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Abstract

We assess the possibility of performing regression anal-
ysis on hyperspectral images utilizing the entire spatio-
spectral data cube in convolutional neural networks using
protein regression analysis of bulk wheat grain kernels as a
test case. By introducing novel modifications of the well-
known convolutional neural network, ResNet-18, we are
able to significantly increase its performance on hyperspec-
tral images. Our modifications consist of firstly applying a
3D convolution layer enabling learning of spectral deriva-
tives that 2D spatial convolution is unable to learn, and sec-
ondly, the application of a (1 × 1) 2D convolution layer
that downsamples the spectral dimension. Analysis of the
responses learned by the convolution kernels in our modifi-
cations reveals meaningful representations of the input data
cube that reduce noise and enable the subsequent ResNet-
18 to perform more accurate regression analysis.

1. Introduction

Recently, near-infrared (NIR) hyperspectral imaging
(HSI), combining spectroscopy with image analysis, has
been applied for grain quality assessment. Caporaso et
al. [8] highlights that NIR-HSI combines the advantages of
spectroscopy - the rapidity and non-destructive nature - with
the possibility of analyzing the spatial distribution of grain
quality parameters. Feng et al. [13] mention that deep learn-
ing has great potential of using HSI to assess seed quality.
Several parameters for grain quality exist, such as Hagberg
Falling Number (HFN) [14], grain sprouting, kernel hard-
ness, moisture content, mycotoxin levels, and protein con-
tent.

Various studies have shown how NIR-HSI can be applied
to solve different grain quality assessment problems. Ser-
ranti et al. [24] use NIR-HSI to distinguish between oat and
groat kernels and achieve an accuracy of almost 100%. Yu

et al. [28] combine NIR-HSI and deep learning employing
stacked autoencoders (SAE) and a fully connected network
(FCN) to predict the Nitrogen content of oilseed rape leaves.
Nitrogen compounds are related to protein content [17, 27].
They achieve an RMSEP of 0.31% on a dataset with ground
truth values ranging from 3%− 6% and conclude that deep
learning is feasible for HSI. Caporaso et al. [6] use NIR-
HSI for HFN regression analysis on batches of wheat grain
kernels achieving an RMSEP of 62 s (HFN is measured in
seconds) with a dataset with ground truth values ranging
from 62 s − 318 s. Apan et al. [2] apply partial least squares
(PLS) regression on wheat crops and achieve an RMSEP of
0.50% on a dataset with ground truth values ranging from
9.4% − 16.0%. Caporaso et al. [9] use PLS regression on
single wheat kernels to determine the protein content and
achieve an RMSEP of 0.94% on a dataset with ground truth
values ranging from 6.2% − 19.8%. Pedersen et al. [21]
apply PLS regression on single wheat kernels and achieve
an RMSEP of 0.47% on a dataset with ground truth values
ranging from 6.8%− 17.0%.

We analyze the possibility of combining deep convolu-
tional neural networks (CNNs) with NIR-HSI for regression
analysis within bulk grain sample quality assessment. The
combination of NIR-HSI and CNN makes it possible to si-
multaneously utilize spatial and spectral information impor-
tant for grain quality parameters which are correlated with
both chemical and physical changes in grain kernels. In
this paper, we use protein content of bulk wheat grains as
a test case to examine possible methods for employing re-
gression analysis with CNNs directly on the NIR-HSI data.
Thus, the main focus of this article is to extend the cur-
rent knowledge on deep learning for regression analysis on
hyperspectral images of bulk grain kernels. Previous stud-
ies have performed regression analysis using CNNs on one-
dimensional spectral data [18]. To the best of our knowl-
edge, we are, however, the first to apply end-to-end trained
CNNs for regression analysis on hyperspectral images uti-
lizing the complete spatio-spectral data cube.



We present novel architectural modifications to the well-
known CNN, ResNet-18 [15], that allows the model to bet-
ter utilize the spatio-spectral features of hyperspectral im-
ages than its original design which was made for RGB im-
ages. The modifications are primarily inspired by those
from Dreier et al. [12]. We use PLS on the spectral dimen-
sion as a baseline for comparison with the original ResNet-
18 and our extensions. Additionally, as PLS uses purely
spectral information, we also include a comparison with
ResNet-18 using purely spatial information by averaging
the spectral dimension, yielding a grayscale NIR image.

