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Abstract

Recently, the potential for wheat head detection has
been significantly enhanced using deep learning techniques.
However, the significant challenges are variation in growth
stages of wheat heads, canopy, genotype, and wheat head
orientation. Furthermore, the wheat head detection task
gets even more complex due to the overlapping density of
wheat heads and the blur image due to the wind. For
real-time wheat head detection, designing lightweight deep
learning models for edge devices is also challenging. This
paper proposes a lightweight WheatNet-Lite architecture
to enhance the efficiency and accuracy of wheat head de-
tection. The proposed method utilizes Mixed Depthwise
Conv (MDWConv) with an inverted residual bottleneck in
the backbone. Additionally, the Modified Spatial Pyrami-
dal Polling (MSPP) effectively extracts the multi-scale fea-
tures. The final wheat head bounding box prediction is
achieved using WheatNet-lite Neck by utilizing Depthwise
Convolution (DWConv) with a Feature Pyramid structure.
It reduces 54.2 M network parameters in comparison to
YOLOV3. The proposed approach outperforms the exist-
ing state-of-the-art methods with mean average precision
(mAP) of 91.32 mAP@0.5 and 86.10 mAP@0.5 on GWHD
and SPIKE datasets, respectively, with only 8.2 M parame-
ters. Also, the new ACID dataset is proposed with bound-
ing box annotation with 76.32 mAP@0Q.5. The experimen-
tal results are demonstrated on three different datasets viz.
Global Wheat Head Detection (GWHD) , SPIKE dataset,
and Annotated Crop Image Dataset (ACID) showing a sig-
nificant improvement in the wheat head detection with speed
and accuracy.

1. Introduction

Wheat has high demand across the globe with a yearly
crop production of 700 million tonnes [12]. With the grow-
ing population, the demand is most likely to increase [6].
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Figure 1. The overall architecture for wheat head detection
with modified MobileNetV3 as the backbone and the proposed
WheatNet-Lite Neck as detection layer.

The continued development of global wheat is crucial for
long-term food security. Wheat production needs to in-
crease by a significant amount to tackle this problem. New
plant-breeding techniques allow the development of new
wheat plant varieties with desired traits such as disease-
resistant, climate-resistant, and higher yields [18]. How-
ever, wheat breeding is mainly done in traditional ways,
which are almost manual and hence error-prone. The pro-
cess is tedious and time-consuming. Plant phenotyping
measures various properties of plants which may be struc-
tural or functional [22]. These techniques are the key to
select important wheat traits linked to yield potential, dis-
ease resistance, or adaptation to abiotic stress [4]. Among
all traits, wheat head numbers per unit ground area is a sig-
nificant yield component and are still manually evaluated in
the breeding trials [4]. Plant breeders use wheat head count
in their decision-making process to determine which wheat
varieties should be crossed to generate a new, superior off-
spring.

There is a need for an automated wheat head detection
method that helps to mitigate the bottleneck of wheat head
detection in wheat breeding. There is a need for an auto-
mated wheat head detection method that helps to mitigate
the bottleneck of wheat head detection in wheat breeding.
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Several studies use computer vision and image processing
based methods for wheat head detection[17], [10], [11].
However, there are two types of challenges environmental
and wheat inherent challenges. Environmental challenges
include blurring due to wind or motion, divergence in the
observational conditions, image scale, unwanted shadow
and brightening conditions [7]. Wheat inherent challenges
such as differences in shapes and colour of wheat head due
to genotype variation, different growth stages, overlaps be-
tween wheat head, and variation in wheat head orientation
make this task more complex. Providing quantitative plant
breeder support for yield estimation under actual field con-
ditions, relying on accurately and automatically detecting
and counting the wheat head in the field [12]. Due to the
wide range of cultivating techniques and appearance, creat-
ing an accurate dataset is also a significant challenge. For
real-time wheat head detection, designing lite weight deep
learning models for edge device applications is also chal-
lenging to achieve accurate and efficient wheat head detec-
tion. The major contributions of this work are summarized
as follows:

1. The proposed method introduces a deep learning
technique for wheat head detection using a novel
WheatNet-lite network. The extracted features from
the proposed backbone show effective representations
of the dense and overlapping wheat heads with high
accuracy.

