution for the larger

values of κ [29, 38]. It also becomes more convection dominated, making the centered discretization

less stable and generally more difficult to solve [54]; see Section 4.4.7 for further discussion.
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4.4.5 The Experiments

We use pythNon to solve all the problems with the variant of Newton’s method shown in Algorithm

5. Algorithm 5 uses the backtracking globalization strategy to ensure that the approximate solutions

converge to a solution for any given initial guess [21]. Backtracking is a line search method that

searches for a reduction in the residual by reducing the step length at each line search iteration.

That is, backtracking first determines if a full Newton step satisfies (4.24) below. If the full Newton

step is rejected, it determines a step length λ(l) ∈ [θminλ(l−1), θmaxλ
(l−1)], where l ≥ 1 and λ(0) = 1

by minimizing the merit function

φ(λ) =
1
2
‖F(x + λd)‖2

using a quadratic polynomial that interpolates values of φ(λ). The values θmin and θmax are the

minimum and maximum step-length reduction factors that prevent backtracking from reducing

the step length by too much or too little [38]. The backtracking in our experiments minimizes a

three-point quadratic polynomial p(λ) that satisfies the following conditions [54]:

p(0) = φ(0) =
1
2
‖F(x(n))‖2,

p(λ(l−1)) = φ(λ(l−1)) =
1
2
‖F(x(n) + λ(l−1)d(n))‖2,

p(λ(l−2)) = φ(λ(l−2)) =
1
2
‖F(x(n) + λ(l−2)d(n))‖2,

where l ≥ 2 and λ(1) = θmax. We use the standard choices θmin = 0.1 and θmax = 0.5 [16, 21].

Backtracking terminates when the “sufficient-decrease” condition

‖F(x(n) + λ(l)d(n))‖ ≤ (1− νλ(l)(1− η(n)))‖F(x(n))‖ (4.24)

holds. Comparing to (2.6), (4.24) is equivalent to

‖F(x(n))‖ − ‖F(x(n) + λ(l)d(n))‖ ≥ νλ(l)(1− η(n))‖F(x(n))‖,

whereas (2.6) is equivalent to

‖F(x(n))‖ − ‖LF(x(n))‖ ≥ (1− η(n))‖F(x(n))‖.
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Algorithm 5 Inexact Newton Backtracking Method.

Input: initial iterate x(0), residual function F, absolute tolerance τa, and relative tolerance τr.

Output: the approximate solution x

1: x← x(0)

2: while ‖F(x)‖ > min {τr‖F(x(0))‖+ τa, τr
√

m + τa} do

3: Choose a forcing term η; see Section 4.4.1

4: Find d such that ‖F(x) + JF(x)d‖ ≤ η||F(x)||

5: If d cannot be found, terminate with failure

6: λ← 1

7: while ‖F(x + λd)‖ > (1− νλ(1− η))‖F(x)‖ do

8: Determine λ ∈ [θminλ, θmaxλ] that approximately minimizes 1
2‖F(x + λd)‖2

9: end while

10: x← x + λd

11: end while

12: return x
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In other words, an indirect method such as GMRES terminates with an approximate Newton direc-

tion when the predicted reduction in ‖F(x(n))‖ is at least (1− η(n))‖F(x(n))‖, and a globalization

strategy such as backtracking terminates with a step length when the actual reduction in ‖F(x(n))‖

is at least νλ(l)(1− η(n))‖F(x(n))‖ [54]. Following An et al. [3], we use ν = 0.5.

Algorithm 5 terminates with an approximate solution to the problem when

‖F(x(n))‖ ≤ min{τr‖F(x(0))‖+ τa, τr

√
m + τa} (4.25)

holds. Following An et al. [3], we use τr = τa = 10−6 for all problems except τr = τa = h2/10

for the convection-diffusion problem; see Section 4.4.4. Algorithm 5 is deemed to fail if one of the

following situations occurs:

• The number of Newton iterations reaches 300 without satisfying (4.25).

• The number of line search iterations reaches 20 without satisfying (4.24).

• The Newton iterations “stagnate”, or the convergence of the solution is too slow [22], i.e.,

∣∣∣‖F(x(n−1))‖ − ‖F(x(n))‖
∣∣∣ ≤ τr‖F(x(n))‖.

Following Pernice and Walker [55], we impose a final safeguard for all adaptive forcing-term

strategies to ameliorate the effect of oversolving when the approximate solution is close to the

solution. That is, if η(n) ≤ 2ε‖F(x(n))‖, then η(n) = 0.8ε/‖F(x(n)‖, where

ε = min {τr‖F(x(0))‖+ τa, τr

√
m + τa}.