In this paper we first present, in Sec. 2, the dataset and
preprocessing used for our experiments. In Sec. 3, we
present the different deep learning models that we inves-
tigate in Sec. 4. In Sec. 5, we analyze and provide some
interpretation to what the deep learning models learn from
the dataset. Finally, we provide a discussion of our results
in Sec. 6 and conclusions in Sec. 7.

2. Dataset

2.1. Acquisition

For our study, we use wheat grain obtained from refer-
ence samples of harvests from The FOSS European Grain
Network (EGN) and The FOSS World Grain Network
(WGN). The samples are made available for our study by
Foss Analytical A/S [3]. The harvests are divided by year,
with between 6 and 10 harvests from different parts of the
world belonging to each year. A total of 63 samples from
harvests divided non-uniformly over seven years have been
processed.

From each harvest, between 100 and 130 grams of grain
kernels were randomly sampled without replacement and
all sampled kernels were imaged twice in two sequences. A
sequence was constructed in the following way: From each
grain sample, 4 images of sparsely packed grain were taken
with the remaining grain from that sample being used for
images of densely packed grain. This typically yielded be-
tween 5 and 7 images of densely packed grain per sample
for each sequence. The samples were imaged in a random
order for each sequence in order to eliminate any systematic
bias that might be introduced in the hyperspectral images
due to changes in camera or light source characteristics dur-
ing use. Examples of densely and sparsely packed images
can be seen in Figure 1.

The hyperspectral images were acquired with a Specim
FX17 [26] line-scan camera with a spatial sampling of 640
pixels and 224 spectral channels in the near-infrared spec-
trum in the 900 nm - 1700 nm range. The grains samples
were presented to the camera in a 3D-printed sample tray
that was placed on a conveyor belt. The sample was illu-
minated using 6 halogen light bulbs from which light was
reflected onto the camera’s line of focus by two mirrors,

yielding a uniform and very bright illumination of the focus
line. The setup can be seen in Figure 2.

The reference protein contents for each grain sample
were measured with the FOSS Infratec™Nova [4]. It uses
NIR transmission spectroscopy to measure the mean protein
content of bulk grain samples which we use as the ground
truth value for all hyperspectral image crops from that sam-
ple.

2.2. Preprocessing and data augmentation

To account for electronic noise, variations in illumina-
tion intensity, and detector response in the camera, the
measured intensity spectrum Ii,j for image pixel (i, j) was
transformed into an absorbance spectrum

Ai,j = − log

(
Ii,j −Di

Wi −Di

)
, (1)

where Wi is the mean spectrum of the measured reflectance
of the white PTFE foil in the front and back of the sample
tray by camera spatial detector pixel i. Di is the spectrum
of the reflectance of a dark image taken with the camera’s
shutter closed as measured by camera spatial detector pixel
i. Di was measured before imaging of each sample.

The hyperspectral images are cropped using a window
size of 128 × 128 pixels with a stride of 64 × 64 pixels.
Following this, we sanitize the dataset to contain only those
image crops containing at least 10% grain pixels. This is
determined by a segmentation mask computed by an Otsu
threshold [20] on the mean spectrum of each uncropped hy-
perspectral image and yields a threshold on the mean spec-
trum that separates background from grain. This procedure
yields 17, 754 hyperspectral image crops from 13 harvests
for test dataset, and 69, 706 crops from 50 harvests used
for 5-fold cross-validation with each validation split con-
taining samples from 10 different harvests. The test split
contains samples with a range of protein contents between
9.975% and 16.390%. The training/validation set contains
samples with a range of protein contents between 8.660%
and 17.780%. A histogram of the sanitized crops and the
distribution of ground truths for each validation and test
split can be seen in Figure 3.

