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Abstract

Training real-world neural network models to achieve
high performance and generalizability typically requires a
substantial amount of labeled data, spanning a broad range
of variation. This data-labeling process can be both la-
bor and cost intensive. To achieve desirable predictive per-
formance, a trained model is typically applied into a do-
main where the data distribution is similar to the training
dataset. However, for many agricultural machine learn-
ing problems, training datasets are collected at a specific
location, during a specific period in time of the growing
season. Since agricultural systems exhibit substantial vari-
ability in terms of crop type, cultivar, management, sea-
sonal growth dynamics, lighting condition, sensor type, etc,
a model trained from one dataset often does not general-
ize well across domains. To enable more data efficient and
generalizable neural network models in agriculture, we pro-
pose a method that generates photorealistic agricultural im-
ages from a synthetic 3D crop model domain into real world
crop domains. The method uses a semantically constrained
GAN (generative adversarial network) to preserve the fruit
position and geometry. We observe that a baseline Cycle-
GAN method generates visually realistic target domain im-
ages but does not preserve fruit position information while
our method maintains fruit positions well. Image genera-
tion results in vineyard grape day and night images show
the visual outputs of our network are much better compared
to a baseline network. Incremental training experiments in
vineyard grape detection tasks show that the images gen-
erated from our method can significantly speed the domain
adaption process, increase performance for a given num-
ber of labeled images (i.e. data efficiency), and decrease
labeling requirements.

1. Introduction

Showing promising detection results in complex envi-
ronments, deep neural network-based models (primarily

Figure 1. Given a synthetic 3D rendered grape image, our task
aware semantically constrained GAN can generate various target
real-world domain images with consistent label item locations.

convolutional neural networks, or CNNs) have been widely
applied in agricultural applications. Bargoti and Under-
wood [2] introduced Faster R-CNN [19] for agricultural
applications such as fruit detection in orchards, including
mangoes, apples, and almonds. They showed that deep
neural network based approaches achieved high accuracy
in fruit detection. Santos et al. [20] applied deep neural net-
works, YOLO (Redmon et al. [17]) for grape detection and
Mask R-CNN (He et al. [10]) for grape instance segmen-
tation, to recognize and track grapes in RGB imagery. As
another example, Zabawa et al. [24] proposed an encoder-
decoder semantic segmentation network for accurate and ef-
ficient grape counting. Vasconez et al. [23] did a compre-
hensive evaluation of different CNNs applied to fruit detec-
tion and counting. Deep neural network based approaches
have not only been applied to fruit detection and counting,
but they have also been widely used in field-based robotic
and automation applications, such as thinning, pruning, and
harvesting. For instance, Zhang et al. [25] tested the use
of CNNs in identification of tree trunks and branches for
automated shake-and-catch apple harvesting. Majeed et al.



[15] developed and tested CNNs for vine cordon detection
to provide a reference for robotic green shoot thinning.

While deep neural networks have been widely applied to
various agricultural tasks, such approaches typically need a
large amount of data to train high performing models. Yet,
in the agricultural domain, publicly available datasets are
very limited, and at the same time the data are usually very
specific to the application scenario, plant variety, horticul-
tural practice, lighting condition, seasons, and even cam-
era type. Silwal et al. [21] showed that apple images cap-
tured at the same location can vary substantially given dif-
ferent camera systems, which affects model performance.
If a model trained on data from one field does not work
well when applied to data from a different field, or a model
trained during one year does not work well for the next
year, the resulting model will not be scalable. Thus, it is
important to develop new techniques that enable successful
adaptation of a deep learning model trained in one agricul-
tural domain into a new domain (same crop but different
horticultural practice, lighting condition, season, or camera
type), while minimizing the amount of additional labeling
required.

To enable more data efficient and generalizable neural
network models in agricultural applications, we propose
a method that generates photorealistic agricultural images
from a synthetic 3D crop model domain into real-world crop
domains. The main contributions of our work include:

1. A task-aware, semantically constrained GAN that
translates images from one agricultural domain into another
domain while keeping the task-related semantics (such as
fruit position and size as in Figure 1).

