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Abstract

Distinctness is a binary trait used in variety testing to
determine if a new plant variety can be considered dis-
tinct or not from a set of already existing varieties. Cur-
rently distinctness is mostly based on human visual percep-
tion. This communication considers distinctness with a ma-
chine learning perspective where distinctness is evaluated
through an identification process based on information ex-
traction from machine vision. Illustrations are provided on
apple variety testing to perform distinctness based on color.
An automated pipeline of image acquisition, processing and
supervised learning is proposed. A feature space based on
the 3D color histogram of a set of apples is built. This
feature space is built using optimal transport, fractal di-
mension, mutual entropy and fractional anisotropy and it
provides results in accordance with human expertise when
applied to a set of varieties highly contrasted in color and
another one with low color contrast. These results open new
research directions for achieving higher-throughput, higher
reproducibility and higher statistical confidence in variety
testing.

1. Introduction
o commercialize a new variety of an agricultural species

a plant breeder has to follow a very strict and framed pro-
cess managed by a international authorities and delegated
to examination offices (EO) that describe and evaluates the
variety for its registration on an official list. Currently
a large majority of these tests are based on manual mea-
surements performed by experts through visual inspection.
This method is inefficient due to its time-consuming na-

ture. There is also the issue of the reproducibility of these
tests when they involve subjective assessment of qualita-
tive characteristics. Improving efficiency and reproducibil-
ity of these tests would be extremely useful for EOs that
are continuously seeking for optimized and objective meth-
ods implemented in testing protocols. It could also pro-
vide means to assess new varieties developed in response
to new agricultural constraints, particularly in the perspec-
tive of climate change. In addition, more efficient measure-
ment methods would assist in addressing the challenge of
the constant increase in the number of varieties that have to
be tested. Reproducible assessment tools would also con-
tribute to harmonizing practices between countries.

So far few attention from the academic imaging commu-
nity has focus on these specific aspects of variety testing
and this communication can be considered as a contribution
in this direction. Several types of evaluations are performed
by experts for variety testing including distinctness, homo-
geneity and stability. We focus here on distinctness. We
developed a technique to determine if a representative set
of a plant variety is sufficiently distinct from a catalogue of
existing varieties so as to be registered as a new variety. We
formulate this task as an identification problem to explore
the potential of a supervised machine learning approach in
distinguishing ensembles of plant samples.

For illustration we consider a specific use-case with ap-
ple variety testing based on their distinctness in terms of
color (one of the most important characteristic for apple
consumer). Machine learning approaches have been exten-
sively used for fruit classification, e.g. separating a species
from another, or a fruit of a given quality from others of
lower quality. However, variety testing requires a more fine-
grained approach and necessitates the exploration of the



distinct visual characteristics among varieties of the same
species and the same consumer quality.

Color difference evaluation has been extensively studied
by CIE which provides a set of formulae found in accor-
dance with human perception for more or less simple uni-
form images with controlled background and illumination
[12]. In our case we face the question of differentiation of a
large set of textured images of apples which characterizes a
variety from another large set of images. Comparing pairs
of individual images of apples with the standard CIE ap-
proach would be a rather brute force approach which is not
followed by the experts in charge of variety examinations.
We rather decided to mimic their current visual approach
of these experts which is to compare two images each con-
taining a large set of sample apples and decide whether the
two sets belong to the same variety or not. We thus address
the problem as a statistical one and consider distinctness as
equivalent to deciding if a set of 3D color histograms repre-
senting an apple variety is sufficiently ”distant” from a set
of other 3D color histograms corresponding to other sets of
apples.

The paper is organized as follows. After positioning the
most related works of the literature, materials and methods
section presents the image acquisition system and protocol
together with the set of features chosen to characterize the
distinction between 3D color histograms in specially de-
signed experiments. Results obtained on two datasets of
apples are presented and discussed before final conclusion
and perspectives.