Signoroni et al. [25] offer a review on deep learning for
HSI and mention that the main problem for the interpreta-
tion of hyperspectral data comes from the curse of dimen-
sionality. In this paper, this issue is addressed by reducing
the number of spectral channels in the dataset. The first
and last 10 spectral channels are discarded as the Specim
FX17 camera has reduced sensitivity near the limits of its
spectrum. After this, the spectral channels are downsam-
pled by averaging the closest pairs of channels, which fi-
nally reduces the spectral dimension to 102 channels. The



reduction is formalized by

Areduced
i,j,c =

Ai,j,2c+10 +Ai,j,2c+11

2
for c = 0, 1, ..., 101 .

(2)
The results spectral channel width covers a wavelength
range of 7.1 nm similar to the 8 nm average spectral res-
olution of the Specim FX17 camera [26].

For the CNN models, we apply centering and scaling per
spectral channel and independently for each different hy-
perspectral image crop by applying

Afinal
i,j,c =

Areduced
i,j,c − µc

σc
for c = 0, 1, ..., 101 , (3)

where the channel mean and standard deviation is computed
by

µc =
1

n

127∑
i=0

127∑
j=0

1 (Ai,j = grain)Ai,j,c

for c = 0, 1, ..., 101 ,

(4)

σc =

√∑127
i=0

∑127
j=0 1 (Ai,j = grain) (Ai,j,c − µc)2

n

for c = 0, 1, ..., 101 ,

(5)

where n =
∑127

i=0

∑127
j=0 1 (Ai,j = grain) and

1 (Ai,j = grain) is the segmentation mask for the im-
age crop as computed by the Otsu threshold. Thus, the
centering and scaling is done relative to the grain spectra
regardless of the amount of background in any given image
crop.

The PLS models predict the protein content of each im-
age crop based on the average spectra of pixels contain-
ing grain. Prior to averaging the spectra of each image
crop, a standard normal variate (SNV) [5] standardization
of each pixel spectrum was applied, followed by a transfor-
mation of the spectrum into a derivative spectrum using a
Savitzky–Golay (SG) smoothing [23]. The pre-processing
is applied to mitigate the effect of light scattering artifacts,
primarily from Rayleigh scattering occurring when the ra-
diation interacts with particles that are small compared with
the wavelength of the light [22]. The best prediction result
was found using a 2nd derivative SG transformation with a
3rd order polynomial and kernel width of 7 reduced spectral
channels.

We apply augmentation to the training set by rotating
each hyperspectral image crop by {0, 90, 180, 270} degrees
and flipping them left-right. This increases the variability
of the training data and thus increases the robustness of the
model. The augmentation is done uniformly at random and
independently for each hyperspectral image crop and each
epoch.

Figure 1: Examples of densely (left) and sparsely (right)
packed grain images.

3. Models

All models are modifications of the ResNet-18 CNN
model from the well-known family of ResNet models [15].
The modifications consist of adding new layers before the
original ResNet-18; changing the ordering of rectified lin-
ear units (ReLUs) and batch normalization (BN) layers such
that BN layers come after ReLU instead of before to avoid
having the weights updated in a suboptimal way as argued
by Chen et al. [10]; and changing the final layer to be a
fully connected layer with a single neuron using linear ac-
tivation, enabling interpretation of the output as a regres-
sion prediction. We compare the raw ResNet-18 model with
models containing different 1 × 1 2D convolution layers,
called downsamplers, that serve to downsample the spectral
dimension. For some models, we also add a 3D convolution
layer before the downsamplers to facilitate the learning of
spectral gradients such as those computed by SG derivative
filters [23] which are paramount to apply for the success of
PLS [22]. In the case that we apply 3D convolution as the
initial layer, the output is 4D. However, as the downsam-
plers expect 3D input, we concatenate the features yielded
by each of the 3D convolution filters to reduce the 4D tensor
to 3D. The downsamplers and 3D convolution layers have
linear activation and a BN layer is applied after each for
training stability. The 3D convolution layers use linear acti-
vation to mimic the linearity of the SG derivative filters. We
experimented with using ReLU as activation for the down-
samplers but that did not lead to increased performance.

We compare these spatio-spectral models with mod-
els utilizing purely spatial or purely spectral information.
For using purely spatial information, we average the spec-
tral dimension of the hyperspectral image crop, yielding a
grayscale image crop, and feed it to the ResNet-18 skele-
ton. For using purely spectral information, we perform PLS



Figure 2: Top left: The imaging setup. Top right: The raw output hyperspectral image. Bottom right: A single hyperspectral
image crop. Bottom left: Spectra for each of the spatial pixels marked in the hyperspectral image crop.