2. A domain adaptation pipeline that improves model
performance in another domain, both utilizing fine-tuning
and semantically constrained GAN generated labeled im-
ages with a small number of labeled images in the target
domain.

3. Utilization of a 3D crop model to generate synthetic
grape images for pre-training the grape detection model,
and also using these synthetic images to generate photore-
alistic images with the same labels. This ultimately enables
generation of unlimited free “labeled” images in the target
domain.

2. Related Work
GANs [9] are generative models that are widely used for

generating artificial new data (image) with the same distri-
bution as the training data. The artificial images generated
using GAN are visually realistic [12]. Domain adaptation
using GAN has gained a lot of attention in recent years.
Zhu et al. [26] proposed an unpaired image-to-image trans-
lation method using cycle consistent adversarial networks
(i.e., CycleGAN) to translate images from one domain to
another without the need for paired image training data.

Their method showed promising results in collection style
transfer, object transfiguration, season transfer, and photo
enhancement. However, CycleGAN does not specifically
constrain the semantics of an image after translation. Con-
sequently, the translated image often closely matches the
general visual distribution of the original image, but ob-
jects within the image are often not well aligned. The idea
of using GAN for domain adaptation has also been intro-
duced into the agricultural domain. Giuffrida et al. [7] used
adversarial unsupervised domain adaptation to reduce the
domain shift between two datasets. They used an adver-
sarial loss to match the statistics of the image features be-
tween two datasets without generating visually translated
images. Moreover, the leaf counting dataset they used
was derived from images taken in a controlled environ-
ment, as opposed to the field. Marino et al. [16] applied
CoGAN (Liu and Tuzel, [14]) to bridge the domain gap
between potato defect classification datasets. They tested
their method on artificially brightened and different col-
ored potatoes, achieving performance improvements com-
pared to when no domain adaptation was applied. How-
ever, the domain gap and scene complexity in their exper-
iments were relatively limited. Bellocchio et al. [3] com-
bined an unsupervised domain adaptation network (i.e., Cy-
cleGAN) and a weakly-supervised fruit counting model to
count fruits in four different orchards. The results show
that their proposed approach is more accurate than the su-
pervised baseline method alone, but due to the weakly-
supervised fruit counting model, their method is limited
to counting tasks. Gogoll et al. [8] designed an unsuper-
vised semantically consistent domain transfer method for
plant/weed pixel-wise classification in new field environ-
ments. They utilized the idea that the image before and after
transfer should have the same labels, which was enforced in
the loss function when co-training the generators and tar-
get domain fully convolutional networks (FCNs) semantic
segmentation model. They achieved very promising trans-
fer results in the plant/weed classification task, and their
method does not rely on any target domain labeled data.
However, their method cannot explicitly avoid the “trap”
in which the task network and the generators cooperate to
find a shortcut to trick the loss (e.g., the generator trans-
fers plants to stones and the task network classifies stones
as plants). Drees et al. [5] extends the idea of using GAN
to generate temporal predictions of plant growth in which
the model learns from a plant growth model and produces
realistic, reliable images of future growth stages of plants.
Kierdorf et al. [13] proposed the use of conditional GAN
for estimation of grapevine berries occluded by leaves by
treating the occluded and non-occluded grapevine images
as two domains, based on different leaf distributions, that
can be translated to each other.



3. Approach

3.1. Problem definition

For each domain adaptation task in our problem, there
are two domains. The first is source domain A. A is usually
a well-labeled real-world dataset or a synthetically gener-
ated dataset with ground truth labels produced via a 3D ren-
dering engine (i.e., a 3D crop model). The second domain
is called the target domainB . B refers to the domain where
the model is applied for prediction. There are many images
in domain B , but a lack of ground-truth labels. The tar-
get domain B and the source domain A can be different in
style but should have similar contexts. Specifically in agri-
cultural applications, two domains should contain the same
crop while having a difference in crop variety, lighting con-
dition, the camera view distance/angle, management prac-
tice, etc. Figure 2 provides an example of different domain
data for grape production in which the differences between
domains is apparent.