2. Automatic extraction of features through Mixed
Depthwise Convolution (MDWConv) with an inverted
residual bottleneck in the backbone is utilized to en-
able flexible feature fusion and reduce the parameter in
the WheatNet model. Additionally, the modified Spa-
tial Pyramidal Polling (MSPP) effectively extracts the
multi-scale features.

3. The wheat head bounding box prediction is achieved
using WheatNet-lite Neck by utilizing Depthwise Con-
volution (DWConv) with a feature pyramid structure
drastically reduce parameter.

4. We have proposed an ACID dataset with bounding box
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Figure 2. Challenges for wheat head detection (a) Overlapping, (b) Different growth stages, (c) Image blur due to wind (d) Brightness
variation

annotations. Also, extensive experimentation has been
carried out to evaluate the performance of the pro-
posed WheatNet-Lite with state-of-the-art object de-
tection methods such as Fast-RCNN, YOLOV3, and
YOLOV4 for the detection of the wheat heads.

The remainder of this paper is organized as follows. Sec-
tion 2 reviews the related work. Section 3 briefly intro-
duces the materials and proposed method for wheat head
detection. Section 4 describes the training and implementa-
tion, Section 5 gives results and discussion with the Abla-
tion study. Finally, in Section 6, we conclude the paper with
ideas for future directions.

2. Related Work

2.1. Convolution Neural Network for wheat head
detection

In [21], [7] the image processing techniques is used
for wheat head detection. In contrast to traditional image
processing techniques, deep learning techniques achieve
greater accuracy for wheat head detection.[7], [4], [22],
[28], [33], [20], [28]. Convolution Neural Network (CNN)
has boosted the performance in various Computer Vision
fields such as image classification, image segmentation and
object detection. But CNN requires a large amount of train-
ing data for and computations to get accurate results. To
address this problem, researchers focused on data creation.
In [4], a large and diverse GWHD dataset is developed with
manual wheat heads annotations, which use as a bench-
mark dataset for wheat head detection. In [12] , a SPIKE
dataset has been created using a camera set up in an oblique
view manner which captures a significant number of spike
features such as texture, colour, shape, etc. In [22] au-
thor focuses on a new ACID dataset creation in the field
of wheat phenotyping. For each wheat head in the wheat
ears, point annotations are given. In addition, an automated
procedure for counting wheat heads has been developed us-
ing Light Detection And Ranging’s (LiDAR) device in the
agricultural field [33]. In [8] the author uses characteriza-
tion motion-based method in field-grown wheat detection.
Two stream CNN architectures for high-resolution image
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Figure 3. An example of images from datasets: (a) GWHD-Train, (b) ACID and (c) SPIKE dataset.
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Table 1. Different datasets used in this study

Dataset Images collection  Resolution = Number of images Instances Annotations type
GWHD-Train [4] Real field images 1080 x 1080 3422 1,88,445 Bounding box
ACID [22] Indoor images 1024 x 1024 520 4,100 Bounding box
SPIKE [12] Real field images 6000 x 4000 335 25,000 Bounding box
Total 8500 45740

object detection are compared. The first is RCNN, which is
faster, and the second is TasselNet, which counts by regres-
sion [20]. In deep count [28] paper, linear iterative cluster-
ing and deep CNNs based approaches are used to identify
and count the number of wheat spikes.

2.2. CNN architecture for Object Detection

CNN based object detection architecture evolved with
time with better availability of resources. In [31] author
address the problem of multi-scale feature extraction using
multiple filter in convolution. In [3] depth-wise separable
convolution is proposed to minimize computational com-
plexity while retaining normal convolution performance .