4.4.6 Results

We implement 8 variants of Newton’s method based on Algorithm 5 with the following forcing-term

strategies in the pythNon PSE:

• the strategy of Cai et al. (CGKT) [13],

• the strategy of Dembo and Steihaug (DS) [15],

• the strategy of Brown and Saad (BS) [12],
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• the first strategy of Eisenstat and Walker (EW1) [21],

• the second strategy of Eisenstat and Walker (EW2) [21],

• the strategy of An et al. (AML) [3],

• the modified strategy of An et al. (mAML) in Section 4.4.2,

• the strategy of Gomes-Ruggiero et al. (GLT) [28], and

• the new strategy (New) in Section 4.4.3.

To provide an initial forcing term η(0) for some forcing-term strategies such as EW1, EW2, AML,

mAML, GLT, and New, we use η(0) = 0.5 for the first three benchmark problems, η(0) = 0.9 for the

extended Rosenbrock problem, and η(0) = 0.95 for the convection-diffusion problem. We also define

the following notations for reporting the statistics of each Newton variant from the pythNon PSE:

• NI: total number of Newton iterations,

• LI: total number of linear iterations,

• FE: total number of function evaluations,

• CPU: CPU time spent in seconds, and

• *: a failure in Algorithm 5; see Section 4.4.5.

We note that the CPU time of each Newton variant reported in the experiments is the minimum of

the CPU times for solving a given problem with the same Newton variant 3 times. Following An et

al. [3], we compute the average of NI, LI, FE, and CPU for each forcing-term strategy with different

initial guesses or problem parameters on a given problem in order to characterize its performance.

Table 4.1 shows the statistics of each Newton variant with different forcing-term strategies that

solves the generalized function of Rosenbrock with 10 different initial guesses. We observe that all

Newton variants solve the problem with all initial guesses successfully. In particular, the Newton

variants AML and mAML have the least average CPU time spent, i.e., 5.1 seconds. The Newton

variants AML and mAML are comparable to the Newton variant BS and less expensive on average
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than the Newton variant New by just over 21%. The Newton variants CGKT and EW2 are also

competitive for this problem. This table shows that Newton variants with adaptive forcing-term

strategies such as DS and EW1 can be more expensive on average than Newton variants with

constant forcing-term strategies such as CGKT by as much as 98%.

Table 4.2 shows the statistics of each Newton variant with different forcing-term strategies that

solves the “tridiagonal” system with 10 different initial guesses. This table shows that the Newton

variants DS, EW1, EW2, and GLT fail to solve the system with initial guesses x(0) = 3xs and

x(0) = 5xs, and the Newton variants EW1 and EW2 also fail to solve the system with x(0) = 4xs.

These Newton variants either perform too many Newton iterations or converge to a solution too

slowly; see Section 4.4.5. We note that the average values for NI, LI, FE, and CPU in this table only

include the successful cases. This table shows that the Newton variant New has the least average

CPU time, i.e., 9.1 seconds. The Newton variant BS is the only variant that is comparable to the

Newton variant New on this problem for all initial guesses.

Table 4.3 shows the statistics of each Newton variant with different forcing-term strategies that

solves the “pentadiagonal” system with 9 different initial guesses. We note that xs is equivalent

to 2 in this problem; thus we exclude the results for x(0) = 2 in the table. This table shows

that all Newton variants solve the problem successfully for all initial guesses used. In particular,

the Newton variants AML and mAML have the least average CPU time, i.e., 7.7 seconds. These

Newton variants are on average less expensive than the Newton variant New by just over 22%.

This table shows that the Newton variants BS and GLT are also competitive, whereas the Newton

variants CGKT, DS, EW1, and EW2 perform poorly.