Figure 2. Images from four domains within grape vineyards. a)
image collected at vineyard A on a shady day using an Intel Re-
alSense D435i camera; b) images collected at vineyard B on a
sunny day using a GoPro Hero7 Black camera; c) image collected
at vineyard B during the night using an Intel RealSense D435i
camera; d) image from the WGISD dataset [20].

In this study, our objective is to utilize the well-labeled
source domain A while using as little labeled data as possi-
ble in the target domain B to train a task model T that can
perform well in B. To achieve this, we want to learn a map-
ping between A and B given N training samples {xAi }

N

i=1

where xAi ∈ A with task labels yAi ∈ Y A and M training
samples {xBj }

M

j=1
. Among M training images in domain

B, a few of them (k) can be labeled. The mapping from A
to B is called GA and the mapping from B to A is called
GB . The generated image GA(x

A
i ) should have the same

visual style as images in domain B but also maintain the
same task-related semantics as the original image xi. We
hypothesize that fine-tuning a task model TB on the gener-
ated imageGA(x

A
i ) should improve the performance of TB

in domain B.

3.2. Task

The main objective of our method is not only photore-
alistic image generation but also to utilize the generated
images to facilitate domain adaptation. As a result, the
machine learning task and corresponding task model T is
very important to our method. Generally speaking, the task
model should be a fully differentiable model that can pro-
vide guidance through backpropagation to the image gener-
ation network. Here in this study, we chose object detection
as our task as it is one of the more popular and important
tasks in agricultural machine learning applications. Specif-
ically, the object detection model we used in this work is
YOLOv3 (Redmon and Farhadi, [18]).

3.3. Method

In this problem, we assume that we have access to la-
beled source images {xAi }

N

i=1 with all task labels yAi ∈ Y A,
M−k(M > k) unlabeled training images {xBj }

M−k

j=1
, and k

labeled training images {xBj }
M

j=M−k+1
with yBi ∈ Y B . We

want to train an accurate task model TB on domain B us-
ing as few labeled training images as possible. The step-by-
step method of doing this is shown below and an overview
is shown in Figure 3.

Figure 3. Training pipeline overview. The method includes four
steps: 1) Train a initial task model using synthetic labeled data.
2) Fine-tune the pre-trained task model using a few labeled tar-
get domain images to embed the domain knowledge into the task
model. 3) Train a semantically constrained GAN. 4) Fine-tune the
task model using GAN generated images and labels.

3.3.1 Train an initial task model

Given the labeled source images {xAi }
N

i=1 with all task la-
bels yAi ∈ Y A, we can train an initial task model TA using
the given data in a supervised way by minimizing the task
loss Ltask. This model TA performs well in domain A but
it performs relatively poorly in domain B , and the level of



performance degeneration is related to the domain gap be-
tween A and B (e.g., a model trained in a daylight domain
usually performs better in another daylight domain than in
a night domain).

3.3.2 Embed the domain knowledge into a task net-
work

One of the main ideas behind our method is to embed the
domain knowledge into a task network by fine-tuning the
initial task model TA using a few (k) labeled images in do-
main B , the fine-tuned task model is named TB . Based on
our finding, even fine-tuning with a single labeled image in
domain B can make TB perform much better than TA. We
call this step “domain knowledge embedding”.

Figure 4. Overview of the proposed image generation network.

3.3.3 Train a semantically constrained target domain
image generator

To achieve the generation of images from domain A to do-
main B while retaining the semantics (the meaning of se-
mantic here is task-specific) we present an image generator
network which is composed of five main parts: 1) Image
generator from domain A to B: GA; 2) Image generator
from domain B to A: GB ; 3) Adversarial discriminator DA

to distinguish between generated images GB(x
B) and real

domain A images xA; 4) Adversarial discriminator DB to
distinguish between generated imagesGA(x

A) and real do-
main B images xB ; 5) A task network TB in domain B ,
in which the inputs are generated from domain B images
GA(x

A) and the target labels are corresponding ground-
truth labels yAi ∈ Y A. Parts 1-4 are the same as Cycle-
GAN work from (Zhu et al. [26]), and are used to generate
realistic fake images. Part 5 is the key to retaining seman-
tic consistency between real image xA and generated image
GA(x

A). The overview of the proposed method is shown
in Figure 4.