2. Related works
3D color histograms of high resolution images are dense

point clouds and are difficult to be properly visualized for
assessment of the density variations [5]. As a consequence,
3D color histograms have been characterized in many ways
in the literature [19]: histogram intersection, dominant
color descriptor, color correlogram, color co-occurrence
matrix, dominant color descriptor, chromaticity, fractal di-
mension [7, 6], fractional anisotropy [1]. Color histogram
matching can also be performed with the help of metrics de-
veloped in information theory such as the Shannon mutual
information and their variants [20, 4] or optimal transport
[16, 17] to probe the discripency between two statistical dis-
tributions. For a first step of variety testing in the domain
of machine learning we decided to select a small subset of
these features since we do not claim to provide an exhaus-
tive analysis of the appropriate features. Here, we rather
aim at setting the machine learning scheme and give a proof
of feasability in the automation of distinctness.

From the computer vision generic perspective, the ap-
plied task considered in this communication may relate to
identification problems such as image retrieval or object
tracking [9, 10, 11, 17]. In our case again the identification

problem is related to a population of images while in image
retrieval or object tracking [19, 11] the task mostly targets
identifying single image or objects. Fruit characterization
is a field of machine vision in itself which has received con-
siderable attention either for species identification or quality
control (see [22, 14, 15, 18] for reviews). Again the statisti-
cal situation considered here is different since the goal is not
to sort each individual apple but to determine if a set of ap-
ples can be considered as distinct or not from others. Most
related works to what we propose can be seen as [13, 23]
where supervised machine learning are proposed to classify
existing varieties. In our case, while considering other crops
and testing other features, we deal with the situation where
a new set of plant has to be identified as similar to exist-
ing ones or distinct up to the point where it deserves to be
designated as a new variety.

3. Materials and methods
3.1. Images Acquisition

The acquisition of the images of the different varieties
of apples was carried out with the help of a conveyer ma-
chine allowing to move the fruits in translation while car-
rying out a rotation (see Fig. 1). A camera located at the
top of the conveyor belt of the machine with a perpendic-
ular viewing direction, took pictures of the apples in rota-
tion, which allowed us to have multiple images providing
almost an entire coverage of each apple. Approximately 9
to 10 views of the same apple were captured thanks to this
rotation-translation process. These multiple views are im-
portant since apple may have several major colors on their
skins. With the standard visual approach experts have to
manually rotate the apples to have a full perception of the
variation of color on a single apple. Here the machine pre-
sented in Fig. 1 can acquire a set of 30 apples in a couple of
minutes. Images were acquired in burst mode with a Canon
camera (10.1 megapixels resolution) controlled by a simple
Raspberry-pi minicomputer. Apples were segmented auto-
matically from background as visible in Fig. 1 and assem-
bled in multiple view images of 30 apples as shown in Figs.
2 and 3. This machine, developed for this study, is much
simpler and lower cost (approximately 10 keuros versus 100
keuros for classical apple sorting machines) than any com-
mercial systems since it does not need to incorporate any
sorting mechanism. Also, by contrast with most commer-
cial system, access to raw image format, i.e. uncompressed
format, is possible.

3.2. Datasets

Currently, when experts of EO are performing distinct-
ness, they observe directly with their own eyes boxes of 30
apples of each tested variety and reference varieties manu-
ally positioned in a same room and they decide form a pure



Figure 1. Acquisition system. Upper panel: Machine equipped
with a conveyor belt, used for the acquisition of images of apples
with a high surface coverage. Lower panel: view of the acquired
images of apples after segmentation from the background.

subjective perception if these sets are distinct or not from
one another. An objective of this work is to produce a step
toward an automation of such examination through the use
of computer vision applied on images such as Figs. 2 and
3 which are automatically produced after acquisition on the
system of Fig. 1. Two datasets were produced for this study
to test the proposed machine vision approach for distinct-
ness evaluation.

3.2.1 Non-Gala Mutant varieties

We first created a dataset of images of apples with highly
distinct color distributions. The dataset is composed of
1293 images of apples belonging to 8 varieties (see Fig. 2)
which we refer to as non-Gala Mutants. These varieties cor-
respond to varietes identified as distinct from each other
by the official examining offices. These varieties are not
named, they simply have a reference number to identify
them. The number of images per variety is given in Table 1.

Variety Images
variety30 113
variety37 127
variety40 133
variety41 99
variety42 106
variety44 312
variety46 215
variety47 188

Table 1. Number of images of 8 reference, registered varieties cor-
responding to Non-Gala Mutant dataset.

Figure 2. Images representing the 8 non-mutant Gala varieties in
the order of appearance in the list of Table 1.