Figure 3: (Left) The protein contents of the samples in the validation and test splits. (Right) A histogram of the crops of the
sanitized dataset. Most of the hyperspectral image crops are yielded from samples with a protein content close to the mean
protein content.

regression on the mean grain spectrum of the hyperspectral
image crop using 3 components which compares to using
3 downsamplers in the CNNs. An overview of the neural
models used in this paper is shown in Table 1.

3.1. Model implementation

The CNN models are implemented using the deep learn-
ing libraries, Keras [11] and TensorFlow [1]. Similar to the
original implementation of ResNet [15], we use stochas-

tic gradient descent (SGD) with a momentum of 0.9, L2-
regularization with a regularization parameter of 10−4, and
initialize all weights with the Kaiming He Normal Distri-
bution [16]. The loss function is root mean squared error
(RMSE). The learning rate is multiplied by a factor of 0.1
if validation loss plateaus for 4 epochs. Training halts if
the validation loss plateaus for 12 epochs or if the number
of epochs exceeds 50 - in practice, all training runs were
halted by the plateau criterion. We train with a mini-batch



Model
Conv3D filters,

kernel size
Downsampler

filters
Model 1

(Grayscale input) None None

Model 2 None None
Model 3 None 3
Model 4 1, (1× 1× 7) 3
Model 5 3, (1× 1× 7) 3
Model 6 1, (7× 7× 7) 3
Model 7 3, (7× 7× 7) 3

Table 1: Overview of the layers applied before the ResNet-
18 skeleton. Conv3D filters are always applied before
downsamplers if they are both used.

size of 64. All models are trained and validated on each of
the five folds independently to achieve an accurate estimate
of the models’ true performances which includes estimates
of the uncertainty of the trained models.

4. Results

We show the results obtained on the validation sets and
the test set for all models in Table 2. It is clear that PLS out-
performs all other models and that Model 1 (using grayscale
input) performs the worst of all models that converged.

We did not succeed in making Model 4 converge even
after several independent trials. Inspection showed that the
single 3D convolution filter it applies has learned responses
that are orders of magnitude larger than those learned by
our other models and apply no meaningful transformation
of the input.

Models 5-7 apply an initial 3D convolution layer and
perform better than the other CNN models. Especially
Model 5 and Model 7 are very close in performance and
perform well in comparison with the other CNN models. In
particular, if we consider only the test performance of mod-
els that performed best on their respective validation splits,
Model 5 and Model 7 perform significantly better and move
close to the performance of PLS. In Figure 4 we show pre-
dictions on the samples of each harvest in the test set for
Models 1, 2, 5, and PLS. For visualization purposes, the
predictions shown in Figure 4 are, for each Model trained
on each training split, its average prediction on the hyper-
spectral image crops of each test harvest.

5. Analysis

It is evident in Table 2 and Figure 4 that the CNN models
employing downsamplers perform better than those that do
not. Furthermore, applying a 3D convolution filter before
the downsamplers significantly increases the performance.
Here, we analyze both of these layers. In Figure 5, we show

Model Validation [%] Test [%]
Test [%]

(best on val)
Model 1 1.23± 0.07 1.44± 0.04 1.45
Model 2 1.09± 0.11 1.21± 0.08 0.97
Model 3 0.98± 0.09 1.05± 0.07 0.98
Model 4 1.91± 0.56 434± 384 2152
Model 5 0.85± 0.06 0.90± 0.05 0.83
Model 6 0.89± 0.06 0.99± 0.03 1.03
Model 7 0.85± 0.06 0.92± 0.04 0.82

PLS 0.76± 0.02 0.75± 0.01 0.77

Table 2: Mean RMSE ± standard error on the mean on the
validation and test sets for each of the models. (best on val)
is defined as the model which achieved the lowest RMSE
on its validation set.

the responses learned by the three (1 × 1 × 7) convolution
filters from Model 5 validated on split 4. The filters seem
to approximate spectral gradient filters, which implies that
the model is able to learn representations of the input hyper-
spectral image crop that is similar to the SG derivative filter
applied in the preprocessing for the PLS models.