In terms of training this network, there are several losses
that need to be optimized; among these losses 1-3 are the
same as (Zhu et al. [26]).

1) Adversarial loss: The adversarial loss (Goodfellow et
al. [9]) is applied to both generators and their corresponding
discriminators. The objective of having adversarial loss is
to train the generator network to generate visually realistic
images in the target domain. For the generator from domain
A to B, the loss is as follows

LGAN

(
GA, DB , x

A, xB
)
= ExB

[
logDB

(
xB

)]
+

ExA

[
log

(
1−DB

(
GA

(
xA

)))]
,

(1)

LGAN

(
GB , DA, x

B , xA
)
= ExA

[
logDA

(
xA

)]
+

ExB

[
log

(
1−DA

(
GB

(
xB

)))]
.

(2)

2) Cycle consistency loss: There are an infinite num-
ber of possible image mappings from one domain to the
other while matching the target domain distributions. To
constrain the space of this mapping function, Zhu et al.
[26] introduced cycle consistency loss which forces the
image translation cycle to return the input image back to
the original image (xA ≈ GB

(
GA

(
xA

))
and xB ≈

GA

(
GB

(
xB

))
). The cycle consistency loss is expressed

as

LCycle (GA, GB) = ExA‖GB(GA(x
A))− xA‖1+

ExB‖GA(GB(x
B))− xB‖1.

(3)

3) Identity loss: To constrain the image generator to pre-
serve color information between the input and output, an
identity loss is applied. The identity loss was first intro-
duced by Taigman et al. [22], and is defined as

LIdentity (GA, GB) = ExB‖GA(x
B)− xB‖1+

ExA‖GB(x
A)− xA‖1.

(4)

The intuition behind addition of the identity loss is to en-
force the generator to be an identity mapping when images
from the source domain are fed into the generator.

4) Task-specific semantic constraint loss: Using losses
1-3 we can train a pair of generators that generate visually
realistic images in the target domains. However, aside from
the existence of the cycle consistency loss, the semantics are
not specifically constrained after translation. The seman-
tics, especially the detailed spatial semantics such as the po-
sition and size of the fruit, are prone to change, which makes
the generated labels unusable in terms of domain adaptation
when localization is required. To overcome this limitation,
we use a task-specific semantic constraint loss: Given a task
model in domain B , TB , the TB prediction result of gen-
erated image GA

(
xA

)
should be identical to xA’s ground



truth label yA. During backpropagation and parameter up-
dates, the weights in TB are fixed, the gradient is passed
into the generator GA to encourage it to generate images
that can let TB generate more accurate predictions. We find
this is a very data-efficient way to extract knowledge from
TB to help GA generate semantically consistent translated
images. This loss is referred as Ltask (GA) and its specific
form depends on the task and task model (e.g., YOLOv3
has its specific loss). The only requirement of this loss and
the task is that the task loss is differentiable.

Combining all the losses above, the full objective func-
tion is given by:

L (GA, DB , GB , DA) = LGAN

(
GA, DB , x

A, xB
)
+

LGAN

(
GB , DA, x

B , xA
)
+ λcLCycle (GA, GB)+

λi LIdentity (GA, GB) + λtLtask (GA) ,

(5)

where λc, λi, λt are relative weights of the cycle consis-
tency loss, identity loss, and task specific semantic con-
straint loss. When λt = 0 this method collapses to the
original CycleGAN method.

3.3.4 Fine-tune the task network using generated im-
ages

In the last step, we get a semantically consistent image gen-
erator GA. Applying GA to all the domain A data xA we
can get the same number of generated dataGA(x

A) with la-
bels that correspond with yA. Using this generated data, we
can further train the task network to improve performance
in domain B .