Table 4.4 shows the statistics of each Newton variant with different forcing-term strategies that

solves the extended Rosenbrock function with 5 different initial guesses. This table shows that the

Newton variants BS and AML fail to solve the system with initial guesses x(0) = 3xs because they

converge to a solution too slowly; see Section 4.4.5. Comparing to the Newton variant AML, the

Newton variant mAML solves the problem with all initial guesses successfully. This table shows

that the Newton variant with the constant forcing-term strategy (CGKT) has the least average
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Table 4.1: Results for generalized function of Rosenbrock.
Choice {x(0)} = xs 2xs 3xs 4xs 5xs 2 3 4 5 0 Average
CGKT NI 4 7 8 9 10 6 8 8 9 9 7

LI 46 83 78 95 98 69 97 81 95 132 87
FE 51 91 87 105 109 76 106 90 105 151 97

CPU 3.6 6.4 6.1 7.3 7.7 5.3 7.4 6.3 7.3 10.7 6.8
DS NI 8 10 15 28 51 11 17 33 24 9 20

LI 37 50 77 195 478 54 106 245 155 41 143
FE 47 64 102 276 683 69 143 355 214 55 200

CPU 3.3 4.4 7.1 19.2 47.4 4.8 9.9 24.6 14.8 3.8 13.9
BS NI 6 10 9 12 13 8 10 12 12 8 10

LI 38 64 51 74 87 47 54 82 82 45 62
FE 46 76 62 89 103 57 67 97 98 58 75

CPU 3.2 5.3 4.3 6.2 7.2 4.0 4.7 6.8 6.8 4.1 5.3
EW1 NI 7 10 33 29 21 13 19 34 25 10 20

LI 31 49 279 226 118 76 141 283 173 47 142
FE 39 63 393 308 156 101 187 399 232 59 193

CPU 2.7 4.4 27.4 21.4 10.8 7.0 13.0 27.7 16.1 4.1 13.5
EW2 NI 5 9 22 15 32 9 13 23 15 10 15

LI 34 49 79 59 128 44 54 94 60 46 64
FE 40 59 117 79 202 55 72 133 79 60 89

CPU 2.8 4.1 8.1 5.5 13.9 3.8 5.0 9.2 5.5 4.2 6.2
AML NI 6 11 10 12 13 8 10 12 12 9 10

LI 34 67 52 79 75 46 50 76 71 43 59
FE 41 84 64 96 91 55 63 92 86 57 72

CPU 2.9 5.8 4.5 6.9 6.5 3.8 4.4 6.4 6.0 4.0 5.1
mAML NI 6 11 10 12 13 8 10 12 12 9 10

LI 34 67 52 79 73 46 50 76 71 42 59
FE 41 84 64 96 89 55 63 92 86 56 72

CPU 2.8 5.8 4.5 6.7 6.2 3.8 4.4 6.4 6.0 3.9 5.1
GLT NI 5 10 10 17 14 10 13 10 15 8 11

LI 28 59 49 108 77 52 75 54 88 44 63
FE 34 71 61 141 95 65 96 65 115 57 80

CPU 2.4 5.0 4.3 9.8 6.7 4.5 6.7 4.5 8.0 4.1 5.6
New NI 6 10 9 13 12 9 10 14 12 8 10

LI 38 74 58 100 87 65 73 115 90 49 74
FE 45 86 69 115 102 76 85 134 104 62 87

CPU 3.1 6.0 4.8 8.1 7.2 5.3 6.0 9.4 7.3 4.3 6.2
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Table 4.2: Results for “tridiagonal” system.

Choice {x(0)} = xs 2xs 3xs 4xs 5xs 2 3 4 5 0 Average
CGKT NI 12 54 56 62 66 6 8 8 11 9 29

