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Plant phenotyping is a central task in crop science and
plant breeding. Since standard methods often require time-
consuming and manual observations it is indispensable
to develop automatic, sensor driven methods which offer
objective and fast information. Many methods rely on
camera systems [2], ranging from RGB to hyper-spectral
cameras. In recent years 3D sensing systems like laser
scanners became increasingly popular [3, 7], since they
provide structural plant parameters, which can be hardly
extracted with spectral sensors. We present a pipeline for
the extraction of plant surface areas, which reconstructs
meshes from raw point clouds. This pipeline is completely
automated with a robust set of empirically determined
parameters, which we tested on different data sets. The
few data set-specific parameters are determined directly
from the respective data set and therefore do not need to be
adjusted manually.

We investigate 4 different data sets, collected either in
the laboratory with a handheld scanner (ScanWorks V5,
Perceptpron, Hexagon Metrology Inc), or in the field with a
mobile mapping system. Data set 1 and 2 consist of point
clouds from 7 tomato and 7 maize plants respectively. The
plants were observed over several days and manual leaf an-
notations are available [6]. Data set 3 contains scans of
4 barley plants, two under drought stress and two control
plants. The plants were observed after the 24th day of sow-
ing and were monitored 10 times over 21 days [5]. The field
data set 4 contains a point cloud of a single maize plant (8
weeks after sowing, BBCH scale 32), which was recorded
in an agricultural field using a mobile mapping system [4].

The input to the pipeline is a point cloud without any
additional information such as RGB or intensity values. To
transform point clouds into meshed surface several steps are
required. Outliers are identified with an statistical approach
which removes points further away from their neighbors
compared to the average point distance of the whole point
cloud. Based on empirical experiments we choose 5 neigh-
bours and a standard deviation ratio of 1.0 as appropriate pa-

rameters. We uniformly sub-sample the point cloud which
reduces the point number P to P/k. The down-sampling
parameter k is determined directly from the data set itself
by choosing a point density of 40 points per 1 cm2. We re-
construct the leaf surface using the Ball-Pivoting algorithm
[1] which creates a triangle mesh of a point cloud. The Ball-
Pivoting-radius ρ depends on the average distance between
the points. A ball with the radius ρ is placed three times on
the surface, each time with a scaling factor. In order to gen-
erate a mesh with as few gaps as possible, a scaling with 10
has proven to be appropriate for plants. We find the remain-
ing holes in the surface reconstruction, extract them and fill
them with a flat surface. As a last step the surface area can
be determined by adding up the areas of the individual tri-
angles.

The pipeline is implemented using Open3D [8]. We use
the same set of parameters for all experiments to highlight
the robustness of our approach. Figure 1 shows examples
of the four different datasets. We process the leaves of the
7 tomato plants of datset 1 automatically and determine the
surface area of each individual leaf. Figure 1(a)A shows
an example of a single leaf point cloud of data set 1. It
can be seen that the handheld scanner acquires high density
point clouds. The result of our pipeline can be seen in figure
1(a)B, which shows the triangulated mesh. In figure 2(a) an
example of the surface growth of each leaf of one tomato
plant can be seen. We observe increasing growth over the
entire measurement period, although the first two emerging
leaves (cotyledons) of the tomato show a lower growth rate
compared to the other leaves, probably due to the fact that
these leaves capture less light than the leaves in the upper
part of the plants. The total surface area of the tomato leaves
range from 2 cm2 to 311 cm2.

An example for a single maize leaf point cloud of data
set 2 is shown in figure 1(b)A and the reconstructed leaf
surface in figure 1(b)B. It can be seen that the maize leaves
have more holes due to the measuring process and tend to
twist and bend. This makes reconstruction more difficult,
but our pipeline is able to reconstruct these leaves success-
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Figure 1. For all sub-figures holds: A shows the point cloud and B shows the reconstructed surface by using our pipeline.

fully. Compared to the tomato plants of data set 1, the total
surface area of the maize plants is smaller, it starts at 1 cm2

and goes up to a maximum of 74 cm2.
The barley plants were measured over a period of sev-

eral days, which enables a plant growth analysis. In addi-
tion, 2 plants were exposed to drought stress while the other
2 plants worked as control plants. Figure 1(c)A shows the
point cloud of one exemplary barley plant. We observe a
similar behaviour as the tendency to twist and bend com-
pared to the maize plants from data set 2. The reconstructed
surface by using our pipeline is shown in figure 1(c)B. The
surface growth of the 4 barley plants can be seen in fig-
ure 2(b). As expected, we observe a large difference in
the surface area between the control and the drought stress
plants. From the 10th day of the measurement we observe a
lower growth rate of the drought stress plants. While the
control plants reach a surface size between 161 cm2 and
177 cm2, the drought stress plants only grow up to 72 cm2

and 91 cm2.
Furthermore we test our pipeline on one exemplary

field data set to investigate the robustness of our pipeline
under field conditions. The point cloud of one exemplary
leaf is shown in figure 1(d)A, while the reconstructed
surface of this leaf is shown in figure 1(d)B. The surface
area of the whole maize plant was calculated as 991 cm2.
As expected, this is significantly larger than the area
of the maize plants in data set 2, since the maize plant
in the field was measured in later stage in the growth period.

Although we successfully applied the pipeline to differ-
ent data sets, there are still some requirements on the quality
of the input point cloud. Firstly, the point density and the
noise of the sensor have to be sufficient enough, that single
leaves can be recognized in the point cloud. Both sensors
used in this paper had this properties, but other mostly low
cost devices, such as stereo cameras or automotive grade
laser scanners may not be good enough, especially for small
leaves. Another important quality parameter is the com-
pleteness of the data. Of course we can only measure what
we can see, so the measurement procedure mainly deter-
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Figure 2. Top: Exemplary surface growth of all leaves of one
tomato plant. Each line describes one leaf of the entire plant. To
increase readability, only every third leaf of the in total 42 leaves of
the tomato plant are labelled in the legend of the figure. Bottom:
Surface growth of 4 Barley plants. Two plants are well watered
over the whole measurement period (controlled watered) and two
are under drought stress (drought).

mines this. Data sets 1 to 3 have a high completeness due
to the manual movement of the scanning device. Data set 4
is scanned from above, so some occlusion of lower leaves
are very likely. In the future, we will concentrate on auto-
matically recorded time series within agricultural fields to
evaluate the above criteria in non-laboratory conditions.
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