3.4. Network architectures

The generator and discriminators GA, DB , GB , DA are
the same as those in Zhu et al. [26]. The task network TB

is YOLOv3-tiny which is a very light-weighted model pro-
posed by Redmon et al. [18]. The main reason for choos-
ing YOLOv3-tiny as the task network TB is to decrease the
training time, but other differentiable task networks could
be used as well.

4. Experiments and Results
4.1. 3D synthetic source domain

One special domain is the 3D synthetic domain, where
the images are generated using a rendering engine instead
of collected in the real world. The benefit of generating im-
ages from a rendering engine is that the ground-truth labels
are known and easily extracted. The synthetic domain can
be treated as a domain with “infinite” labeled images. On
the other hand, no matter how realistic the synthetic images
are, there is always a domain gap between the synthetic im-
age and the real-world domain where the model needs to be

applied. Moreover, the level of photorealism increases ren-
dering time which reduces the scalability of synthetic image
generation within agricultural applications. This gap lead to
model performance degradation in the target domain.

In this work, we used the open source Helios 3D Plant
and Environmental Biophysical Modeling Framework of
Bailey [1] to generate synthetic grape images. Using Helios,
we generated 500 synthetic vineyard images that spanned
a range of geometric canopy parameters, trellis types, and
camera positions. Bounding box labels for grape clusters
were generated using a custom Helios plugin. Importantly,
Helios can be used to parametrically generate 3D geome-
tries for a wide range of crop types which can then be used
to create synthetically labeled data, including those for ob-
ject detection, semantic segmentation, or instance segmen-
tation.

4.2. Real world target domain

We have two target domains in this work, one we called
day domain and the other one called night domain.

4.2.1 Day domain

The day domain data were collected in the California Cen-
tral Valley using a GoPro camera in Summer 2019 during
the daytime. 3065 images are in this dataset and we labeled
100 images; among them 25 images are always used for the
test set to evaluate the model performance in this domain.
Example images in the day domain are shown in Figure 5.

4.2.2 Night domain

The night domain data were collected at the same location
as the day domain using an Intel RealSense D435i cam-
era with a custom lighting system in Summer 2020 during
nighttime. 800 images are in this dataset and we labeled
150 images; among them 24 are always used for the test set
to evaluate the model performance in this domain. Example
images in the night domain are shown in Figure ??.

4.3. Experimental Design

The main idea of our work is to utilize a 3D crop model
and a GAN model to reduce the need for labeling in a new
domain. The task we choose here is grape detection and the
detection model we use is YOLOv3 with the tiny-backbone
(Redmon and Farhadi [18]). We have test datasets for each
target domain that do not engage in the model training but
are just used for evaluating the final model performance.

To evaluate how using the combined 3D crop model and
GAN approach affects data efficiency, we pre-trained an ob-
ject detection model T with the synthetic images (3D crop
model generated) and the generated labels. We evaluate the
performance of the pre-trained model T , the performance of



Figure 5. Top: example day domain real images; bottom: example
night domain real images.

the model T after further fine-tuning using N labeled target
domain real images, and the performance of the model T
after fine-tuning using N labeled target domain real images
and GAN generated images with source domain labels.

We choose N = 2, 5, 10, 15, 20, 30, 40, 50. Among
them, 80% of the labeled images are used for training (a)
and the remaining 20% of images are used for validation (b)
(at least 1 image in each set). The best performing model on
the validation set during the training is selected. The GAN
for each experiment also uses the same fine-tuned model
T using N labeled target domain images; no additional la-
beled images are introduced into training the GAN. We also
evaluated the performance of the model if we use only Cy-
cleGAN to generate images and fine-tune the model T us-
ing these generated images. We use AP (Average Precision,
see Everingham et al. [6] for detailed definition of AP) at
0.3 and 0.5 IoU (Intersection over Union) as model perfor-
mance metrics.