Girshick et al. [9] introduced Region-based Convolu-
tional Neural Networks (R-CNN) for object detection us-
ing a selective search to detect regions of interest (ROI)
and CNN to classify them. Ren et al. [27] developed a
Faster RCNN employing a region proposal network (RPN)
and a CNN for object detection. In [30], efficiency is in-
creased with fewer parameters by scaling the CNN archi-
tecture. In [15], the lightweight architecture with inverted
bottleneck structure is discussed for efficient feature extrac-
tion. Tan et al. [32] proposed EfficientDet a combination
of bi-directional feature pyramid network and EfficientNet
backbones for scalable and efficient object detection. In
[23] author proposed You Only Look Once (YOLO) pop-

ular CNN based network for object detection. Over time,
the YOLO network family has evolved. In [24] work, the
YOLOV2 network evolved from the YOLO detection net-
work. Further, in [25] the author proposed the YOLOV3
modified version of YOLOV2. Compared to the Faster R-
CNN [26] network, the YOLO network transforms the de-
tection problem into a regression problem. The in-detail
literature survey defines a need to increase the efficiency of
memory usage and wheat head detection speed to address
the demands of real-time applications.

3. Materials and Method

Although many approaches have been proposed in the
past, their performance is often not optimal. This paper in-
vestigates the uses of recent advanced, efficient deep learn-
ing models for accurate wheat head detection.

3.1. Dataset

We evaluate the results of the proposed architecture on
three datasets : (1). Global Wheat Head Detection (GWHD)
dataset [4], (2). Annotated Crop Image Dataset (ACID)
[22], and (3). SPIKE dataset [12], respectively. Sample im-
ages from each dataset is shown in Figure 3. Further each
of these datasets has been explained in detail as follows:

GWHD dataset [4] is the benchmark for wheat head de-



[] Standard. Conv.

[ Pointwise Conv

[C] Mixed Depthwise Conv.
[ Squeeze-and-Excite

[ Modified SPP

Modified SPP

Figure 4. The proposed WheatNet-Lite Architecture.

tection. Data has been collected over four years from 2016
to 2019 from nine research institutions from different lo-
cations, with 507 genotypes from Europe, North America,
Australia, and Asia [4]. The GWHD dataset includes RGB
images collected from a wide variety of field-based pheno-
typing platforms with cameras. In addition, we collected
the GWHD dataset from the global wheat detection compe-
tition on the Kaggle platform. As the ground truth of the test
dataset is not publicly available, we split the training dataset
of 3422 images into training, validation and test dataset with
the size of 60% and 20%, and 20%, respectively.

The ACID dataset [22] contains images of wheat plants
taken in a glasshouse condition [22]. In total, 520 im-
ages are containing a total of 4,100 wheat heads and 48,000
spikelets. Pointwise labels are given for each wheat head,
but since we require a rectangular bounding box as anno-
tation for the wheat head detection, which provides more
insight than pointwise annotations. Therefore, we manually
labeled each wheat head using LabelIMG Annotation tool
[2] to create bounding box annotations. Labelled dataset
made publically available for research purposes.

The SPIKE dataset [12] has over 300 images of ten
wheat varieties at three different growth stages. Annota-
tions for each image presents wheat head bounding boxes.
First, the images are directly taken from the field and
then cropped, keeping only the Region of Interest (Rol)
[12]. Then the images are manually annotated with bound-
ing boxes highlighting all the wheat heads present in the
images. The dataset has three such categories: Green
Spike and Green Canopy (GSGC), Green Spike and Yel-
low Canopy (GSYC), Yellow Spike and Yellow Canopy
(YSYC). Multiple experts have labelled the images at the
resolution of 2000 x 1500 pixels. Each image contains ap-

proximately 70-80 spikes. Therefore, in total, the 335 im-
ages include about 25,000 annotated wheat heads.

Data pre-processing is a key to achieve high detection
accuracy. However, throughout the data analysis, we ob-
serve that some wrong bounding boxes are present in the
dataset. Thus it can mislead the model while training. To
overcome this problem, we remove these wrong bounding
boxes from the dataset. The clean dataset is used for train-
ing purpose shows significant improvement in the detection
accuracy. Different growth stages, image blur due to wind,
and variation in the canopy add diversity to a dataset and
increase wheat head detection complexity. The proposed
method must be robust to these variations of the wheat head.
Hence, we have adopted augmentation techniques such as
mosaic augmentation, random brightness, and colour con-
trast, which creates generalization while training the accu-
rate wheat head detection model.

