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1. Introduction
As one of the three major grain crops, wheat is widely

planted all over the world. Its planting and production have
a direct relationship with people’s food security and health
safety. However, after increasing rapidly for decades, the
rate of increment in wheat yields has slowed down since the
early 1990s [3, 5]. According to the Food and Agriculture
Organization of United Nations, the whole world’s demand
for wheat is expected to reach 850 million tons by 2050 [1],
which means the supply may fall short of demand in the fu-
ture. Wheat production has become ever more challenging
worldwide.

Recently, precision agriculture is one of the many strate-
gies designed to improve crop management and maximize
crop yields. Precision agriculture relies on monitoring
and measuring the growth of crops in real-time [2], which
means a huge amount of crop data collected to explore
the growing status needs well organization and analysis.
However, analyzing such a sheer amount of crop data is
overly time-consuming and labor-intensive. Yield estima-
tion is one of the most important tasks in precision agricul-
ture. However, traditional wheat yield estimation requires
agricultural experts to manually count the heads of wheat,
which is extremely challenging, error-prone, and obviously
not cost-effective at all.

2. Proposed Method
To handle this challenging task, making it efficient and

reducing miscellaneous labor and time cost, we apply sev-
eral deep learning models as a strong baseline and propose

Table 1. The performance comparison of the competing models
in wheat head counting on 3373 images. The FPS represents the
inference speed of the model on the NVIDIA Tesla T4 GPU.

Model Precision Recall F1 mAP@.5 MAE RMSE FPS
YOLOv5s 0.964 0.933 0.948 0.966 2.9532 3.8728 84
YOLOv5m 0.963 0.949 0.956 0.972 2.2179 3.1360 42
YOLOv5l 0.965 0.936 0.951 0.969 2.7848 3.7107 23
FCOS 0.967 0.918 0.942 0.920 3.5864 4.6086 2
Faster R-CNN 0.962 0.950 0.956 0.921 2.2069 3.2039 8
GhostYOLO 0.972 0.897 0.933 0.948 4.5197 5.6572 90
FiveHeadYOLO 0.957 0.937 0.947 0.955 2.7821 3.7122 58

FiveHeadYOLO and GhostYOLO as alternative solutions.
Compared with 3 state-of-the-art algorithms and YOLOv5
variants, extensive experiments on the GWHD dataset
demonstrates the effectiveness of the proposed FiveHeadY-
OLO and GhostYOLO for wheat detection and counting
tasks. To exploit better model performance on wheat count-
ing, we explore 4 strategies: Hyperparameter Evolution,
Optimal Anchors, Optimal Input Size, and Model Ensem-
bling [4], and conclude the better training or detection
method. In addition, we develop an Android app to deploy
the wheat detection model, make it possible to implement
detection and counting tasks on an edge device in real-time.
This system has the potential to be improved for agricultural
applications in the future.

3. Results and Discussion
With all the proposed models and all competing models

are well-trained on the training dataset, we evaluated their
performance on the GWHD dataset, which includes a total



Figure 1. Software Main Interfaces. From left to right: image
source selection and image detection and counting interface, wheat
ear detection in real-time interface.

Figure 2. Training process visualization. From left to right: trained
with anchors from COCO and GWHD, trained with hyperparam-
eters from COCO and GWHD.

Table 2. The performance comparison of the YOLOv5 model with
different input image sizes.

imgSize precision recall mAP@.5 mAP@.5:.95 infer/ms NMS/ms
256 0.7152 0.5202 0.5532 0.204 5.140 3.234
384 0.9043 0.8132 0.8842 0.4471 9.445 3.622
512 0.9401 0.8879 0.9457 0.5345 16.95 2.965
640 0.9454 0.9108 0.9594 0.562 32.67 3.146
768 0.9462 0.9193 0.9641 0.5723 44.73 3.589
896 0.9487 0.9217 0.966 0.5767 54.77 3.673
1024 0.9466 0.9231 0.9662 0.5749 78.89 4.138
1152 0.9417 0.9279 0.9657 0.5748 91.68 4.338
1280 0.9414 0.9257 0.9646 0.5704 106.6 4.870
1408 0.9382 0.9223 0.9628 0.5660 121.1 5.112
1536 0.9351 0.9192 0.9604 0.5592 160.0 5.595

number of 147793 ears. Table 1 shows the detection and
counting performances of all models. As shown in Table 1,
our proposed models compete with other methods by vary-
ing extents.

We perform several ablations to better understand the
contributions of 4 training and inference strategies. The
training process with strategies of hyperparameter evolu-

Table 3. The performance comparison Among single YOLOv5
models and different model combinations with NMS and mean
ensemble.

Model Precision Recall mAP@.5 mAP@.5:.95 Infer/ms NMS/ms
mean s m 0.957 0.933 0.974 0.595 35.4 4.7
mean s l 0.950 0.932 0.972 0.588 52.4 4.6
mean m l 0.957 0.937 0.976 0.598 67.0 4.2
YOLOv5s 0.947 0.923 0.966 0.575 11.9 5.6
YOLOv5m 0.955 0.939 0.972 0.593 23.8 3.7
YOLOv5l 0.947 0.934 0.969 0.578 41.8 3.7
nms s m 0.945 0.939 0.972 0.59 35.1 6.0
nms s l 0.942 0.933 0.970 0.581 55.0 10.5
nms m l 0.947 0.942 0.973 0.592 65.0 6.5

tion and optimal anchors is visualized as shown in Figure 2.
It can be seen that both the hyperparameters combination
obtained through hyperparameter evolution and suitable an-
chors from GWHD dataset significantly accelerate the con-
vergence process of the model.

After inference on the YOLOv5 model with different
input image sizes, we compare the detection performance
among input sizes. The results are shown in Table 2. Based
on the results, we recommend that image input size should
be 896 if optimal detection performance is required and in-
put size of 768 is recommendable if less inference time is
more important and keeping a good detection performance
is still needed.

In our work, the combination strategies include NMS,
max, and mean ensemble. After full training, we compare
the ensemble results between single models and ensemble
models. The mean strategy improves the model perfor-
mance more than the max ensemble. The comparison be-
tween the mean and NMS ensemble with multiple models
are shown in Table 3.

Besides, the developed application provides the function
of real-time and image-based detection and counting by us-
ing the local camera, which are shown in Figure 1.

4. Conclusion

In this work, we propose GhostYOLO and FiveHeadY-
OLO and compare their performance with the sort-of-the-
art object detection models, suggesting 2 practical solutions
based on different scenarios. Notably, we explore 4 strate-
gies for the training and inference and conclude the optimal
method to improve performance on wheat ears detection
and counting task. To bring the effective models to prac-
tical application, we quantize the model for faster inference
with little performance loss and develop an Android app to
implement real-time and image-based detection and count-
ing. We hope the proposed models and the strategies can
facilitate the research and development in wheat ears detec-
tion and counting in the agricultural field.
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