LI 109 763 782 868 927 69 97 80 130 132 395
FE 123 928 952 1063 1134 76 106 89 142 151 476

CPU 11.0 81.7 83.3 91.8 99.9 6.7 9.3 7.7 12.4 13.6 41.7
DS NI 42 284 * 110 * 11 17 34 22 9 66

LI 342 3706 * 1244 * 54 106 254 135 41 735
FE 485 5915 * 1833 * 69 143 370 184 55 1131

CPU 41.8 506.8 * 158.2 * 5.9 12.4 32.1 15.9 4.8 97.2
BS NI 12 14 22 16 31 8 9 12 12 8 14

LI 65 70 213 80 375 47 54 82 82 45 111
FE 80 87 247 99 443 57 65 97 98 58 133

CPU 7.0 7.7 21.6 8.5 38.8 5.0 5.6 8.4 8.6 5.0 11.6
EW1 NI 44 176 * * * 13 19 35 24 10 45

LI 394 2642 * * * 74 139 297 169 46 537
FE 544 3828 * * * 97 185 419 225 58 765

CPU 47.5 330.4 * * * 8.4 16.0 36.2 19.5 5.1 66.2
EW2 NI 92 242 * * * 9 11 22 12 10 56

LI 401 1609 * * * 44 43 97 52 46 327
FE 805 3097 * * * 55 56 134 65 60 610

CPU 68.7 261.7 * * * 4.7 4.8 11.4 5.6 5.2 51.7
AML NI 12 21 15 26 29 8 10 13 12 8 15

LI 55 176 78 265 331 46 47 80 71 40 118
FE 69 210 96 310 389 55 59 99 86 50 142

CPU 6.0 18.3 8.3 27.1 34.5 4.8 5.1 8.7 7.5 4.3 12.5
mAML NI 12 21 15 26 29 8 10 13 12 8 15

LI 55 176 78 265 331 46 47 80 71 40 118
FE 69 210 96 310 389 55 59 99 86 50 142

CPU 6.0 18.4 8.4 27.1 34.1 4.8 5.2 8.6 7.5 4.3 12.4
GLT NI 40 35 * 103 * 9 13 10 15 8 29

LI 334 277 * 1221 * 51 75 54 88 43 267
FE 466 375 * 1845 * 63 96 65 115 56 385

CPU 40.5 33.1 * 160.2 * 5.5 8.3 5.6 10.0 4.9 33.5
New NI 14 15 15 15 16 9 9 14 12 8 12

LI 116 93 92 96 109 64 62 114 91 48 88
FE 132 109 109 112 128 75 73 133 105 61 103

CPU 11.6 9.5 9.5 9.8 11.2 6.7 6.4 11.6 9.2 5.3 9.1
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Table 4.3: Results for “pentadiagonal” system.
Choice {x(0)} = xs 2xs 3xs 4xs 5xs 3 4 5 0 Average
CGKT NI 7 10 12 10 18 8 10 10 9 10

LI 83 124 137 94 194 83 124 106 142 120
FE 91 136 154 105 221 92 136 117 162 134
CPU 9.6 14.3 16.2 11.0 23.3 9.7 14.3 12.3 17.2 14.2

DS NI 12 36 18 32 95 19 36 26 9 31
LI 54 265 85 221 918 110 265 167 38 235
FE 72 392 114 312 1425 156 392 237 52 350
CPU 7.5 40.8 11.9 32.6 148.5 16.4 40.8 24.7 5.4 36.5

BS NI 8 13 11 15 14 10 13 12 8 11
LI 44 83 55 97 86 47 83 65 42 66
FE 54 100 68 116 104 60 100 80 55 81
CPU 5.7 10.4 7.1 12.2 11.1 6.3 10.4 8.4 5.7 8.6

EW1 NI 10 20 22 35 123 19 20 29 10 32
LI 43 118 129 267 1588 127 118 202 42 292
FE 54 163 177 367 2274 173 163 277 57 411
CPU 5.6 17.1 18.4 38.5 239.4 18.0 17.1 29.0 5.9 43.2

EW2 NI 10 22 27 46 56 14 22 15 10 24
LI 44 78 108 179 221 52 78 53 45 95
FE 56 117 159 314 413 71 117 72 59 153
CPU 5.9 12.2 16.7 32.6 42.8 7.6 12.2 7.5 6.2 15.9

AML NI 9 11 11 15 14 10 11 12 9 11
LI 43 54 53 96 81 47 54 67 40 59
FE 54 66 66 119 99 60 66 82 54 74
CPU 5.7 6.9 6.9 12.5 10.4 6.3 6.9 8.6 5.7 7.7

mAML NI 9 11 11 15 14 10 11 12 9 11
LI 43 54 53 96 81 47 54 67 39 59
FE 54 66 66 119 99 60 66 82 53 73
CPU 5.7 6.9 6.9 12.5 10.3 6.3 6.9 8.6 5.6 7.7

GLT NI 10 10 11 29 14 10 10 18 8 13
LI 48 48 44 206 56 51 48 105 41 71
FE 61 59 57 283 73 63 59 143 54 94
CPU 6.4 6.2 6.0 29.5 7.6 6.6 6.2 14.8 5.6 9.9

New NI 8 13 14 11 15 9 13 12 8 11
LI 53 92 94 58 106 52 92 80 45 74
FE 63 109 111 71 125 62 109 94 58 89
CPU 6.6 11.4 11.7 7.5 13.3 6.5 11.4 9.9 6.1 9.4
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CPU time, i.e., 0.7 seconds. Moreover, it is at least 71% less expensive than all Newton variants

with adaptive forcing-term strategies. Apart from the convergence problems just mentioned for BS

and AML, the performance of all the adaptive forcing-term strategies are comparable.