4.3.1 Generate images using semantically constrained
GAN

To help better understand the quality of generated images
using the semantically constrained GANs, a set of random
results is shown in Figure 6. The source images in domain
A are randomly selected, each two rows are using the same
source image from the first column and translate into dif-
ferent target domains. From the generated images, we can
see that the baseline CycleGAN and the semantically con-
strained CycleGAN models can generate visually realistic
images. However, the baseline CycleGAN has trouble in
generating images with the grapes in the same location as
the source synthetic images. This ”positional drift” problem
is more significant in the generated night domain images
than the day domain images generation. The main reason

for this drift is that the CycleGAN network is not provided
information to learn what a grape is, and the domain gap be-
tween the night domain to the synthetic domain is relatively
large. Using the semantically constrained GAN, even when
the task constrained network is trained with only 1 labeled
image and validated on only 1 labeled image, the generated
image can be very well semantically constrained, in terms
of grape position and size. Also, a single source domain
3D rendered image can be generated for two different real-
world domain images using two generators, and both the
generated images show the same grape distribution as the
3D rendered image.

4.3.2 Fruit detection performance

We first trained a task network only using synthetic 3D
grape model images (using 345 train and 74 validation).
The results of applying this model into two target real-
world domains are shown in Table 2 and the baseline meth-
ods’ results are shown in Table 1. The performance of
the direct synthetic to real model transfer is shown in the
first rows labeled “Synthetic pre-trained”. We also applied
the CycleGAN method using the synthetic–night and syn-
thetic–day images, generated images in target domains, and
fine-tuned the pre-trained task model on these generated im-
ages (validate on 20% of the generated images). The re-
sults are shown in the second rows labeled “CycleGAN”.
The columns of “Only fine-tuned” contain the results of
fine-tuning the pre-trained task mode using a labeled tar-
get domain train images, and selecting model based on b
labeled target domain valid images. The performance of the
task networks refined using our Semantically Constrained
GAN is shown in the “GAN refined” columns. As we can
see from the results, the direct application of a model pre-
trained on the 3D synthetic domain to the real domain can
result in relatively poor performance since the real domains
are different than the 3D synthetic domain. Especially for
the night domain, the pre-trained model has almost no abil-
ity to predict grape locations. One naı̈ve domain adaptation
method is using CycleGAN to generate target domain im-
ages, assuming the labels are the same as the source images,
and further training the pre-trained model on these gener-
ated images and labels. The experiment shows that this
approach will not lead to performance improvement, and
can even lead to a decrease in performance in the day do-
main. The main reason is that the generated images do not
always keep the grape clusters at the same location and thus
the source labels no longer valid. Another domain adap-
tation method is to use some labeled images in the target
domain to fine tune the pre-trained network. This classical
method is still very promising and leads to a significant in-
crease in model performance even using 1 labeled training
image. The performance of the model increases with in-



Figure 6. Example GAN generated images (randomly selected). The first column is randomly selected source domain images with the
ground truth generated labels. The 2 – 4 columns are generated images with the projected labels in the yellow box (same as the label in the
first column, just for visualization purposes). a is the number of labeled target domain image for train, b is the number of labeled target
domain image for validation.

creasing number of labeled target domain images involved.
Our method can further improve the data efficiency upon the
fine-tuning using the same labeled target domain images,
especially at a very low number of labeled target domain
images.

5. Discussion and Future Work

To apply deep learning-based AI models in agricultural
and plant environments, we need to overcome the problem
of insufficient labeled data and massive variability (e.g.,
plant appearance, horticultural practice, seasonal differ-
ences, lighting differences). It is labor and cost-intensive
to manually label images in the broad range of scenarios

that can be encountered in agricultural production envi-
ronments, and doing so will hinder the large scale adop-
tion of deep learning model deployment in agricultural pro-
duction. To solve these problems and make deep learning
model deployment more feasible in new agricultural envi-
ronments, we proposed a semantically constrained GAN.
We presented a training pipeline for this network and used
the generated images to improve task model performance
in a new domain, i.e., fruit detection. The results in this pa-
per showed that by using a semantically constrained GAN
we can generate very realistic day and night grapevine im-
ages from 3D rendering images while retaining grape posi-
tion and size. The generated images can be used to further