3.2. Proposed Method

This study aims to design a lightweight network for
wheat head detection from field images. The proposed ar-
chitecture consists of two parts, namely the backbone and
detection layer. sample wheat dtection architecture is shown
in Figure 1 We have explored the use of modified Mo-
bileNetV3 [17] as the backbone, and the feature pyramid
structure is utilised in the proposed WheatNet Lite-Neck as
a detection layer.

3.2.1 WheatNet-Lite Backbone

We use YOLOV3 [25] as our baseline architecture for
object detection. Darknet53 is replaced with the pro-
posed WheatNet-lite backbone. The proposed Wheatnet-
Lite backbone use MobileNetV3 as the base network. Mo-



Table 2. Comparison of YOLOV3 and WheatNet-Lite in terms of

Parameters
Method Backbone Neck  Total Parameter
YOLOV3 37.0M 254 M 624 M
WheatNet-Lite 3.0M 5.2M 82M

bileNetV3 is based on an inverted residual structure with
linear bottlenecks [15]. Depthwise Convolution (DwConv)
is modified with Mixed Depthwise Convolution (MDw-
Conv), which splits input channels into groups and apply
convolution operation with multiple size kernel to extract
multi-scale features of wheat head [31]. MDWConv bot-
tleneck uses a stack of four blocks, including 1 x 1 point-
wise convolution, 3 x 3, 5 x 5 filters in mixed depth-wise
convolution, squeeze and excitation, and 1 x 1 pointwise
linear convolution. Furthermore, a residual skip connec-
tion is inserted in the bottleneck, as shown in Figure 5 (a)
and Figure 5 (b). The MDWConv bottleneck uses ReLu
or h-swish activation function to introduce non-linearity
in a network. The complete architecture of the proposed
lightweight backbone is shown in Figure 5. The proposed
backbone includes one 3 x 3 standard convolution layer fol-
lowed by 13 MDWConv layers, and finally, one 1 x 1 point-
wise convolution. Out of 13 MDWConv bottlenecks, eight
bottlenecks are with SE block, and the rest are without SE
block. Further, at the end of the backbone, Modified Spa-
tial Pyramid Pooling (MSPP) is utilized with 3 x 3, 5 x 5,
and 7 x 7 pool size to extract multi spatial features [13] as
shown in Figure 4. As a result, the WheatNet-Lite back-
bone provides 12 times parameter reduction compared to
the standard YOLOV3 backbone, from 37.0 M to 3.0 M, as
shown in Table 2. In addition, the intermediate feature maps
from the backbone F1, F2, and F3 are extracted at different
scales and passed to the proposed WheatNet-Lite detection
layer for final wheat head detection, as shown in Figure 6.

3.2.2 WheatNet Lite-Neck

WheatNet-Lite Neck is used for efficient multi-spatial fea-
ture extraction and bounding box detection. WheatNet-Lite
Neck uses Feature Pyramid Network (FPN) for strengthen-
ing the features of the WheatNet-Lite backbone. We re-
placed standard convolution with depth-wise convolution
for parameter reduction. The WheatNet-Lite Neck network
provides eight times parameter reduction as compared to
standard YOLOV3, from 25.4 M to 5.2 M, as shown in Ta-
ble 2. The detailed layer-wise structure is shown in Figure
6. The multi-scale features F1 (13 x 13 x 960), F2 (26 x 26 x
672) and F3 (52 x 52 x 240) were extracted from WheatNet-
Lite backbone and further given to WheatNet-Lite Neck
network. The structure uses 1 x 1 point-wise convolu-
tion and depth-wise convolution with upsampling layer, and
three multi-scale detection layers are produced for wheat

head detection. The output dimensions of WheatNet-Lite
are 13 x 13 x 18 for large wheat heads detection, 26 x 26
x 18 for medium wheat heads detection, and 52 x 52 x 18
for small wheat heads detection. The final network includes
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Figure 5. Proposed WheatNet-Lite backbone on left side with Bot-
tleneck layers expressed as Bottleneck(kernel size, expansion fac-
tor, Non-linearity / Stride) Fig.(a) shows bottleneck where MD-
WConv is with 3 x 3 and 5 x 5 filters denoted as (k,k), Conv is
regular convolution, BN is batch norm, NL is Non linearity Fig.(b)
shows bottleneck with squeeze and excitation block. H x W x F'
denotes tensor shape (height, width, depth), t is expansion factor
and x /1/2 denotes number of repetition of block.