3.2.2 Gala mutants

As a complement to the first dataset, we built a second
dataset containing 4040 images of apples belonging to 9
different mutants of the variety Gala. These mutants are
similar to each others in terms of color content as shown
in Fig. 3. The details of these mutants are given in Table
2 where first column gives the encrypted reference of each
corresponding mutant. These mutants are also considered
as distinct from each other by experts of EO but they some-
how reach the limit of what they consider as distinct.

References Images
X4111 597
X4410 438
X4712 716
X6716 684
X7440 444
X7812 259
X8125 329
X8594 343
X9214 230

Table 2. Number of images of 9 reference, registered varieties cor-
responding to Gala Mutant dataset.

Figure 3. Images showing a subset of each Gala Mutant, in the
same order of appearance as in Table 2, from left to right and by
line, except for the mutant X8594 which is completely yellow and
highly distinctive.

3.3. 3D RGB Histograms

With our objective being to differentiate apples mainly
based on the color distribution, we extracted features from
the RGB histogram of the images represented in 3 dimen-
sions (one axis by component color). We calculated the



RGB histogram of each image, and to obtain the RGB his-
togram of a variety, we simply calculated the sum of the
RGB histograms of the images belonging to the variety. We
can see the corresponding summed histogram of each of the
non-Gala mutants in Fig. 4 and of the Gala mutants (except
X8594) in Fig. 5. It is interesting to see that despite the
loss of spatial localisation in RGB histograms a contrast be-
tween colors is clearly visible in this representation with the
non-Gala mutants in Fig. 4. However, the contrast is much
more difficult to perceive with RGB histograms in the case
of the Gala mutants which represents a clearly challenging
classification task.

Figure 4. Images representing histograms of non-mutant Gala va-
rieties. From left to right, by row: variety30, variety37, variety40,
variety41, variety42, variety44, variety46 and variety47.

Figure 5. Images representing histograms of mutant Gala varieties.
From left to right, by row: X4111, X4410, X4712, X6716, X7440,
X7812, X8125, X9214.

3.4. Color features

Once the histogram of each image and each variety is
built, we extract features allowing to characterize several
aspects of the histograms. Same features were used for both
datasets. We present the features used for this study in the
rest of this section.

Average and variance of colors: The first two descrip-
tors are the mean and the variance of the colors. It seems
quite intuitive to use them since they give us respectively
the average color of the variety of apples and the con-
trast of yellow and red regions are captured via the vari-
ance. These two values are easily calculated. Let I be
any image of size m × n represented in the RGB space
by an array of RGB vectors P = (pi,j) where pi,j =

(ri,j , gi,j , bi,j) ∈ J0, 255K3 is the color of the pixel of coor-
dinates (i, j) ∈ J0,m−1K×J0, n−1K of image I . Denoting
the mean and variance of the colors respectively by P̄ and
V the mean and the variance of the image I , we have:

P̄ =
1

m× n

m−1∑
i=0

n−1∑
j=0

ci,j , V =
1

m× n

m−1∑
i=0

n−1∑
j=0

(ci,j−c̄)2

(1)

Fractional Anisotropy: Fractional anisotropy is a num-
ber in the interval [0, 1] which reflects the degree of
anisotropy of the shape of the point cloud formed by the
3-dimensional histogram. This scalar gives a measure of
the stretch of the point cloud in various directions. If its
value is 1, it means that the points would all be distributed
along a perfectly linear axis. If its value is zero, it means
that the points are distributed homogeneously in all direc-
tions. Thus, a sphere has a zero fractional anisotropy, an
ellipse has a fractional anisotropy between 0 and 1 and a
straight line has a fractional anisotropy equal to 1. After ob-
taining the eigenvalues λ1, λ2 and λ3 of the PCA (Principle
Components Analysis) on the 3-dimensional histogram of
an image, we can easily calculate the fractional anisotropy,
denoted as FA, via the formula

FA =

√
1

2

√
(λ1 − λ2)2 + (λ2 − λ3)2 + (λ3 − λ1)2√

λ21 + λ22 + λ23
(2)

Fractal box counting dimension: The fractal box count-
ing method [2] subdividing the 3D color cube J0, 255K3 into
’box’ of the edge length r counts the number of boxesN(r)
necessary to cover each color cell occupied by the point
cloud making up the 3D histogram. This number of boxes
N(r) has been found to follow a law of the form r−D where
D is the fractal dimension of the histogram [6, 7]. This
number ranging between 2 and 3 for natural images pro-
vides a description of the structure and density of the point
cloud. A smaller value of fractal dimension indicates that
although the histogram is distributed throughout the color
space, there remain empty regions.