The responses learned by the three downsampling filters
applied by the same model following the 3D convolution
filters are shown in Figure 6. As each 3D convolution fil-
ter yields an output that consists of a learned representation
of the entire input hyperspectral image, the concatenation
of these outputs will have three consecutive representations
of the input hyperspectral image. Each (1 × 1) kernel in
the downsamplers is applied to a specific wavelength offset,
consisting of the response learned by the (1 × 1 × 7) 3D
convolution filter applied at that wavelength. Nitrogen (N)
compounds are related to protein content [17, 27]. There-
fore, in Figure 7 we zoom in on the last third of the down-
sampling filters from Figure 6. These parts of the down-
sampling filters operate on the representation of the hyper-
spectral image as output by Filter 3 in Figure 5. Here we
have plotted the expected wavelength centers of light ab-
sorption caused by NH and CH overtones in the 938 nm -
1662 nm range (this is the spectrum remaining after we cut
off the first and last 10 channels of the Specim FX17) [19]
along with the responses learned by the three downsampling
filters. The downsamplers learn spikes in their responses
near these expected wavelength positions of NH overtones.
However, they also learn spikes in their responses at other
wavelengths, noticeably, where CH overtone bands are lo-
cated (between 1100 nm and 1250 nm, between 1350 nm
and 1500 nm, and above 1600 nm) [19]. Similarly, ab-
sorbance values located at wavelengths related to CH over-
tones are also found to be of importance in the PLS model
used for purely spectral prediction in this paper as well as
previous attempts of predicting protein content with NIR



(a) Model 1 (grayscale input). (b) PLS.

(c) Model 2 (pure ResNet). (d) Model 5 (Conv3D 3, (1× 1× 7) and 3 downsampling filters).

Figure 4: Average predictions on the test set as functions of the protein % measured by the Infratec™Nova by purely spatial
based ResNet-18 (Model 1), purely spectral based PLS (PLS), spatio-spectral based ResNet-18 (Model 2), and spatio-spectral
based modified ResNet-18 with downsampler and 3D convolution layer (Model 5). Gi is the model validated on validation
split i. ρ is the Pearson correlation coefficient between the plotted average predictions of all Gi and the ground truths.

spectroscopy and PLS [7], indicating that CH content cor-
relates with protein content.

We examine the representation of the hyperspectral im-
age crops from training split 4 as output by Model 5 (trained
and validated on split 4) after its downsamplers in Figure 6.
We use the data from the model’s training to analyze if the
model is able to learn to distinguish protein content at this
early stage. As the downsampling layer utilizes three (1×1)
convolution filters, the output will have each spatial pixel
represented by a 3D vector, that is a reduced representa-
tion of the 102 input wavelength channels. In Figure 8a
we perform a PCA on this representation on a representa-
tive subset of training split 4 to reduce the representation
of each spatial pixel to two dimensions. Here, we color
black the spatial pixels containing background and color

the spatial pixels containing grain according to their pro-
tein content. Clearly, the variance between background and
foreground dominates the principal components. Therefore,
we apply PCA only to the subset spatial pixels containing
grain of the same data and plot this in Figure 8b. We ob-
serve that this representation shows that there is a gradi-
ent from low protein contents (blue) near the edges of the
cluster through middle protein contents (red) to high protein
contents (green) in the center.

6. Discussion
Considering the results shown in Table 2 and Figure 4

it is evident that the modified ResNet does not achieve a
better RMSE than PLS. While the predictions of Model 1
in Figure 4a (pure ResNet-18 with grayscale input) reveal



Figure 5: The three 3D convolution filters for Model 5 vali-
dated on split 4.

