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Abstract

We present two large datasets of labelled plant-images
that are suited towards the training of machine learning
and computer vision models. The first dataset encompasses
as the day of writing over 1.2 million images of indoor-
grown crops and weeds common to the Canadian Prairies
and many US states. The second dataset consists of over
540,000 images of plants imaged in farmland. All indoor
plant images are labelled by species and we provide rich
metadata on the level of individual images. This compre-
hensive database allows to filter the datasets under user-
defined specifications such as for example the crop-type or
the age of the plant. Furthermore, the indoor dataset con-
tains images of plants taken from a wide variety of angles,
including profile shots, top-down shots, and angled per-
spectives. We further introduce a 14,000 images sample,
intended as a quick entry point for the indoor-dataset.

1. Introduction

A sufficient amount of labelled data is critical for
machine-learning based models and a lack of training data
often forms the bottleneck in the development of new al-
gorithms. This problem is magnified in the area of digital
agriculture as the objects of interest – plants – have a wide
variety in appearance that stems from the plants’ growing
stage, its specific cultivar, its health, and the current envi-
ronment. Furthermore, the correct classification of plants
requires expert knowledge, which cannot easily be crowd-
sourced. All of this frames the labelling of plant-data as
a challenge that is significantly harder compared to simi-
lar image-labelling tasks. Yet, as we witness the introduc-

Figure 1. An image taken by the system with drawn calculated
bounding boxes.

tion of sensors [1–4], robotics [5–10], and machine learn-
ing [11–16] to agricultural applications, there is a strong
demand for such training data. Precision agriculture (also
known as digital agriculture, smart farming, or Agriculture
4.0) has the potential to increase yields while reducing hte
usage of resources [16–28].

Here we describe two datasets, each consisting of hun-
dreds of thousands of images, suitable for machine-learning
and computer vision applications. The first dataset, the lab-
data, consists of indoor-grown crops and weeds that had
been imaged from a wide variety of angles. The plants se-
lected are species common on farmlands in the Canadian
prairies and many US states. All indoor images had been
captured and automatically labelled by our robotic system
described in [29]. The second dataset consists of images
taken in the field in the growing seasons of 2019 and 2020.



Table 1. Image counts per species

Common Name Image count Individual plants

Barley 30597 14
Barnyard Grass 76258 21
Common Bean 159217 53
Canada Thistle 89731 14

Canola 255004 128
Dandelion 87426 16
Field Pea 68658 24

Oat 59153 28
Smartweed 99650 21

Soybean 203980 84
Wheat 120417 47

Wild Buckwheat 24973 15
Wild Oat 7065 3

Yellow Foxtail 14815 5

Further we provide a 14,000 images sample from the lab-
data.

2. Data- and Metadata-Structure

The lab-data can be divided into 4 different kind of files
that relate to each other as follows.

• Plain images: These are the images as captured by the
camera. They typically show several plants in the same
image.

• Bounding box images: These images are the same as
the original images with the difference that they are
overlaid with visible bounding boxes around the plants
as calculated by the system. Plants too close to the
border of the image or overlapping too far into each
other are not being bounded by the system.

• Single plant images: These are images cropped out
from plain images according to the calculated bound-
ing boxes. Only plants for which a bounding box has
been drawn are cropped out as individual image.

• JSON-files: These files contain the metadata associ-
ated with each plain image and are described in more
detail in the readme.txt of the data-sample.

See Figure 1 for examples of an image with bounding
boxes. The field-data collection is in structure similar to
the above and also described in the readme-file.

3. Description of subsample

To create a visual overview on the lab-data we created a
subsample that is structured as follows:

For each species listed in Table 1 we have selected 1,000
single plant images, thus the subsample contains 14,000 im-
ages. Furthermore, within each of these categories we have
selected images, such that the age-distribution of the 1,000
images closely matches the age-distribution of all available
images for that species. In addition we selected images such
that all individual plants grown are represented in the sub-
sample with the following exceptions: There are 51 indi-
vidual Common Beans present in the subsample (instead
of 53 in the entire dataset), as well as 113 Canola plants
(of 128), 51 Soybean plants (of 84) and 37 Wheat plants
(of 47). The distribution of the image dimensions (width,
height) for the subsamples resembles the size distribution
of the entire dataset, we did however not select images to
directly optimize the sample under that criteria.

The total size on disk of the subsample is approximately
2.2 GB. The subsample contains single plant images only,
which are organized in one subfolder per species. We con-
sider this subsample as a good entry point into the entirety
of the dataset, which can be used to train some initial mod-
els. For example, simple models that differentiate between
species or classes of species (e.g., monocots versus dicots,
crops versus weeds) or younger versus older plants.

4. Conclusion and data availability

In this paper we presented an extensive dataset of la-
belled plant images. These images show crops and weeds
as common in the Canadian prairies and northern US states.
We described and published a subsample that mirrors the
full dataset in key characteristics, but is smaller in over-
all size and thus more tractable. We are actively growing
the dataset into several dimensions: New field- and lab-
data is being acquired and processed as of writing. Fur-
thermore, additional data-sources such as the generation
of 3d-pointclouds and hyperspectral scans are being tested
and developed. Additional field-data sources are also be-
ing explored, including imagery from UAVs and a semi-
autonomous rover. Data from these sources will accompany
the datasets presented in this paper in the near future.

The 14,000 images sample is available on
https://doi.org/10.25739/rwcw-ex45 at the CyVerse
Data Store, a portal for full data lifecycle management.
The full dataset which contains 1.2 million single plant
images (and counting) is made available to researchers
and industry through the data-portal hosted by EMILI
under http://emilicanada.com/ (Digital Agriculture Asset
Map). The authors take Lobet’s general critique [11] on
data-driven research in digital agriculture (or any research
field) seriously. We further created a datasheet following
the guidelines of Gebru et al. [30]

https://doi.org/10.25739/rwcw-ex45
http://emilicanada.com/
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