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Abstract

A compelling effort has been made in recent years to
face several kinds of plant stresses using a variety of sen-
sors and deep learning methods. Yet most of the datasets
are based on single leaves or on single plants, exhibiting
explicit diseases. In this work we present a new method
for stress detection which can deal with a dense canopy of
plants, grown in Plant Factories under artificial lights. Our
approach combining both classification and segmentation
with self supervised masks, and WGAN based data aug-
mentation, has the significant advantage of using normal
rgb low cost cameras, simple data aquisition for training
and it can both localize and detect the tip-burn stress on the
plant canopy with very good accuracy as shown in the re-
sults. We have tested our results also on datasets available
on tensorflow.org.

1. Introduction

Plant stress detection is a long standing research field
and, among the stresses, tip-burn affecting particularly let-
tuce has been intensively studied, see for example [44, 26,
13]. Nowadays, the combination of new methods arising
from computer vision and deep learning, the availability of
new low cost sensors together with an increased attention
on the transparency, quality and healthiness of the farm to
fork process are making plant stress analysis a challeng-
ing research topic. New data-sets are being created such
as PlantLeaves [11], PlantsDoc [41], PlantsVillage [19] and
Plantae-K [47] made available as tensorflow datasets at ten-
sorflow.org. These new data-sets and their ease of acces-
sibility have thrived the research improving deep learning
models for the stress detection application.

A limit of the currently available dataset is their in-
adequateness for stress analysis in Controlled Environ-
ment Agriculture (CEA) and specifically in Plant Facto-
ries , where plants are grown indoors under artificial lights,
densely packed together and stacked on multiple layers. In
such highly dense growing conditions the plants are com-
pacted on tables of trays and stress problems need to be
studied from this specific perspective, as shown in Figure

Figure 1. On the left, rolling tables collecting trays at the end of
the growth cycle. On the right, inside the production cells in a
Plant Factory.

Figure 2. Lettuce canopy and detected tip-burn as a heat map. The
bar on the right indicates the color code of the probability the net-
work assigns to the detected regions of being affected by tip-burn.
The image has size 4640× 6960.

1 and Figure 2. The detection and localization of stress
in Plant Factories has to deal with complex surfaces ag-
glomerating several plants, where the single leaf shape is
not specifically relevant, and at the same time stresses such
as tip-burn occur on the leaf tip (see Figure 3). Moreover,
typically plants affected by tip-burn are few, sparse and hid-
den in the canopy of other healthy leaves. The underlying
cause of tip-burn is a lack of calcium intake by the plants.
This however, is a result of multiple factors such as: lack
of airflow, high humidity, excessive lighting and inadequate
watering and nutrient supply. A key advantage of grow-
ing plants indoors is the possibility to control all aspects
of the plant growth including the light recipe and climate,
thereby providing the optimal mix of conditions to optimise
plant development and quality. However, high-density crop
production, limited dimensions, lack of natural ventilation
and the need for artificial lighting for photosynthesis makes
plants grown in plant factories especially vulnerable to tip-
burn. Consequently, tip-burn has become a metric for the
healthiness of the plants and being able to monitor its advent



Figure 3. Image of a single leaf taken for data collection purpose
(left) and in a real-life environment and growing condition (right).

is extremely relevant in indoor growing conditions. By au-
tomatically detecting tip-burn the vertical farm control soft-
ware can adjust the growing recipes in real time to provide
the plants with the optimal growing conditions.

In this work we propose a novel, and first, model for tip-
burn detection in lettuce that fills the gap between already
explored techniques of DL applied to plant stress detection
and their practical implementation in Plant Factories. Our
work includes the realization of an adequate data-set made
of real and generated images. Yet, we have tested our model
also on other data-sets.

2. State of the art on stress detection and tip-
burn

In the past decade Computer Vision and Deep Learning
became the new standard for many plant phenotyping tasks,
in particular for stress and disease detection and analysis.

Disease Detection Plant disease detection in most recent
studies focus on single leaves images, and use hyperspectral
cameras. Nagasubramanian et al. [28] achieved charcoal rot
disease identification in soybean leaves by implementing a
3D Deep-CNN with an hyperspectral camera. Zhang et al.
[49] carried out a similar study using high-resolution hy-
perspectral images, to detect the presence of yellow rust in
winter wheat. Digital cameras are used by [14] and [39].
Dechant et al. [14] consider the classification of the North-
ern Leaf Blight in maize plants, taking images of leaves in
the field. Shrivastava et al. [39] studied the strength of
transfer learning for the identification of three different rice
plant diseases. A review on computer vision and machine
learning methods for disease detection is done in [8].