Mutual entropy: Mutual entropy [8] allows us to com-
pute the information common to 2 histograms. We include
this mutual entropy as the measure of the color similarity
between an image and the target variety. To calculate the
mutual entropy, also called joint entropy, between two his-
tograms, we use the following formula

ME = −
∑

q(x) log(
q(x)

p(x)
) (3)

where p and q represent the respective pixel distributions
represented in the histograms of the two images.



Cost of optimal transport: As last feature we propose
to include optimal transport [21] which provides a way
of transporting a set of points to another set in the least
expensive way possible. In our case minimizing the
total distance between the two sets of points fits with
the capability of optimal transport. Since we work on
3-dimensional histograms of our images, we can measure
the cost in terms of the distance between the histogram of
an image and the average histogram of a target variety. If
we assume we have k varieties (here k = 8 or 9 depending
on the dataset used), we get k values representing the
cost of moving our image to the k varieties. These k
values are treated as color features each representing a
measure of the probability of the image to belong to the
corresponding variety. The lower the cost, the closer the

histograms are in terms of structure. Let µ =
m−1∑
i=0

piδai
and

ν =
n−1∑
j=0

qjδbj be two discrete measures associated with

two histograms, and let c be a cost function for which we
note cij = c(ai, bj) for all i, j ∈ J0,m − 1K × J0, n − 1K.
We then try to minimize

∫∫
c(x, y) dx dy. By noting

b = {p0, p1, . . . , pm−1, q0, q1, . . . , qn−1}T and c =
{c11, c12, . . . , c1(n−1), . . . , cm1, cm2, . . . , c(m−1)(n−1)}T ,
the problem then becomes a minimization problem of cTx
under the constraints{

A.x = b
∀i, j, xij ≥ 0 .

(4)

In practice, we calculated this cost using the python
package named POT (Python Optimal Transport,
https://pythonot.github.io/). The cost is computed us-
ing the method based on earth mover’s distance, from 3D
histograms. This algorithm has 2 advantages : histograms
do not need to be normalized and they do not need to be of
the same size [3]. All in all the feature space is composed
of features of various dimensions. The optimal transport
feature is a vector for which each component is the value
of the norm of the cost between two varieties. Therefore if
the dataset is composed of k varieties, the optimal transport
is a vector with k components. The other features can
be scalars as fractal dimension or fractional anisotropy, 3
components vectors as RGB means and RGB variance, or
a vector of the same dimension as the optimal transport for
mutual entropy.

3.5. Classification setups

In this part, we detail the machine learning classification
setups tested to assess distinctness with both apple datasets
presented in the previous section.

Multi-class classification A first setup is simply to per-
form a multi-class classification between the varieties al-

lowing to assess if the varieties are distinguishable between
them. This is a “one versus one” approach where the tested
variety is tested against all the existing ones individually.
For this, we simply separated an initial dataset of images
to create 2 sub-datasets: a test sub-dataset containing 1

3 of
the images, and a training sub-dataset containing the rest.
These 2 sub-sets were used respectively to train the super-
vised classifiers and to test their efficiency to distinguish the
different varieties. For this classification, two sets of fea-
tures were used, a set containing all features and the other
set containing only the most relevant features among all the
tested features.

Binary classification The second classification setup was
used to test if our model was able to differentiate the two
apple datasets. This is a “one versus all” approach where
the one tested corresponds to the variety compared with all
the existing registered varieties at once. We gathered the 2
datasets presented previously, thus constituting a dataset of
5333 images, with 4040 images of Gala mutants and 1293
non Gala mutants which are our 2 classes. We separated the
dataset into test and training sub-sets with a 50-50 ratio. To
mimic the procedure experts currently follows for apple va-
riety testing, the algorithm made an individual prediction on
each apples and a majority voting over subsets of 30 apples.

