Stomata segmentation using deep learning

Miguel Alonso, Angela Casado-Garcia, Jonathan Heras
Department of Mathematics and Computer Science
University of La Rioja, Spain

{miguel .alonsoa, angela.casado, Jjonathan. heras}@unirioja .es

Abstract

Stomata are pores in the epidermal tissue of leaf plants
formed by specialised cells called guard cells, which regu-
late the stomatal opening. Stomata facilitate gas exchange,
being pivotal in the regulation of processes such as pho-
tosynthesis and transpiration. The analysis of the number
and behaviour of stomata is a task carried out by study-
ing microscopic images; and, nowadays, this task is mainly
conducted manually, or using programs that can count and
determine the position of stomata but are not able to deter-
mine their morphology. In this paper, we have conducted
a study of 10 deep learning algorithms to segment stom-
ata from several species. The model that achieves the best
Dice score, with a value of 96.06%, is obtained with the
DeepLabV3+ algorithm, whereas the model that provides
the best trade-off between inference time and Dice score
was trained using the ContextNet architecture. This is a
first step towards improving the measurements provided by
stomata analysis tools, that will in turn help plant biologists
to advance their understanding of dynamics in plants.

1. Introduction

Stomata (singular “stoma’) are pores on a plant leaf that
allow the exchange of gases, mainly CO2 and water va-
por, between the atmosphere and the plant. Stomata re-
spond to changes in the environment and are key regulators
of the photosynthesis and transpiration of plants, and thus
their productivity and water use efficiency. Because of their
critical nature, scientists have studied the number, density,
size, and behaviour of stomata to understand plant physiol-
ogy against stress [[1} [7], to improve crop management pro-
grams [1, 9], to model CO2 dynamics in the atmosphere,
and to predict future carbon and water cycles [7]].

In order to analyse stomata, plant biologists take micro-
scopic images of leaves, and manually measure character-
istics such as stomata density, individual stomata opening,
and morphological traits like the size and shape of the stom-
ata guard cells (a pair of cells that regulate the opening

and closing of the stomatal pore) using programs like Im-
ageJ [15] that have little to no automatisation [2,|5]. Those
measurements are repeated over hundreds of images from
different plant species and growth conditions. This is a te-
dious, error-prone, time-consuming and subjective task due
to the large number of stomata in each image.

Researchers have tried to automatise this task since the
1980s [IL1], and we can currently find several open-source
applications like StomataCounter [6], DeepStoma [[16], or
LabelStoma [3] that help biologists in the task of count-
ing and measuring stomata. However, those software tools
output either the number and position of stoma, or bound-
ing boxes around the detected stomata. Hence, additional
processing steps are required to study stomata morphology;
and, namely to measure the stomata boundary. This task can
be framed as a semantic segmentation problem where pixels
of a given image must be classified as either background or
as stoma.

Nowadays, semantic segmentation tasks, as most com-
puter vision problems, are tackled by using deep learn-
ing techniques [4} [14]; and, this is also the approach fol-
lowed in this work. Namely, we present a thorough study of
deep learning models to segment a stoma from the bound-
ing box that contains it. In this way, our models can
be integrated with the aforementioned applications to im-
prove their functionality; and, therefore, help plant biol-
ogists in their studies to understand the processes associ-
ated with plant gas exchange, and associated with carbon
and water cycles. The code, models and datasets associated
with this work are available at https://github.com/
mialona/Stomatal-segmentation.

2. Materials and methods

In our experiments, we have employed the training
datasets of StomataCounter [6] and LabelStoma [3]]. Such a
combined dataset consists of 1055 images from 67 species
and was annotated with bounding boxes that indicate the
position of the stomata. From the annotated images, we
cropped each stoma obtaining 25214 images, see Figure ]
Since manually annotating such an amount of images is
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Figure 1. Stomata samples from different species

a time-consuming a tedious task, we implemented several
image processing algorithms (based on the combination of
morphological operations and thresholding methods) to ob-
tain a mask with the boundary of the stomata. The output
produced by the algorithms was manually validated, and we
chose the best annotation for each image. This process pro-
duced a total of 15686 annotated images, and in addition,
we manually annotated 2404 extra images. It is worth not-
ing that none of the image processing algorithms was able
to produce a correct annotation for all the stomata; so, we
tested several deep segmentation algorithms to tackle this
task.

In order to construct the deep segmentation models from
the annotated dataset, we employed 14472 (80%) images
for training, and the remaining 3618 (20%), for testing
— in this split, images from the same species only be-
long to either the training or the testing set. From the
training dataset, we fine-tuned several deep-learning seg-
mentation algorithms. Namely, we have trained 10 ar-
chitectures: BiSeNet [21]], CGNet [19]], ContextNet [13],
DeepLabV3+ [4], DenseAPP [20], FPENet [10], HRNet-
Seg [17]], LEDNet [18], OCNet and U-Net [[14]. All the
architectures were trained with the libraries PyTorch
and FastAl [8]] and using the GPU provided by Google Co-
laboratory. In order to set the learning rate for the different
architectures, we employed the procedure presented in [8];
and, we applied early stopping in all the architectures to
avoid overfitting using a validation set taken from the train-
ing set. As a result of the training process, 10 models were
produced that can be used for inference by providing them
a stoma image.

3. Results

The trained models were evaluated on the testing set us-
ing the Dice score and the Jaccard index as evaluation met-
rics [[14]], the results are presented in Table [T} It is worth
noting that all the deep segmentation models achieve a Dice
score over 90%, and that the best model is obtained using
the DeepLabV3+ architecture. We also include in the com-
parison the best image processing algorithm that was ini-
tially employed to annotate the images, but it only achieved
a Dice score of 84.42%, far from the results obtained by the
deep segmentation models.

Since the final aim of this project is to incorporate one of
the analysed models into a pipeline that extracts the bound-
aries of hundreds of stomata images, it is also important to

Algorithm Dice score  Jaccard index
Image processing 84.42 76.20
BiSeNet 95.98 92.26
CGNet 95.91 92.13
ContextNet 95.33 91.08
DeepLabV3+ 96.06 92.42
DenseAPP 95.91 92.14
FPENet 95.54 91.46
HRNet 95.95 92.21
LEDNet 91.40 84.16
OCNet 95.87 92.06
UNet 94.07 88.80

Table 1. Results obtained by the segmentation models. In bold the
best result
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Figure 2. Inference time (in seconds) of the trained segmentation
models on a set of 100 images

study the inference time of each model, see Figure[2] Using
this metric, the best model is provided by the ContextNet
architecture that takes 0.32 seconds for processing a set of
100 images. This is also the model that provides the best
trade-off between inference time and Dice score.

4. Conclusions and further work

In this paper, we have presented a study of several deep
learning architectures for segmenting stomata. The model
that provides the best trade-off between inference time and
Dice score is obtained with the ContexNet architecture.
Such a model generalises properly to images from species
that were not included in the training set and has a reason-
able inference time. As further work, it remains the task of
incorporating the best model to a software tool that facil-
itates its usage. This will also require the implementation
of a mechanism that allows users to validate the generated
segmentations and modify them if needed. The suggested
approach requires the combination of a detection algorithm
with our segmentation model; so, it will be also worth ex-
ploring the usage of a model that can directly segment all
the stomata of an image instead of processing them individ-
ually.
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