HxWxF

Fig. (b) Bottleneck with SE

nine DWConv, seventeen 1 x 1 point-wise convolutions with
only 5.2 M parameters in Neck shown in Table 2. It lever-
ages the benefits of FPN and DWConv for more efficient
and accurate feature extraction, thereby giving an accurate
wheat head detection.

3.2.3 Bounding Box Prediction

After extracting wheat head features, the proposed
WheatNet-lite network performs wheat head bounding box
detection based on the regression. We use the same loss
function as in YOLOV3. Due to variation in the sizes of
bounding boxes, we collected three scaled outputs from the
WheatNet-Lite Neck 13 x 13 x 18, 26 x 26 x 18, and 52 x
52 x 18. We adopted K-Means++ (clustering technique) to



|5 < =3 slglalz|glals] |=[3 s|g|glR|g|>| |8|8|s
) ola AHBERED Qe 29888 =] S| :
5| o &€ Qlo|<|&] | <& S| e Sla| S| (a2 2] )
tle o S E IS R IS B R P ZIS|El2|g S e S S x|
=3 < - - S| = =5 = = > S| < 3|3 .
SHBEEHEERREE EHE N EE 3|8 S|512(5|5/>| |52 :
512(8(51¢]8]8| | |5|7 HEIEIHEIEIHEREE £13|8|8(8| 5| 1S]8(8 :
o o o O|2|z|O0|2|=2|O Ol Ool2|32|2[=Z|O 2|3 .
&7 |8]& N M EE SHEEE 8|&
v Conv3.3.512)1 Dw.Conv(3,3,256)1
: A 7
Pw.Conv(1,1,1024)1 — Bwicony({(ilol2)
Conv(1,1,18) 52x52x|3 Cony (A0

Figure 6. Proposed WheatNet-Lite Detection Layer.

Table 3. Comparison with state of the art methods for GWHD-
Train Dataset

Methods mAP @0.5 Parameter
YOLOV3 [25] 86.9 624 M
YOLOV4 [1] 88.53 63.9M
Zhu et al. [36] 53.64 -
Yang et al.[34] 56.46 62.4M
Madec et al.[20] 71.32 136.8 M
He et al. [14] 77.68 63.9M
WheatNet-Lite 91.32 8.2 M

obtain prior anchor boxes in feature maps by setting three
anchor boxes for each scale to collect nine anchor boxes for
each cell. The purpose of the K-Means++ algorithm is to
cluster the most prior anchor boxes with higher Intersec-
tion Over Union(JOU) values with the ground truth-bound
boxes. In the proposed network, there are nine anchor boxes
due to three scales of feature maps. For each bounding box,
there are five expected values, including the bounding box’s
centre point coordinates(tx, ty), width(tw), height(th), ob-
jectness score(Pc), and class probabilities(pl..pi). Finally,
it calculates each class’s confidence score by multiplying
the probabilities of the conditional class and individual box
confidence score. For each bounding box score, the corre-
sponding scores of each class are determined as follows:

Score,, = P(Cy,|W heathead) x Pr(W heathead)
xIouluth

= P(C,|Wheathead) x Conf
(1)

4. Experimental Results

In this section, we provide a detailed description of our
experimental setup. First, the Evaluation Metrics are men-
tioned, and then the training strategies for different methods
are mentioned. Finally, the performance of the proposed
method is evaluated and compared against the state-of-the-
art method from both quantitative and qualitative stand-
points.