4. Classification results
4.1. Multi-class classification between Gala mutant

varieties

We first performed the multi-class classification between
Gala mutant apples only, in order to verify that it was indeed
possible to distinguish these 9 registered varieties between
them. We first separated the data into test and training sets
with a ratio of 2

3 for the training set, then we used 3 differ-
ent supervised classifiers: Support vector machine (SVM),
Random Forest and Linear Discriminant Analysis (LDA).

The classification results visible in Tables 3 and 4 show
that the Gala mutant varieties are distinguishable in terms
of color. These results are of the same order of magnitude
for the three tested classifiers. However, SVM gives an F1-
score over 97%, and perform slightly better than others.

A forward analysis, testing the performance of each in-
dividual type of features, identified that the best features for
the classification happened to those from optimal transport.
As visible in Tables 5 and 6, these features alone do not
allow us to obtain a fully satisfactory classification, how-
ever they are relatively efficient since they yield a classi-
fication accuracy of about 50%. Since our dataset has 9
distinct classes, a random classification of the data would
give 11%. accuracy. The relative superiority of optimal
transport toward the other features can be explained since
all histograms share the same elongated shape centered on



red-yellow barycenter.

SVM : All Features
Precision Score 97,13 %
Recall Score 97,10 %
F1-Score 97,07 %

Parameters
Kernel linear
Penalty l2
C 2.0
Loss squared hinge
Dual False
Tol 0.0001
Multi class crammer singer
Class weight None
Max iter -1
Data Transformation Normalized

Table 3. Results obtained by SVM with Gala mutant dataset and
all features.

LDA : All Features
Precision Score 93,39 %
Recall Score 93,32 %
F1-Score 93,30 %

Parameters
Solver SVD
Shrinkage None
Priors None
n components 1
store covariance False
tol 0.0001
Data Transformation Normalized

Random Forest : All Features
Precision Score 94,13 %
Recall Score 93,99 %
F1-Score 93,92 %

Parameters
n estimators 250
criterion entropy
max depth None
max leaf nodes None
bootstrap False
Data Transformation Normalized

Table 4. Results obtained by LDA and Random Forest with Gala
mutant dataset and all features.

SVM : OT Features
Precision Score 50,48 %
Recall Score 50,26 %
F1-Score 46,34 %

Parameters
Kernel linear
Penalty l2
C 8.9
Loss squared hinge
Dual True
Tol 0.0001
Multi class None
Class weight balanced
Max iter 1,00E+06
Data Transformation Normalized

Table 5. Results obtained by SVM with Gala mutant dataset and
optimal transport only.

LDA : OT Features
Precision Score 48,39 %
Recall Score 50,56 %
F1-Score 46,56 %

Parameters
Solver lsqr
Shrinkage auto
Priors None
n components 1
store covariance False
tol 0.0001
Data Transformation Normalized

Random Forest : OT Features
Precision Score 52,35 %
Recall Score 53,38 %
F1-Score 52,49 %

Parameters
n estimators 40
criterion entropy
max depth None
max leaf nodes None
bootstrap True
Data Transformation Normalized

Table 6. Results obtained by LDA and Random Forest with Gala
mutant dataset and optimal transport only.

4.2. Multi-class classification between non-Gala
mutant varieties

In a second step, we performed the same classification
method as in the previous section, this time using the dataset
composed of the non-Gala mutant varieties.

For this dataset, the results obtained in Tables 7 and 8 are
also very satisfactory, with F1-scores close to 90%. Once
again, the SVM with polynomial kernel gives the best re-
sults with a precision score of 93.76%. For the Non-Gala
mutants, these results show that the varieties composing this
dataset are clearly distinguishable as also confirmed by the
experts from EO since these are registered as official vari-
eties. The precision score is logically found a bit lower than
for the non-Gala mutant datasets since the contrast in color
between varieties is lower.

Again we performed a forward analysis which estab-
lished optimal transport as providing the most significant
features. As visible in Tables 9 and 10, the classification
only based on these optimal transport features reached their
best results with SVM with polynomial kernel of degree 3,
which gives a precision score of 71.25%. Globally the result
observed with the well contrasted dataset non-Gala mutant
are robustly conserved when the method is transposed to
less contrasted apples such a the one of the Gala mutants.
This demonstrates the high potential of a machine learning
framework equipped with color features for variety testing.

