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1. Introduction

Sorghum is an ancient cereal grain used for both hu-
man consumption and as animal feed. Improving crop
yields through breeding requires phenotyping systems that
are able to assess the growth and yield of crops under vary-
ing environmental conditions and agronomic management
strategies [1]. The TERRA-REF [5] plant phenotyping sys-
tem has a gantry covering more than an acre of crops, and
is able to image plants over a whole growing season using a
number of different modalities.

For the Sorghum Biomass Prediction Kaggle challenge,
a large training dataset of 277327 images of growing
sorghum plants from this platform were provided. These
were from 176 different species, planted in 349 plots. The
goal of this challenge was to accurately predict the amount
of plant material at the end of the growing season (end-of-
season dry biomass, biomass), using visible light images.
Additional data about the date of image capture, days after
planting , amount of sunlight accumulated at the field site,
cultivar id, and the height of the camera above the ground
were supplied. Submissions were evaluated using predic-
tions on a separate test set of 19442 images from 110 plots.
Whilst most of the training data contained images of the
same plot over an entire growing season (22 – 140 days af-
ter planting), the test data was restricted to subsets of data
early (22 – 43 days after planting) mid (61–83 days) and
late (96 days onwards) in the season. Submissions were
scored according to the weighted root mean squared error
in their predictions of the biomass for these plots. Errors on
early and mid season data were weighted by factors 3- and
2-times larger than those on late-season data.

Eight teams competed in this competition, with the best
scores for each team’s submissions being listed on the
leaderboards. During the competition, the public leader-
board showed scores on 25% of the test dataset. At the end
of the competition, rankings on the private leaderboard were
displayed, using the remaining 75% of the test data, scores
on which ranged between 9098.9 and 10634.2. Here we
describe the methods used for the submission with the first
place score on the private leaderboard.

2. Methods
To reduce computational demands, all (RGB) images

were initially reduced in size to a resolution of 224× 224.
In an attempt to extract more informative features from

the image data, we performed domain-adaptive pretraining
on an alternative task. We fine-tuned a model (plant-stage)
to predict the number of days after planting, which is sup-
plied for each image within the training set. The additional
features within the training dataset were not used as, apart
from the cultivar, they strongly correlated with the num-
ber of days after planting. The training set was restricted
to those plots with biomass lying between the 40th and
60th percentiles, assuming that these would adopt a typical
growth profile.

The plant-stage model had a straightforward architec-
ture. For each image, the 512 features from the average-
pooling layer of a ResNet-18 [3] network, initialized with
weights from pretraining on ImageNet [2], were input into
a 2-layer perceptron, with two nodes in the hidden layer and
one output node. An exponential linear unit (ELU) activa-
tion function was applied after the first layer. The training
data, grouped by plot, was split 80:20 into training and vali-
dation sets. The Adam [4] optimizer with an initial learning
rate of 10−5 was used to minimize the mean-squared pre-
diction error. The model was trained for 20 epochs, and the
final weights were obtained from the epoch with lowest val-
idation loss. Model and training hyperparameters were not
explored during the competition.

The biomass prediction (bp) model, used for the ac-
tual task of the competition, contained the same ResNet-18
backbone. The 512 features from the average pooling layer
were concatenated with the standardized values of four of
the additional features (date captured, days after planting,
camera height and accumulated heat units) and input into a
two-layer perceptron with 64 hidden units and one output
node. Again, an ELU activation was applied after the first
layer. In an attempt to quantify uncertainty in predictions,
another version of the model (bp-uq) with a duplicate two-
layer perceptron branch was trained to predict the logarithm
of the variance of the predictions.

For biomass prediction, the training dataset was split into



early (below 55 days), mid (55–89 days) and late stages
(90 days or more), and separate models were trained inde-
pendently on these three subsets. Five-fold cross-validation
was performed for each stage, with the data again grouped
by plot before being split into folds. Image data was aug-
mented using random cropping and resizing to 224 × 224,
random horizontal flips, and random changes in brightness,
contrast and saturation, and Gaussian noise of amplitude
0.1 times the input was added to the additional features.
Again, the Adam optimizer was used, with initial learning
rate 10−5, and the model for each fold was trained for 10
epochs. Mean-squared error was used as the loss for train-
ing the bp model. For the bp-uq model, the maximum like-
lihood loss [6] was used.

Final biomass predictions for each image were made by
averaging the predictions from all five folds. For bp, pre-
dictions for each plot in the test set were made by averaging
the predictions for all images from that plot. For bp-uq,
the weighted average of predictions was used, with weights
given by applying a softmax operator to the inverse of the
predicted variances for all the images from the plot.