Baseline methods Train
num a

Valid
num b

Total
num k

Synthetic to Day Domain Synthetic to Night Domain
AP@

IOU0.3
AP@

IOU0.5
AP@

IOU0.3
AP@

IOU0.5
Synthetic Pre-trained 0 0 0 27.8 13.2 0.0 0.8

Cycle GAN 0 0 0 10.3 2.1 0.1 0.0

Table 1. Grape detection results using baseline domain adaptation methods. Average precision (AP) numbers are percentage. Synthetic
Pre-trained means only using synthetically generated image to train the model. Cycle GAN means using Cycle GAN generated images to
fine-tune the pre-trained model. All models are evaluated on the same test dataset as Table 2.

Train
num a

Valid
num b

Total
num k

Synthetic to Day Domain Synthetic to Night Domain

fine-tuned
SemGAN +
fine-tuned fine-tuned

SemGAN +
fine-tunned

AP@
IOU0.3

AP@
IOU0.5

AP@
IOU0.3

AP@
IOU0.5

AP@
IOU0.3

AP@
IOU0.5

AP@
IOU0.3

AP@
IOU0.5

1 1 2 37.4 16.4 51.0 23.4 32.6 8.3 38.3 12.1
4 1 5 49.7 21.8 51.8 23.6 38.2 10.8 37.8 12.2
8 1 9 39.8 16.5 55.7 26.5 35.7 9.3 38.2 13.0

12 2 14 52.1 26.6 54.7 26.6 43.0 13.9 45.1 12.8
16 3 19 51.6 23.7 57.9 30.8 43.0 13.4 46.1 17.3
24 6 30 56.3 26.5 57.6 28.5 45.2 17.5 48.2 20.2
32 8 40 57.9 31.1 59.5 36.1 46.1 17.5 51.4 20.2
40 10 50 57.4 31.7 63.9 36.4 49.7 19.3 50.5 20.6

98(all) 28(all) 126 / / / / 52.8 22.8 56.0 26.7
58(all) 15(all) 73 61.3 37.0 61.7 37.2 / / / /

Table 2. Grape detection results.Average precision (AP) numbers are percentage. ”/” means not applicable. ”SemGAN + fine-tuned”
columns are the results using the semantically constrained cycle GAN generated images to fine-tune the detection network. The ”fine-
tuned” results are just using the a labeled train images in the target domain to fine-tune the detection network. Network are selected using
corresponding b labeled valid images. For each domain, all models are evaluated on the same test dataset.

train the task network and improve the task network perfor-
mance in the target domain which can surpass the vanilla
fine-tuning results, especially with a low number of labeled
images.

Many interesting questions remain to be answered fol-
lowing this research. 1) Using this method, we successfully
constrained grape position and geometry, but other parts of
the images are unconstrained (e.g. foliage, trunks, sky, etc.).
The reason that they are not constrained is that the task-
constrained network is only designed to identify grapes. It
would be interesting to see if the task-constrained network
can identify and constrain multi-class objects, or even con-
strain the whole scene semantics by replacing the object de-
tection task network with a semantic segmentation task net-
work. 2) When further training using the GAN generated
images, we did not include the generated images in the val-
idation set, only the true labeled images (except when using
CycleGAN, since there were no labeled images involved).
However, adding GAN-generated images into the validation
set to select the best model can also help to improve the
overall model accuracy, especially when the labeled vali-
dation image number is low or even when no labeled val-

idation images are included. Determining the best mixing
ratio between GAN-generated images and labeled images
in the validation set could further improve data efficiency.
3) The main GAN network architecture of this work is the
same as the CycleGAN work except the task constrained
network. While only adding the task constrained network
already achieves good semantic consistency, there is some
work that focuses on other ways to achieve semantic con-
sistency such as Hoffman et al. [11] and Chen et al. [4]. It
would be interesting to see how model performance changes
when we utilize these semantic consistency methods.
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