SVM : All Features
Precision Score 93,76 %
Recall Score 93,50 %
F1-Score 93,51 %

Parameters
Kernel poly
Degree 2
Penalty l2
C 12
Gamma auto
Coef0 0.5
shrinking False
tol 0.0001
Class weight None
Max iter -1
Data Transformation Normalized

Table 7. Results obtained by SVM with non Gala mutant dataset
and all features.

LDA : All Features
Precision Score 89.50%
Recall Score 89.10%
F1-Score 88.96%

Parameters
Solver lsqr
Shrinkage auto
Priors None
n components 1
store covariance False
tol 0.0001
Data Transformation Normalized

Random Forest : All Features
Precision Score 89,35 %
Recall Score 89,10 %
F1-Score 88,81 %
Parameters
n estimators 90
criterion entropy
max depth None
max leaf nodes None
bootstrap True
Data Transformation Normalized

Table 8. Results obtained by LDA and Random Forest with non
Gala mutant dataset and all features.



SVM : OT Features
Precision Score 71,25 %
Recall Score 70,53 %
F1-Score 67,22 %

Parameters
Kernel poly
Degree 3
Penalty l2
C 20
Gamma auto
Coef0 0.5
shrinking False
tol 0.0001
Class weight None
Max iter -1
Data Transformation Normalized

Table 9. Results obtained by SVM with non Gala mutant dataset
and optimal transport only.

LDA : OT Features
Precision Score 52,96 %
Recall Score 61,72 %
F1-Score 55,20 %

Parameters
Solver svd
Shrinkage None
Priors None
n components 1
store covariance False
tol 0.0001
Data Transformation Normalized

Random Forest : OT Features
Precision Score 57,78 %
Recall Score 59,40 %
F1-Score 58,12 %

Parameters
n estimators 40
criterion gini
max depth None
max leaf nodes None
bootstrap True
Data Transformation Normalized

Table 10. Results obtained by LDA and Random Forest with non
Gala mutant dataset and optimal transport only.

4.3. Binary classification with the 2 collected
datasets

Once we observed that both datasets were well distin-
guishable, we focus on the most difficult dataset and ex-
plore the potential of our framework to determine whether
a set of test images corresponds to a certain Gala mutant
or not. To mimic the way experts perform their scoring,
we decided to focus not only on individual classification of
apples but also on a group classification from the same vari-
ety. To do so, we selected images from the test data and by
a random draw without replacement of apples of the same
variety, to create subsets of 30 apples. This number exactly
corresponds to the size of the group of apples chosen by the
experts when they observe groups of apple for distinctness.
Once our model is trained on classification of individual ap-
ple images, we tested its efficiency on the subsets through
majority voting.

As can be seen in Tables 11, 12 and 13, we get 100% F1-
score with all classifiers when all features are employed.
Consistent with the results of the previous section optimal
transport again appeared as the most important features in
a forward analysis. With optimal transport only, Random
Forest gives the best results in individual classification with
a precision of 88.13% and an F-score of 75.67%.

5. Conclusion and perspectives
In this communication, we have considered, for the first

time to the best of our knowledge, a variety testing problem

2*SVM – Individual classification – OT only True labels Scores
0 1 Precision 51,16 %

2*Predictions 0 1014 117 Recall 73,88 %
1 316 331 F1-Score 60,46 %

2*SVM – Subsets classification – OT only True labels Scores
0 1 Precision 100,00 %

2*Predictions 0 14 0 Recall 100,00 %
1 0 14 F1-Score 100,00 %

2*SVM – Individual classification – All features True labels Scores
0 1 Precision 100,00 %

2*Predictions 0 1330 0 Recall 100,00 %
1 0 448 F1-Score 100,00 %

2*SVM – Subsets classification – All features True labels Scores
0 1 Precision 100,00 %

2*Predictions 0 14 0 Recall 100,00 %
1 0 14 F1-Score 100,00 %

Table 11. Results obtained by SVM on individual data and subsets
of apples, with optimal transport only and all features.