Figure 6: The three downsampling filters following the 3D
convolution filter in Figure 5. The output of each 3D con-
volution filter consists of its own representation of the en-
tire input hyperspectral image crop. Thus, each channel in
the output is represented by the wavelength offset on which
the 3D convolution filter was placed. The offset restarts in-
dicate the downsampling filter channels at which the out-
puts of the previous 3D convolution filters are concatenated,
restarting the wavelength at which the downsampling filter
operates.

that there is some correlation between spatial feature distri-
bution and protein content indicated by the Pearson corre-
lation coefficient of ρ = 0.76, the PLS model using only
spectral information vastly outperforms Model 1. Model
2 (pure ResNet-18 with spatio-spectral input) outperforms
Model 1 with a large margin but is outperformed with an
even larger margin by our modified ResNet-18 from Model
5, indicating that our modifications to ResNet-18 are highly
favorable.

From the distribution of the average predictions shown

Figure 7: Zoom-in of the last third of the downsamplers
shown in Figure 6 along with expected wavelength centers
of light absorption caused by NH and CH overtones.

in Figure 4 it is evident that the variance in the mean pre-
dictions of the same model validated on different splits is
relatively higher for the CNN models when compared to
PLS. This indicates that the CNNs will benefit from a larger
dataset and have not yet reached their full potential.

For PLS, we apply the segmentation mask yielded by the
Otsu threshold in order to determine which pixels contain
grain and which contain background. For the CNN mod-
els, we do not apply the segmentation mask. This implies
that the CNNs have to learn to distinguish foreground from
background. We experimented with applying the mask to
nullify the spectra of any spatial pixels containing back-
ground. This did, however, not lead to increased perfor-
mance, but warrants more future investigation.

Indeed, analyzing our modifications to ResNet-18 re-
vealed that they were able to autonomously learn highly
relevant responses to the problem on which they were ap-
plied including the segmentation of foreground and back-
ground but also the learning of spectral derivatives which
have to be manually applied for PLS. Thus, from an end-
to-end learning perspective, our modified ResNet-18 is able
to extract relevant spatio-spectral features for the applica-
tion and solve it to a reasonable performance level without
the need for application of any advanced pre-processing or
prior knowledge of the problem. Additionally, this indicates
that it may not be necessary to swap the model or the simple
minimal preprocessing that we apply in order to perform re-
gression analysis on a different parameter than protein con-
tent, although it may be necessary to fine-tune the number
of downsamplers used.

Although our modified ResNet-18 provides a clear ad-
vantage over the pure ResNet-18, we expect that its full po-
tential is yet to be uncovered on other problems where there
is a higher correlation between spatial features and the tar-



(a) (b)

Figure 8: PCA reductions of the output of the downsamplers shown in Figure 6 using pixels with grain and background (a)
and using only pixels with grain (b). The protein content in % is measured by the Infratec™Nova.

get parameter of interest than for protein content.

7. Conclusion

The work presented in this paper shows that CNNs can
be applied to hyperspectral images for regression analysis
on bulk wheat grain kernels and achieve reasonable results.
While seemingly not as relevant as the spectral information,
we show that there is some correlation between the spa-
tial features of wheat grain kernels and their protein con-
tent. We applied ResNet-18, which is known to perform
well on RGB images, to hyperspectral images. By incor-
porating two concrete extensions of ResNet-18 presented
in this work, we are able to significantly boost its perfor-
mance to a level that is close to the performance achieved
by PLS which is known to solve the problem of protein con-
tent regression analysis well. We show that our extensions
of ResNet-18 are able to learn representations of the input
data that resemble the preprocessing that humans with ex-
tensive knowledge of the problem would apply before ap-
plying PLS to perform regression analysis. Furthermore,
we show that our extensions are able to learn representa-
tions of the hyperspectral data that are highly relevant to
the task of protein regression analysis on which they are
applied. This end-to-end approach indicates that using our
modifications, CNNs should be applied to other regression
problems of interest within NIR-HSI, especially where both
spatial and spectral information is relevant.
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Sherry Moore, Derek Murray, Chris Olah, Mike Schuster,
Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Tal-
war, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fer-
nanda Viégas, Oriol Vinyals, Pete Warden, Martin Watten-
berg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. Tensor-
Flow: Large-scale machine learning on heterogeneous sys-
tems, 2015. Software available from tensorflow.org. 4