The WheatNet-Lite is implemented using Keras with
Tensorflow in the backend as a deep learning framework

for training purposes [5]. The experimental environment
is Ubuntu 16.04 operating system, Intel (R) Xeon (R)
CPU, 2.54 GHz Processor, 16 GB running memory (RAM),
NVIDIA GPU Tesla P100 with loss function same as
YOLOV3 [25]. The proposed model training is carried out
with a batch size of 16 with Adam Optimizer. The learning
rate is initially set to 0.001. Models often benefit from re-
ducing the learning rate by monitoring validation loss, and
when validation loss remains constant for consecutive five
epochs learning rate is reduced by a factor of 0.3. The com-
plete network is trained for 250 epochs. The end-to-end
WheatNet-Lite model is trained for each dataset GWHD-
Train [4], ACID [22] and SPIKE [12] dataset with same
hyper-parameters and same environmental conditions for a
fair comparison. Each dataset is split into training, vali-
dation, and testing 60%, 20%, and 20%, respectively. In-
put image size is fixed at 416 x 416 x 3. The model is
trained with the training dataset and evaluate it performance
in the test dataset. The results of GWHD-Train, ACID, and
SPIKE datasets are given in Table 5 and Table 3.

5. Results and Discussion

Mean Average Precision (mAP) is used as an object
detection evaluation metric. Experiments started with
the selection of feature extractor as the backbone. The
Lightweight networks such as EfficientNet [30], ShuffleNet
[35], ShuffleNetv2 [19], MobileNet [16], MobileNet-v2
[29] and MobileNet-v3 [15] have great performance on Im-
ageNet dataset which indicates strength of each network.
In order to find out which network is best, we conducted
experiments using these networks as a backbone of the pro-
posed WheatNet-Lite Network. MobileNet-v3 has the best
accuracy in wheat heads detection as the backbone. Thus
MobileNet-v3 is chosen as the base backbone network for
feature extraction. For the proposed WheatNet-Lite back-
bone, all DWConv convolutions have been replaced with
MDWConv in a standard MobileNet-V3.

The use of MDWConv in inverted residual structure and
DWconv in feature pyramid structure is utilized to extract
multi-scale features of wheat heads. The proposed method
achieved 91.32 mAP@0.5, 76.85 mAP@0.5 and 86.10
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Figure 7. Results for GWHD-Train dataset (a) Original RGB image, (b) Fast-RCNN, (c) YOLOV3, (d) WheatNet-Lite and challenges as
(I) overlapping wheatheads, (II) growth stage, (III) Blur image due to wind and (IV) brightness variation. (green box represents ground
truth and red box represents predictions)

Table 4. comparison with state of the art methods for GWHD-Train Dataset

Methods Backbone Neck Precision(%) Recall(%) mAP @0.5 Parameter GFLOPS Time
YOLOV2 DarkNet19 - 70.17 75.13 71.32 50.6 M 53.10G  28ms
YOLOV3 Darknet53 FPN 89.26 91.12 86.9 62.4 M 6552G  30ms
YOLOV4 CSPDarknet53 PAN 90.12 93.12 88.53 63.9M 67.07G  38ms
‘WheatNet-Lite Proposed Proposed 91.32 94.32 91.32 82M 52G 15ms

Table 5. Comparison of proposed WheatNet-Lite on different
Datasets

Dataset mAP @0.5 Precision Recall Parameters
GWHD-Train 91.32 89.85 92.45 82M

ACID 76.85 80.69 85.37 82M

SPIKE 86.10 81.56 90.32 82M

mAP@0.5 for GWHD-Train, ACID and SPIKE datasets
with only 8.2 M parameters, as shown in Table 5. Addi-
tionally, The quantitative results comparison with state-of-
the-art methods on the GWHD-Train dataset is shown in
Table 3. The qualitative results comparison of the proposed
WheatNet-Lite with fast-RCNN and YOLOV3 shown in
Figure 7. columns in figure 7(a) represents input origi-
nal image 7 (b), 7 (c) and 7 (d) represents results of Fast-
RCNN, YOLOV3 and WheatNet-Lite respectively. Pro-
posed methods overcoming the challenges of wheat head
detection are shown in 7 . such as 7(I) overlapping wheat
heads,, 7(II) growth stage, 7(Il) Blur image due to wind
and 7(IV) brightness variation. The qualitative results for

| NN i N ,7 Pl W ; -
Figure 8. WheatNet-Lite results on ACID and SPIKE dataset green
and red box represent ground truth and prediction respectively
(first and second row for ACID and SPIKE dataset respectively)

the ACID, and SPIKE datasets are shown in Figure 8. Even
though for GWHD-Train and SPIKE dataset, ground truth-
bounding boxes are missing for some wheat heads, the
proposed method predicts correct bounding box for wheat