Table 4.5 shows the statistics of each Newton variant with different forcing-term strategies that

solves the convection-diffusion equation with 7 different values of κ. This table shows that all

Newton variants except the Newton variant EW2 (γ = α = 1) and the Newton variant with the

constant forcing-term strategy (η(n) ≡ 0.95) fail to solve the system when κ > 1000. These Newton

variants either perform too many Newton iterations or converge to a solution too slowly; see Section

4.4.5. We note that the average CPU time is now excluded because it gives a skewed measure, i.e.,

many Newton variants fail to solve the problem with different values of κ successfully. This table

shows that the Newton variants EW1, EW2 (γ = 0.9, α = 2), and New solve the problem with κ

up to 1000. Moreover, the CPU times for these 3 Newton variants with different initial guesses are

comparable. The Newton variant EW2 solves the problem with κ = 2000 with γ = 1 and α = 1.

The Newton variant with the constant forcing-term strategy (η(n) ≡ 0.95) is the only variant that

solves the problem with the largest value of κ, i.e., κ = 7000.
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Table 4.4: Results for extended Rosenbrock function.
Choice {x(0)} = xs 2xs 3xs 4xs 5xs Average
CGKT NI 10 2 3 2 2 3

LI 20 4 6 4 4 7
FE 56 7 10 7 7 17
CPU 1.8 0.3 0.4 0.6 0.3 0.7

BS NI 8 9 * 9 11 9
LI 15 16 * 15 19 16
FE 33 35 * 31 45 36
CPU 1.1 1.3 * 1.1 1.4 1.2

DS NI 8 11 19 13 20 14
LI 15 19 35 22 36 25
FE 32 50 118 57 123 76
CPU 1.5 1.4 4.0 2.3 3.6 2.5

EW1 NI 10 14 13 17 16 14
LI 18 24 22 29 27 24
FE 45 66 53 87 74 65
CPU 1.5 2.2 2.8 2.9 3.5 2.6

EW2 NI 10 11 13 13 17 12
LI 18 19 22 22 29 22
FE 44 50 53 57 98 60
CPU 1.4 1.9 2.0 2.0 2.9 2.0

AML NI 10 12 * 13 20 13
LI 18 21 * 22 36 24
FE 45 54 * 57 123 69
CPU 1.4 1.6 * 1.9 3.0 2.0

mAML NI 10 11 19 13 20 14
LI 18 19 35 22 36 26
FE 44 50 118 57 123 78
CPU 1.3 1.6 3.2 2.2 2.9 2.2

GLT NI 8 11 10 13 11 10
LI 15 21 18 24 19 19
FE 32 56 46 63 45 48
CPU 1.1 1.8 1.9 2.1 1.5 1.7

New NI 10 14 13 17 16 14
LI 18 24 22 29 27 24
FE 45 66 53 87 74 65
CPU 1.6 2.3 2.4 2.9 2.9 2.4
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Table 4.5: Results for the convection-diffusion equation.
Choice {κ} = 100 300 500 700 1000 2000 7000