2*LDA – Individual classification – OT only True labels Scores
0 1 Precision 82,26 %

2*Predictions 0 1286 244 Recall 45,54 %
1 44 204 F1-Score 58,62 %

2*LDA – Subsets classification – OT only True labels Scores
0 1 Precision 100,00 %

2*Predictions 0 14 10 Recall 28,57 %
1 0 4 F1-Score 44,44 %

2*LDA – Individual classification – All features True labels Scores
0 1 Precision 100,00 %

2*Predictions 0 1330 0 Recall 100,00 %
1 0 448 F1-Score 100,00 %

2*LDA – Subsets classification – All features True labels Scores
0 1 Precision 100,00 %

2*Predictions 0 14 0 Recall 100,00 %
1 0 14 F1-Score 100,00 %

Table 12. Results obtained by LDA on individual data and subsets
of apples, with optimal transport only and all features.

2*RF – Individual classification – OT only True labels Scores
0 1 Precision 88,13 %

2*Predictions 0 1291 151 Recall 66,29 %
1 40 297 F1-Score 75,67 %

2*RF – Subsets classification – OT only True labels Scores
0 1 Precision 100,00 %

2*Predictions 0 14 0 Recall 100,00 %
1 0 14 F1-Score 100,00 %

2*RF – Individual classification – All features True labels Scores
0 1 Precision 100,00 %

2*Predictions 0 1330 0 Recall 100,00 %
1 0 448 F1-Score 100,00 %

2*RF – Subsets classification – All features True labels Scores
0 1 Precision 100,00 %

2*Predictions 0 14 0 Recall 100,00 %
1 0 14 F1-Score 100,00 %

Table 13. Results obtained by Random Forest on individual data
and subsets of apples, with optimal transport only and all features.

with a machine learning approach. We have introduced on
a use-case dedicated to apples a supervised learning scheme
to identify if a new candidate for variety registration could
be considered as distinct or not from an existing set of vari-
eties. Two datasets corresponding to highly contrasted va-
rieties and varieties contrasted at the limit of what would
be considered as distinct have been tested. Distinctness was
found in perfect accordance with the human expert. This
demonstrates the possibility to introduce more objective and
higher-throughput approaches in the domain of variety test-
ing. We found that among the tested features optimal trans-
port was producing the most adapted features, i.e. which
contributed the most in the correct decision making. It is
specially important to notice that all these results were ob-
tained based on color histogram, i.e. with a total loss of



spatial information.
This first step opens various ways of further investiga-

tions. A limit of the result presented so far stands in the
absence of negative data, i.e. non registered varieties in our
dataset. Access and diffusion of such historical data is com-
plex from a legal point of view when dealing with EO. A
workaround approach could consist in simulating fake non
registered varieties from an existing dataset. This requires
to enlarge the datasets used in this article and we are cur-
rently investigating this direction. On the machine learn-
ing side, several alternatives could be considered. We se-
lected classical shallow learning algorithms (SVM, random
forest and LDA). We produced binary decisions in accor-
dance with the essence of distinctness which is a binary
trait. All the tested algorithms could also provide proba-
bilities and confidence intervals which would provide more
insights. Such output, although not currently in practice in
variety testing would nonetheless be very useful specially
to provide arguments to the breeders when new variety can-
didates are rejected by EO. The set of hand crafted features
could be extended to additional color features mentioned
in the related work section. Also, all the analysis were per-
formed in the native RGB color space and other color spaces
more suitable to fit with the human perception could also be
tested with the approach introduced in this paper. Alterna-
tively deep learning approaches could be considered. An
obvious match would be with generative adversarial net-
works (GAN) [24] where the discriminator network could
serve to decide if a variety is distinct from another after the
GAN would have been trained to reproduce images of al-
ready registered varieties.

Varieties are registered based on a large set of parame-
ters. In this communication we considered only color, but
it would be interesting to extend the scheme to incorpo-
rate more parameters. On apple it could be color texture
(stripes on apple skin) as well as shape or resistance to dis-
eases. With such extended features, the apple variety would
be represented as point clouds similarly to what was found
here for color histogram. In this sense, the illustration pro-
vided in this report on color would actually be extendable
without any effort to any kind of characteristics to be tested
for automation in variety testing. The proposed approach
specially with optimal transport can be adapted to higher
dimensional feature spaces and thus offers a generic frame-
work to extend the quest for automation in variety testing.
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