3. Results and discussion
Typical predictions from the plant-stage model (after

epoch 13) are shown in Figure 1A. For a subset of low and
high-yielding plots, there seemed to be differences between
the actual and predicted days after planting that were most
apparent during the mid to late-season (around 100 days).
Linear regression indicated a negative correlation between
the mean of the error in the prediction over the interval 100-
120 days and the biomass for each plot (Figure 1B). Despite
only explaining a small amount of the variation in the data
(R2 = 0.072), the 95% confidence interval of the slope
(−476± 224) did not contain zero.

Both the bp-uq and bp models rapidly overfit the training
data, with the epoch with the smallest loss on the validation
set being between the first and the fifth for all folds. The
mean best epoch was 1.87 for bp-uq and 1.93 for bp. Eval-
uated on the test data, the bp-uq model scored 9098.9 (first
place) on the private leaderboard, and 7742.5 (between 4th
and 5th) on the public leaderboard. Whilst not submitted
as one of the final entries to the competition, the bp model
scored 9090.9 on the private leaderboard, and 8031.4 on the
public leaderboard, suggesting that the addition of the un-
certainty quantification branch was of minimal benefit.

To assess the value of pre-training the Resnet-18 on the
plant-stage task, models bp and bp-uq were trained using
the original ImageNet Resnet-18 initial weights. These gave
leaderboard scores of 9436.9 (private) and 7944.9 (public)
for bp, and 9504.7 (private) and 8052.8 (public) for bp-uq.
Whilst these scores are worse than with pre-training on the
plant-stage task, further experiments are required to deter-
mine whether this difference is statistically significant.
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Figure 1. Results from plant-stage model. (A) Predicted vs actual
days after planting for each image. Panels show results from three
plots in the training set with different end-of-season dry biomass.
Red line is the identity. (B) For each plot in the training set, end-
of-season dry biomass against the mean error (predicted-actual) in
the prediction of days after planting from the plant-stage model.
Averages for each plot taken over images in the interval 100-120
(actual) days. Red line is the linear regression best-fit.

4. Conclusions
In this study, we presented a relatively straightforward

model that was able to predict the end-of-season biomass.
Domain-adaptive pre-training of the ResNet-18 backbone
on the task of predicting the growth stage from images ap-
peared to give models that made more accurate predictions
than those using just initial weights from training on Ima-
geNet.

It became clear that the problem was challenging, with
training and validation losses indicating that models rapidly
overfit the data. The substantial variation between scores
on the public and private leaderboard suggests that further
experiments are required to assess the effectiveness of this



approach. It would be of particular interest to compare dif-
ferent pre-training tasks, such as predicting plant coverage
or leaf area.

References
[1] Julia Bailey-Serres, Jane E Parker, Elizabeth A Ainsworth,

Giles ED Oldroyd, and Julian I Schroeder. Genetic strategies
for improving crop yields. Nature, 575:109–118, 2019. 1

[2] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li
Fei-Fei. Imagenet: A large-scale hierarchical image database.
In 2009 IEEE conference on computer vision and pattern
recognition, pages 248–255, 2009. 1

[3] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition. CoRR,
abs/1512.03385, 2015. 1

[4] Diederik P. Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. In Proceedings of 3rd International
Conference on Learning Representations, ICLR, 2015. 1

[5] David LeBauer, Maxwell A. Burnette, Jeffrey Demieville,
Noah Fahlgren, Andrew N. French, Roman Garnett, Zhen-
bin Hu, Kimberly Huynh, Rob Kooper, Zongyang Li, Mai-
tiniyazi Maimaitijiang, Jerome Mao, Todd C. Mockler, Geof-
frey Morris, Maria Newcomb, Michael J Ottman, Philip Oz-
ersky, Sidike Paheding, Duke Pauli, Robert Pless, Wei Qin,
Kristina Riemer, Gareth Scott Rohde, William L. Rooney,
Vasit Sagan, Nadia Shakoor, Abby Stylianou, Kelly Thorp,
Richard Ward, Jeffrey W White, Craig Willis, and Charles S
Zender. Terra-ref, an open reference data set from high resolu-
tion genomics, phenomics, and imaging sensors. dryad digital
repository., 2020. 1

[6] David A. Nix and Andreas S. Weigend. Learning local error
bars for nonlinear regression. In Advances in Neural Informa-
tion Processing Systems 7, pages 489–496. 2