CGKT NI 6 10 16 * * * *

LI 98 325 560 * * * *

FE 111 360 638 * * * *

CPU 4.4 24.0 43.6 * * * *

DS NI 8 12 * * * * *

LI 50 184 * * * * *

FE 65 222 * * * * *

CPU 2.1 10.2 * * * * *

BS NI 6 11 * * * * *

LI 49 275 * * * * *

FE 62 312 * * * * *

CPU 2.2 20.7 * * * * *

EW1 NI 10 12 14 15 16 * *

LI 49 114 186 232 320 * *

FE 63 135 214 257 349 * *

CPU 2.2 7.3 12.6 15.6 24.0 * *

EW2 NI 8 10 14 15 17 * *

LI 45 108 173 230 312 * *

FE 57 126 200 256 343 * *

CPU 2.0 5.8 10.2 16.1 22.7 * *

AML NI 9 9 13 12 * * *

LI 49 109 287 208 * * *

FE 62 126 333 230 * * *

CPU 2.0 5.9 20.3 14.7 * * *

mAML NI 9 9 26 12 * * *

LI 48 109 812 203 * * *

FE 61 126 868 225 * * *

CPU 1.9 5.0 62.9 13.5 * * *

GLT NI 6 11 * * * * *

LI 48 183 * * * * *

FE 60 217 * * * * *

CPU 1.8 9.4 * * * * *

New NI 10 11 12 14 15 * *

LI 49 130 162 238 337 * *

FE 63 150 187 262 366 * *

CPU 1.9 7.1 10.9 16.1 24.4 * *

EW2 NI 51 76 82 88 92 100 *

(γ = α = 1) LI 85 196 300 376 493 852 *

FE 140 280 391 472 595 965 *

CPU 3.9 7.9 13.0 16.2 20.2 38.1 *

Constant NI 75 146 151 179 180 193 220

(η(n) ≡ 0.95) LI 97 286 352 476 639 1079 3375

FE 176 439 511 663 829 1286 3611

CPU 5.0 13.3 15.9 21.1 26.5 46.3 180.9
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4.4.7 Discussion

Our results show that none of the forcing-term strategies we have considered is uniformly superior,

in agreement with the finding of Pawlowski et al. [54]. This suggests that it is beneficial to have

several forcing-term strategies available to determine the most effective strategy for solving a given

problem. Table 4.6 summarizes the best forcing-term strategy for solving each benchmark problem

in the pythNon PSE based on average CPU time required over a number of initial guesses. We note

that each of these forcing-term strategies in the table successfully solves the given problem with all

the different initial guesses or problem parameters.

Table 4.6: The best Newton variant in terms of forcing-term strategy for solving
the benchmark problems.

Problem Best forcing-term strategy
Generalized function of Rosenbrock AML and mAML
“Tridiagonal” system New
“Pentadiagonal” system AML and mAML
Extended Rosenbrock function CGKT
Convection-diffusion equation Constant (η(n) ≡ 0.95)

The new forcing-term strategy (4.17) that we propose is both efficient and robust. It is the only

forcing-term strategy that succeeds in the benchmark problems with different guesses and problem

parameters, with the exception of the convection-diffusion equation with the largest two values of

κ. In fact, if no special care is given, Newton variants with any of the forcing-term strategies in

our experiments will eventually fail to solve the convection-diffusion equation when the value of

κ becomes very large. That is, when the convection-diffusion equation is convection dominated,

i.e., κ � 1, and the computational grid is relatively coarse, symmetric spatial discretizations for

the convection-diffusion equation such as centered finite-differences become unstable, producing ill-

conditioned Jacobian matrices [54]. This ill-conditioning leads to poor convergence of the indirect

method for solving (1.4a). Thus, a more stable non-symmetric (or upwinded) discretization such

as the stabilized finite-element method may be used to produce Jacobian matrices that are better

conditioned [54].
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In the following sections, we give examples that illustrate the following results:

• The most popular forcing-term strategy EW1 can suffer from undersolving.

• AML can suffer from suffer oversolving whereas the newly proposed modified AML ameliorates

this effect.

• Adaptive forcing-term strategies require a good initial forcing term in order to successfully

solve a given problem.

• An ideal forcing-term strategy should not reduce the forcing term simply based on the good

agreement of F(x(n)) and LF(x(n−1)).

• Although adaptive forcing-term strategies generally improve the performance of Newton’s

method, they may still be outperformed sometimes by constant forcing-term strategies.

An example of undersolving. To show that the most popular forcing-term strategy EW1

can suffer from undersolving, Table 4.2 shows that the Newton variant EW1 fails to solve the

“tridiagonal” system with initial guesses x(0) = 3xs, 4xs, and 5xs because it either performs

too many Newton iterations or converges to a solution too slowly. To show the benefits gained by

reducing undersolving, we impose a maximum forcing term of 10−3 in the first 10 Newton iterations

of the Newton variant EW1 for solving the “tridiagonal” system with x(0) = 3xs. Figure 4.4 shows

the forcing term η(n) at each Newton iteration for EW1, the modified EW1, and New. It shows

that EW1 has η(n) > 0.1 in the first 12 iterations. On the other hand, New continues to reduce its

forcing term in the first 12 iterations. We note that this figure only show the forcing terms for the

first 20 Newton iterations; the Newton variant EW1 ultimately fails after 300 Newton iterations.

This figure shows that the the modified EW1 solves the problem in 19 Newton iterations whereas

New solves the problem in 15 Newton iterations.