Tip-Burn studies Tip-burn studies date back long ago
[26, 44, 12], essentially exploring causes induced by lack
of nutrients absorption, such as in [42] and [48]. As far
as we know only [38] conducted tip-burn identification in
PFALS using GoogLeNet, for binary classification of single
lettuce images. Their work is incomparable with our work,
as they check from manually collected images of a single
plant whether it has or not tip-burn.

Disease detection on public datasets So far, several
datasets have been proposed and well specified for deep
learning studies. PlantVillage [19] contains more than 50K
low-resolution images of 14 different plant species with 26
stress conditions. In such a case, not only the images of sin-
gle leaves are taken on a solid background labeled only by a
class name (Figure 3), but they also show visible stress con-
ditions at a stage when the leaf is beyond recovery. Agarwal
et al. [1] trained a CNN on tomato leaves images taken from
the PlantVillage dataset [19] and Saleem et al. [36] realized
a comparative evaluation study between multiple CNNs and
optimizers - trained again on PlantVillage - for the task
of plant disease classification, in order to find the com-
bination with the best performances. Similar to PlantVil-
lage there is PlantLeaves[11] with 4502 high resolution im-
ages of healthy and unhealthy leaves divided into 22 cate-
gories. Another dataset is PlantDoc[41] in which samples
have been collected in a quite realistic setting, with leaves
being heavily affected by diseases. A plant diseases dataset
using offline augmentation from earlier datasets has been
uploaded on Kaggle. This new dataset consists of about
87K images of healthy and diseased crop leaves.

Plants data augmentation with generative models
Several studies on plant stress analysis are based on local
data collection. An in depth analysis of factors such as lack
of adequate datasets influencing the use of deep learning
for plants disease detection has been addressed in [6, 7] and
some data augmentation methods have been described in
[4]. Data augmentation is routinely used in deep learning
[24] and augmenting data using GAN has been typically
used also for balancing data [27] and cross domain adapta-
tion [18]. In 2017, Odena et al. [30] addressed the problem
by proposing AC-GAN. Few years later, a more robust and
reliable improvement was presented with CEGAN[43], in
which a classifier is trained in combination with a GAN.
The presence of the classifier guarantees that the Generator
can learn to produce samples that are consistent with their
target class. Other specific approaches for data augmenta-
tion with GAN have been proposed in [2, 45]. The first in-
troduced DAGAN, while the latter introduced DAG, a data
augmentation optimized GAN.

Considerations As far as we know there are no publicly
available studies on stress detection of plant canopies grown
in Plant Factories. In particular, the only research on tip-
burn we found is about binary classification on single let-
tuce images. Most of the works on plant diseases are carried
out just for classification or single leaf disease detection. As
a consequence no publicly available canopy datasets exists
so far.

3. Method
There are two possible kinds of settings for tip-burn de-

tection: either inside the growing cell (Figure 1) right) or



Figure 4. On the left, distribution of class samples in collected
dataset. On the right, distribution of class samples after No Stress
class grouping.

at harvest (Figure 1 left). We choose to do tip-burn detec-
tion at harvest, at the end of the growing cycle. Taking as
reference Figure 2, it is easy to see that at the end of the
growth cycle the task of identifying tip-burn on large mostly
healthy canopy is rather hard, also because tip-burn type of
stress affects a very small region of a leaf with respect to its
whole area, as shown in Figure 3 (right).

To detect and localize tip-burn on quite large images of
lettuce canopies, not having the images labeled, we tile the
image into patches, which are used for both samples gener-
ation and prediction. In fact, the real problem for tip-burn
prediction is not only the lack of labeling but also the un-
balanced dataset due to the scarcity of tip-burn samples with
respect to healthy plants, as it is shown in the histogram in
Figure 4. Our contribution is along two main research lines:

-Samples generation based on Wasserstein Gans, to
re-equilibrate the dataset. We show that according to the
metric to evaluate quality and coverage of the samples
produced by GANs, as defined in [25], our method obtains
a high value of realism score. The method we provide can
generate any amount of patch samples of lettuce with and
without tip-burn.