[2] Armando Apan, Rob Kelly, Stuart Phinn, Wayne Strong,
David Lester, David Butler, and Andrew Robson. Predicting
grain protein content in wheat using hyperspectral sensing of
in-season crop canopies and partial least squares regression.
International Journal of Geoinformatics, 2(1):93–108, 2006.
1

[3] Foss Analytical A/S. https://www.fossanalytics.com/. 2

[4] Foss Analytical A/S. Infratec™nova,
https://www.fossanalytics.com/en/products/infratec-nova. 2

[5] R. J. Barnes, M. S. Dhanoa, and Susan J. Lister. Stan-
dard normal variate transformation and de-trending of near-
infrared diffuse reflectance spectra. Applied Spectroscopy,
43(5):772–777, jul 1989. 3

[6] Nicola Caporaso, Martin B Whitworth, and Ian D Fisk.
Application of calibrations to hyperspectral images of food
grains: Example for wheat falling number. Journal of Spec-
tral Imaging, 6, 2017. 1

[7] Nicola Caporaso, Martin B. Whitworth, and Ian D. Fisk. Pro-
tein content prediction in single wheat kernels using hyper-
spectral imaging. Food Chemistry, 240:32–42, 2017. 6

[8] Nicola Caporaso, Martin B Whitworth, and Ian D Fisk. Near-
infrared spectroscopy and hyperspectral imaging for non-
destructive quality assessment of cereal grains. Applied spec-
troscopy reviews, 53(8):667–687, 2018. 1



[9] Nicola Caporaso, Martin B Whitworth, and Ian D Fisk. Pro-
tein content prediction in single wheat kernels using hyper-
spectral imaging. Food chemistry, 240:32–42, 2018. 1

[10] Guangyong Chen, Pengfei Chen, Yujun Shi, Chang-Yu
Hsieh, Benben Liao, and Shengyu Zhang. Rethinking the
usage of batch normalization and dropout in the training of
deep neural networks. CoRR, abs/1905.05928, 2019. 3

[11] François Chollet et al. Keras. https://keras.io, 2015.
4

[12] Erik Schou Dreier, Klavs Martin Sørensen, Kim Steenstrup
Pedersen, Toke Lund-Hansen, and Birthe P. Møller Jes-
persen. Study of hyperspectral imaging for bulk grain kernel
classification with convolutional neural networks. Journal of
Spectroscopy, 2021. Under review. 2

[13] Lei Feng, Susu Zhu, Fei Liu, Yong He, Yidan Bao, and Chu
Zhang. Hyperspectral imaging for seed quality and safety
inspection: A review. Plant methods, 15(1):1–25, 2019. 1

[14] Sven Hagberg. A rapid method for determining alpha-
amylase activity. Cereal Chem, 37(2):218–222, 1960. 1

[15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition. CoRR,
abs/1512.03385, 2015. 2, 3, 4

[16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Delving deep into rectifiers: Surpassing human-level perfor-
mance on imagenet classification. In Proceedings of the
IEEE international conference on computer vision, pages
1026–1034, 2015. 4

[17] ICR Holford, AD Doyle, and CC Leckie. Nitrogen response
characteristics of wheat protein in relation to yield responses
and their interactions with phosphorus. Australian Journal
of Agricultural Research, 43(5):969–986, 1992. 1, 5

[18] Ine L Jernelv, Dag Roar Hjelme, Yuji Matsuura, and Astrid
Aksnes. Convolutional neural networks for classification and
regression analysis of one-dimensional spectral data. arXiv
preprint arXiv:2005.07530, 2020. 1

[19] Metrohm NIRSystems. A guide to near-infrared spec-
troscopic analysis of industrial manufacturing processes.
United States: Silver Spring, 2002. 5

[20] N. Otsu. A threshold selection method from gray-level his-
tograms. IEEE Transaction on Systems, Man and Cybernet-
ics, SMC-9(1):62–66, 1979. 2

[21] Dorthe Kjær Pedersen, Harald Martens, Jesper Pram
Nielsen, and Søren Balling Engelsen. Near-infrared absorp-
tion and scattering separated by extended inverted signal cor-
rection (eisc): Analysis of near-infrared transmittance spec-
tra of single wheat seeds. Applied spectroscopy, 56(9):1206–
1214, 2002. 1
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