Figure 4.5 shows the ratio of the actual reduction to the predicted reduction of the residual,

r(n), by EW1, the modified EW1, and New at each Newton iteration. In other words, it shows

the agreement of F(x(n)) and LF(x(n−1)) for each Newton variant at each Newton iteration. That
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Figure 4.4: The forcing term η(n) at each Newton iteration.
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is, the closer the ratio is to 1, the better agreement of F(x(n)) and LF(x(n−1)). This figure shows

that F(x(n)) and LF(x(n−1)) agree fairly well in the first 12 Newton iterations under EW1. At the

14th Newton iteration, it reduces its forcing term to near 10−4 (shown in Figure 4.4). This leads

to a great disagreement between F(x(n)) and LF(x(n−1)). Its ratio is less than 0.6 throughout the

rest of the Newton iterations. On the other hand, this figure shows that F(x(n)) and LF(x(n−1))

agree well under New. Compared to EW1 and the modified EW1, the curve of r(n) under New is

increasing smoothly to 1; i.e., the forcing terms do not become too large or too small too quickly.
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Figure 4.5: The ratio of the actual reduction to the predicted reduction of the
residual, r(n), at each Newton iteration.

An example of oversolving in AML. To show that the Newton variant AML can suffer from

oversolving (2.6) when r(n) � 1, Figure 4.6 shows the forcing term η(n) of AML and mAML at
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each Newton iteration when solving the extended Rosenbrock function with x(0) = 3xs. This figure

shows that mAML uses the same forcing term between iteration 4 and 8. On the other hand, AML

reduces its forcing term throughout the Newton iteration even though F(x(n)) and LF(x(n−1))

disagree greatly, thus leading to oversolving.
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10−2

10−1
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n

η
(n
)
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Figure 4.6: The forcing term η(n) of AML and mAML at each Newton iteration.

Figure 4.7 shows the ratio of the actual reduction to the predicted reduction of the residual of

AML and mAML at each Newton iteration. This figure shows that both strategies have r(4) ≈ 3.2

and r(5) ≈ 2.2. That is, F(x(n)) and LF(x(n−1)) disagree greatly at n = 4 and 5. We note that the

Newton variant AML fails after 8 Newton iterations, whereas the Newton variant mAML solves

the problem with 19 Newton iterations.

73



0 5 10 15 200

0.5

1

1.5

2

2.5

3

3.5

4

n

r(n
)

AML
mAML

Figure 4.7: The values of r(n) of AML and mAML at each Newton iteration.
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Choosing an initial forcing term. Our experiments show that Newton variants with adaptive

forcing-term strategies require a good initial forcing term η(0) to solve a problem successfully. For

example, Newton variants with adaptive forcing-term strategies such as EW1, EW2, AML, GLT,

and New fail to solve the extended Rosenbrock function with x(0) = 3xs and η(0) = 0.5. On the

other hand, these Newton variants solve the problem successfully with η(0) = 0.9. This suggests

that these Newton variants suffer from oversolving in the early Newton iterations.

The agreement between F(x(n)) and LF(x(n−1)). As mentioned previously, a relatively large

forcing term helps to ameliorate the effect of oversolving when F(x(n)) and LF(x(n−1)) do not agree

well. However, our experiments show that the converse is not true. That is, a good agreement

between F(x(n)) and LF(x(n−1)) does not imply that a smaller forcing term will be effective. In

other words, even though F(x(n)) and LF(x(n−1)) agree well, it is possible that a small forcing

term may still lead to oversolving. For example, Table 4.5 shows that EW1, which determines its

forcing term based on the agreement of F(x(n)) and LF(x(n−1)), fails on the convection-diffusion

problem when κ ≥ 2000. This is because the strategy uses forcing terms that are too small in the

early Newton iterations and causes oversolving. On the other hand, the Newton variant with the

constant forcing-term strategy (η(n) ≡ 0.95) is the only Newton variant that successfully solves the

problem with different values of κ. This suggests that the problem requires the forcing terms to be

relatively large throughout the Newton iteration.

To show the effect of oversolving in EW1 on the convection-diffusion problem with κ = 2000,

we impose a minimum forcing term of 0.95 in EW1 for the first 20 Newton iterations. Figure 4.8

shows that EW1 reduces its forcing terms throughout the Newton iteration because F(x(n)) and

LF(x(n−1)) agree well. However, this strategy suffers from oversolving. On the other, by keeping

the forcing terms to 0.95 in the first 20 iterations, the modified EW1 solves the problem successfully.