- Tip-burn segmentation of canopy. The probability dis-
tribution of each patch, being affected by tip-burn, is es-
timated via YoloV2 backbone darknet-19 [33]. The clas-
sification network generates patch-level labels from which
we obtain, with further processing and random fields, more
accurate labeled regions. From here, with a U-net type seg-
mentation of partial trays into healthy and tip-burn stressed
plants, we obtain pixel-level classification leading to a fur-
ther accurate tip-burn prediction.

Results and ablation studies in Section 6 prove the good-
ness of our approach, for such a hard problem. Not having
available other approaches to compare with, we have used
the PlantLeaves dataset [11] and the PlantsVillage dataset
[19] to prove the generalization of our method to different
settings.

3.1. Data generation

Since tip-burn manifests on the leaves tip, it is manda-
tory to acquire images with a top view of the whole table.

(a) Real (b) Synthetic

Figure 5. Real and synthetic images generated by the proposed
WGAN

We do so by taking images with a HR digital camera fixed
above the rolling table. A table is the base on which plants
are grown. Each table assembles 18 trays, which in turns are
further divided into 104 cells where plant seeds are placed.
The image of a table has size (4640 × 6960) for 3 chan-
nels. Each image is tiled into patches of size (28× 28× 3),
forming a set of about 41K patches. For tip-burn predic-
tion for the lettuce species, 43 table images have been col-
lected. From these images, only 137 trays were affected
by tip-burn. To approximately measure the data unbalance
we have sampled from this set about 12200 patches and di-
vided them into four classes: Healthy, Stress, Background
and Dark-background. The distribution of samples in each
class is shown in Figure 4.

The histogram clearly shows the disproportion: 98.3%
of all samples belong to one class only. If we consider
Healthy, Background and Dark-background to be a single
class, for easiness let us call it No Stress, the percentage
reaches 99.36%.

Solving the class imbalance problem The problem of
data imbalance in DL is not entirely new and one promising
technique that is being widely used for the generation of
synthetic samples in real-life datasets are GANs[15]. In-
spired by the CEGAN approach [30], we train our own
GAN to generate synthetic images of tip-burn and solve the
imbalance problem. To our knowledge, this is the first time
that such a solution has been tested in the field of plant phe-
notyping.

The GAN architecture developed follows a DCGAN-like
structure[31], but with some differences. First, three strided
convolutions, not four, are used for both the generator and
the discriminator. Further, we resorted to the Wasserstein
GAN[3], or WGAN. We recall that a WGAN, introduces a
critic (the discriminator) for the Earth-Mover distance be-
tween the distributions of true and generated images, which
amounts to measure the cost of transporting one probabil-
ity on the other. The advantage of the WGAN is that they
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Figure 6. Image patches (28 × 28) showing the realism score for
best 1.9 and worst 0.4, R score

do not require balancing generator and discriminator as the
critic (discriminator) does not saturate and can be trained to
optimality so that the estimate of the quality of the image
from the critic can only improve.

The number of images in which stress occurs and on
which the WGAN is trained is 744. An example of the type
of images generated at the end of the training procedure,
can be seen in Figure 5, where real and synthetic samples
are shown side-by-side.

At a first glance, the visual aspect of the synthetic im-
ages closely resemble the original ones. However, simple
visual quality is not enough to assess the correctness of the
generated samples and thus, we explored how to solve this
problem in a systematic way.

3.2. Metric assessment of generated data

Recent evaluation metrics for GAN measure the ℓ2 dis-
tance between the real and generated distributions by taking
a non-linear embedding η of the real and generated images.
The embedding is usually obtained by a CNN pretrained
network classifier on ImageNet [37, 16, 35, 25]. Among the
different methods comparing the distributions, such as the
Inception scores [37], the Frechet Inception distance [16],
the Kernel Inception distance [9] and the recent improved
(with respect to [35]) precision and recall metric of [25],
we have been using this last because it provides also a real-
ism score, which turns out to be relevant for our domain of
images, formed by patches showing tip-burn on lettuce.