Table 6. Ablation Study of WheatNet-Lite on GWHD-Train Dataset

Methods Proposed backbone MSPP  Lite Neck DWConv MDWConv Map @0.5 Parameter GFLOPS
YOLOV3 86.9 62.4 M 65.52 G
WheatNet-Lite-Mod1 v 87.53 28.4M 29.82G
WheatNet-Lite-Mod2 v v 88.78 28.4M 30.82G
WheatNet-Lite-Mod3 v v v 89.53 82M 8.61G
WheatNet-Lite-Mod4 v v v v 90.5 82M 5.16G
WheatNet-Lite v v v v 91.32 82M 52G

Figure 9. WheatNet-Lite performs very well even without ground
truth bounding boxes examples from (a) GWHD-Train and (b)
SPIKE dataset.(green and red box represent ground truth and pre-
diction respectively)

heads as shown in Figure 9. Even if the proposed method
predicts correct wheat head, because of its ground truth is
not available, it is considered false positive. Due to this,
mAP score decreases. Adding up ground truth for these
wheat heads in both the dataset will increase the results.

5.1. Ablation Study

In the ablation study the proposed light weight network
is selected. Mixed depthwise convolution, MSPP [13] and
Depthwise convolution is effectively used in backbone and
Lite-Neck respectively.

YOLOV3 is selected as a baseline architecture, back-
bone DarkNet53 is replaced with modified MobileNetV3 as
Modification 1 and added MSPP as modification 2 shows
an increment in results. Further, DWConv utilized with fea-
ture pyramid structure in WheatNet-Lite Neck as Modifica-
tion 3. Finally, MDWConv use in modified MobileNetV3
as Modification 4 gives more accurate results than the
other state of the art methods shown in Table 6. Obser-
vations about the Mixed depthwise in the inverted residual
block is multi-scale features are extracted for more accu-
rate wheat head detection, as shown in Table 6. Departing

from standard convolution, we have utilized mixed depth-
wise convolution and depthwise convolution for efficient
model designing to reduce parameters. Furthermore, we
have demonstrated the effectiveness of the proposed method
for multi-scale feature extraction for accurate wheat head
detection by overcoming challenges such as occlusion of
the wheat head, genotype, canopy and growth stage varia-
tion, and image blur due to wind.

6. Conclusion

This paper presents a lightweight WheatNet-Lite convo-
lutional neural network-based method for wheat head de-
tection. The proposed method consists of a WheatNet-
Lite backbone network using Mixed-Depthwise Convolu-
tion (MDWConv) with inverted residual block. The Mod-
ified Spatial Pyramid Pooling (MSPP) layer is effectively
used for multi-scale feature extraction in the backbone. Fi-
nally, the DWConv is used in the feature pyramid structure
with WheatNet-Lite neck for bounding box prediction. The
proposed method outperforms the existing state-of-the-art
methods with the reduced parameters (eight times) com-
pared to YOLOV3. The achieved results with mean av-
erage precision (MAP) 93.6 MAP@0.3, 91.32 MAP@0.5
with only 8.2 M parameters on GWHD-Train dataset. Also,
the method evaluates the new proposed ACID dataset with
bounding box annotations with inference time as 10 ms.
The extensive experiments carried out on GWHD-Train,
SPIKE and ACID datasets show 91.32 mAP@0.5, 86.10
mAP@0.5 and 76.85 mAP@Q.5, respectively. Thus, we
have shown empirically that our approach is much more
suited for real-time wheat head detection. In future, the pro-
posed approach can effectively make an impact on real-time
wheat head detection.
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