Figure 4.9 shows that the values of r(n) for EW1 with n > 1 fall between 0.5 and 1.5. This

indicates that F(x(n)) and LF(x(n−1)) agree well after the first Newton iteration. However, the

strategy fails after 11 iterations. On the other hand, the modified EW1 terminates successfully in

39 Newton iterations.
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Figure 4.8: The forcing term η(n) of EW1 and the modified EW1 at each Newton
iteration.
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iteration.
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Constant forcing term vs. adaptive forcing terms. Tables 4.1–4.5 show that adaptive

forcing-term strategies such as the new forcing-term strategy (4.17) generally improve the per-

formance of the Newton variants. However, a constant forcing-term strategy (η(n) ≡ 10−4) is

well-suited for the Newton variants that solve the extended Rosenbrock function because it turns

out to be advantageous to always have an accurate computation of the Newton direction. In the

case of the convection-diffusion equation, the adaptive forcing-term strategies outperform the con-

stant forcing-term strategies for small values of κ. On the other hand, a constant forcing-term

strategy with η(n) ≡ 0.95 outperforms the adaptive forcing-term strategies for large values of κ;

in particular none of these adaptive forcing-term strategies successfully solves the problem with

κ = 7000.
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Chapter 5

Conclusions

The process of solving systems of NAEs is generally difficult and complex, from analyzing the

existence and uniqueness of solutions of the system to formulating a computationally efficient or

at least feasible variant of Newton’s method to solve the system. To facilitate this process, we

have defined the concept of a PSE for the numerical solution of NAEs and created a PSE called

pythNon for the implementation and evaluation of different variants of Newton’s method. We

have demonstrated the effectiveness of pythNon as both a teaching and research tool for rapid

prototyping and numerical experimentation.

In particular, taking advantage of the power, flexibility, and ease of use of the pythNon PSE,

we have studied the effects of a number of different forcing-term strategies for approximating the

Newton direction. We have found that pythNon is very effective for determining the most effective

forcing-term strategy on a given problem. Our results indicate that no known forcing-term strategy

is uniformly superior. We have also demonstrated that Newton variants with the first forcing-term

strategy of Eisenstat and Walker [21] can suffer from undersolving. To ameliorate the effects

of undersolving and oversolving, we have developed a novel forcing-term strategy (4.17) that is

generally the most efficient and robust in our experiments compared to the two most popular

forcing-term strategies, namely the first (4.10) and second (4.11) strategies by Eisenstat and Walker

[21]. We have also proposed a modification (4.16) to the strategy of An et al. [3] to ameliorate

the effect of oversolving when the ratio of the actual reduction to the predicted reduction of the

residual r(n) � 1. This modification not only enables the Newton variant with the strategy of An

et al. to solve the extended Rosenbrock function with x(0) = 3xs successfully, but it also achieves

better performance.
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The pythNon PSE has enabled us to find that Newton variants with adaptive forcing-term

strategies require a good initial forcing term to solve a problem successfully. Failing to have a good

initial forcing term can lead to the possibility of oversolving, thus resulting in very little or no

reduction in norm of the residual. We have also found that a good agreement between the residual

and its local linear model does not imply that a smaller forcing term will be effective. This suggests

that an adaptive forcing-term strategy should not reduce the forcing term simply based on the

agreement of the residual and its local linear model; rather it should consider other factors, but

these factors are unknown at present. This unintuitive result brings new insight for constructing an

ideal adaptive forcing-term strategy. Finally, we have found that adaptive forcing-term strategies

generally improve the performance of the Newton variants in our experiments; however, we have

also found that constant forcing-term strategies may sometimes outperform adaptive forcing-term

strategies.

The results mentioned lead to the following future work:

1. As mentioned in Chapter 1, solving a very large and stiff ODEs with an implicit time inte-

gration method typically requires the solution of a very large system of NAEs at each time

step. It is possible to integrate the pythNon PSE as a subsystem of a PSE that solves a more

complex class of problems, that is, a PSE for the numerical solution of initial value problems

in ODEs.

2. We may formulate other variants of Newton’s method in pythNon, e.g., Broyden’s method [38],

which approximates the Newton direction by building up an approximation of the Jacobian

at each Newton iteration, or other globalization strategies mentioned in Chapter 2. Having a

rich set of Newton variants available in pythNon, the user may determine the most effective

Newton variant for solving a given problem.

3. We plan to quantify and prove the rate of convergence of the solution with the new forcing-

term strategy (4.17). We also plan to evaluate the effectiveness of the new forcing-term

strategy on a number of NAEs obtained from discretized PDEs because these problems usually

require many linear iterations at each Newton iteration, thus providing a more comprehensive
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view of the effects of different forcing-term strategies [21].
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