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1. Introduction

The tasks of leaf segmentation and counting have been
receiving increasing attention with some distinguishable
work focusing solely on either or both of these tasks
(4% |6, 18]). However, it is important to note that localiza-
tion (segmentation) and detection have an intrinsic trade-
off, which is usually regulated by a detection threshold that
influences how many instances are counted as positive de-
tections and how well-localized they are.

The following experiments presents techniques adopted
in training and analyses that led to a model ranking first in
the LSC (when first proposed [1]]) without using synthetic
data generation methods while accessible computer-vision
frameworks.

2. Data and methods

The analysis proposed here is based primarily on the
CVPPP data set while the validation of the presented hy-
potheses is performed on the Leaf Segmentation Challenge
server and on an independent similar data set of a different
plant species (Komatsuna).

The CVPPP images have been collected from several
sites from growth chamber experiments, and it is divided
into four groups named Al to A4. There are 810 im-
ages with ground-truth masks available, from which 783
are from Arabidopsis and 27 from Tobacco, showing that
the later represents only a small part of that data. These im-
ages are all taken from the top. The organizers of this data
set made the critical decision of creating a separate data set,
A5, and uploading it to an evaluation server in CodaLAB
labelled as the Leaf Segmentation Challenge (LSC).

In a similar manner to the CVPPP data set, the Komat-
suna ([5]]) comprises images of plants taken from the top
but now on a different species, which is hoped to help attest
generalization. Such a test set is composed of 271 images,
and the evaluation is performed in the same metrics as used
in the CVPPP testing.

2.1. Methods

Previous works proposing algorithms for segmenting
leaves on the CVPPP have been using a specific method
for computer vision called Mask R-CNN ([2]). The detec-
tion trade-off comes into play in the mask proposal head,
which is the addition to the classic Faster R-CNN architec-
ture. Such an effect is relevant to the approached tasks since
recent methods for leaf segmentation often does not discuss
the effect that different thresholds can have on the final out-
put. Therefore, experiments with different thresholds were
performed here and analysed in the Mask R-CNN frame-
work.

To the subject of model depth and cardinality, two dif-
ferent depths were compared with a variation with different
cardinality on the 101-layer backbone was added. This ad-
dition resulted in two models having a ResNet backbone [3],
one with 50 and the other with 101 layers, and one model
having a ResXNet backbone [7]. The difference between
these two types of backbone is in the size of transforma-
tions, which the authors call cardinality [7], but they do have
the same dimensions regarding depth and width.

A solution proposed here to extract more from the used
models is to apply a technique called Test-Time Augmenta-
tion (TTA) to mitigate the effects that a different detection
threshold causes in the leaf counting task while preserv-
ing or even boosting the leaf segmentation performance. In
short, test-time augmentation comprises the process of per-
forming inference on the original image and different aug-
mented versions of it. The predictions are then averaged
through a pixel-wise voting system and the final output is
composed of averaged masks of each instance. The applica-
tion of TTA here is composed of definite parts: (i) augmen-
tation of the original image, (ii) inference, (iii) reversing the
augmentation on the predictions, (iv) aligning instances of
leaves, and (v) averaging the instances masks. The augmen-
tation of leaves is composed of four, simple ones: horizontal
and vertical flipping, and 90 degrees rotation clockwise and
anticlockwise.



Threshold SBD abs. DiC
0.5 0.8117 1.48
0.7 0.874 1.59
0.9 0.9137 2.88

Table 1: Comparison of the effect of different detection
thresholds on the CVPPP test set in the leaf segmentation
metric (SBD) and counting (absolute DiC).
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Figure 1: The effect of different thresholds on the Komat-
suna test set in the SBD and abs. DiC metrics.

3. Results

For the CVPPP, Table. [1] is set to illustrate the com-
parison between the performance of three key thresholds in
the metrics of leaf segmentation (SBD) and counting (DiC).
What is most interesting about this comparison is the gains
in performance that one makes from a 0.5 to 0.7 threshold.

The testing different thresholds on the Komatsuna data
set showed that the performance gains might be somewhat
overly expressed in the CVPPP data set. Fig. [I]illustrates
the difference in the SBD and DiC in detail. The results
show that although the detection threshold can have a great
influence on such an external data set, the leaf segmenta-
tion metric does not monotonically increase to from 0.5 to
0.9, as seen in the CVPPP. The increase in performance with
very hard thresholds points to the fact that the CVPPP might
represent a dataset with narrow distribution and that the per-
formance mainly gains comes from an overfitting artifact.

A consequent question is how models with different
depth will perform in these tasks while trained by the same
algorithm. The results from such an experiment were also
revealing; Fig. [2]is set to illustrate some comparisons. In
this case, the figure compares the 50- and the two 101-layer
models (ResNet and ResXNet), all for the same threshold of
0.7. The Komatsuna data set again clarifies that such gains
don’t generalize well, highlighting the importance of test-
ing on external datasets (which is not common practice in
the related papers encountered). Cardinality did not allow
the deeper model to overfit as it happened with the ResNet
of the same depth. It points to the fact that having higher
cardinality — the only difference between these backbones
— may work better in problems of objects with high occlu-
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Figure 2: Comparison of performance of models of differ-
ent depth and cardinality on the tests sets CVPPP and Ko-
matsuna. Detection threshold = 0.7.
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Figure 3: TTA performance comparison in the 50-layer
ResNet backbone and the 101-layer ResXNet backbone on
the CVPPP and Komatsuna data set.

sion, allowing the model to generalize significantly better to
other data sets.

Regarding test-time augmentation, the experiment
showed to be consistent for both data sets but it showed to be
more useful for ResXNet backbones as illustrated in Fig. 3]
This result becomes more important when the Komatsuna is
considered. By applying TTA, the model not only makes a
better compromise between segmentation and counting on
the CVPPP data set but also generalises much better.

The results illustrated that adjustments like increasing
the detection threshold might significantly boost perfor-
mance on a isolated dataset like the CVPPP, but that will
not generalize to a similar external dataset. The experi-
ments also reinforced the trade-off effect between segmen-
tation and counting tasks, which is regulated by the detec-
tion threshold. The use of test-time augmentation was then
proposed to mitigate such a trade-off effect while using met-
rics of segmentation and counting adopted in the field. The
methodology proposed showed its effectiveness by achiev-
ing competitive results - best ranking segmentation in the
LSC when first proposed - in both the Leaf Segmentation
Challenge and the external dataset. It is worth noting that
the past best-performing models used methods to generate
synthetic data for achieving their performance while this
work only used the simple and less onerous adjustments in
training and testing such as test-time augmentation.
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