In [25] samples for the distributions are taken via a
non-linear embedding, as gathered above, and the non-
parametric densities are estimated by the kNN-distance (the
k-nearest neighbour). They use the embedded feature vec-
tors A and B to estimate two manifolds M(A), M(B) sep-
arately (see algorithm 1 in [25]). Namely, they estimate an
approximation of M(A) according to a k+1-minimum dis-
tance δ between all feature vectors a, a′ ∈ A, with a ̸= a′

and then compute the number nB of feature vectors in B
that are within the estimated manifold M(A), returning
NB = nB/|B| , | · | being the cardinality of the set. Then
they repeat the process to estimate M(B) and the number
NA of feature vectors in A that are within the estimated

manifold M(B) returning NA = nA/|A|. Letting A be-
ing the feature vectors from real images, B the feature vec-
tors of generated images and f(X,Y ) the indicator function
which has value 1 if the estimated manifold M(X) for the
features vectors in X return a non-zero NY and 0 otherwise,
then the precision and recall are defined as:

precision(A,B) =
1

|B|

|B|∑
k=1

f(A,B)

recall(A,B) =
1

|A|

|A|∑
k=1

f(B,A)

(1)

Therefore precision, according to the improved measure of
[25], computes the average number of feature vectors from
generated images that are found in the estimated manifold
of the real images embedding, and the recall computes the
average number of feature vectors from real images that are
in the estimated manifold of the generated images embed-
ding.

We have fine-tuned VGG-16 network pre-trained on Im-
ageNet to classify real and synthetic stress samples. A
dataset of 200 patches is collected and used to train the
network for 40 epochs. The feature space is obtained by
retrieving the output of the second convolutional layer in
VGG-16. The manifold estimation, as described above, is
obtained using k = 3 nearest neighbour, which is consid-
ered a robust choice, while |A| = |B| = 50176.

The final precision and recall are then calculated by com-
paring batches of real and synthetic sample with size 12 and
computing the average over all the samples. The synthetic
images obtain 39% for precision and 40% for recall. The re-
sults obtained confirm that more than 1/3 of the generated
images are realistic and of good quality.

We have also computed the realism score R that in-
creases according to the inverse distance between an image
and the manifold, namely the above defined indicator func-
tion f(B,A) = 1 iff R(B,A) ≥ 1, that is, at least a fea-
ture vector from the embedding of generated images is in
the estimated manifold of the real images. In Figure 6 are
shown examples of images achieving the highest realism
score R = 1.9 (top row) and the minimum realism score
R = 0.4. Since the higher the score the closer is a sample
to the manifold estimated from real images, we augmented
the original stress dataset only with those images achieving
a realism score over a threshold τ ≥ 1.1.

4. Tip-burn prediction
Tip-burn prediction, in the absence of labels, requires

two steps: 1) a two class classifier returning the tip-burn
localization, according to the patch localization in the im-
age, and its probability distribution within the canopy; 2)
from patch-level to pixel-level segmentation for a two class



Figure 7. On the left the patches with dark spots and on the right
the patches without dark spots.

segmentation of the lettuce canopy.

4.1. Patch-level localization and detection

For the first step we take at most 60K patches as input,
in equilibrium between the stressed and non-stressed ones,
where the stressed samples were generated as described in
previous sections. Yet, we had to split this dataset into two
sets the darkSpots and the non-darkSpots, since the dark
spots, due to factors such as light, background, tables color
and reflectance, affect the classifier reducing its accuracy,
see the Results section for accurate explanations and Fig-
ure 7. To separate the dataset into two clusters we used
KMeans. For clustering we have considered edge features
extracted with the Sobel edge detector, color features and,
finally, the feature vectors obtained by scattering the Haar
wavelets [46]. For detection and localization we imple-
ment a two class-classifier architecture highly inspired from
DarkNet-19, YOLOv2 backbone[32], and replicate it for the
stress VS darkSpots and stress VS non-darkSpots classifica-
tion, see Section 5 for more details.

4.2. Mask generation

As noted in Section 3.1 each image is tiled into about
41K patches of size 28× 28 along the three channels. The
classification network generates patch level annotations as-
signing to each patch a probability which is proportional to
the number of pixels on which tip-burn appears. We want
to obtain a segmentation mask for each patch classified as
stressed, at pixel level.

Each patch has index i, j, specifying its position on the
complete image of the canopy. Since tip-burn occurs along
the borders of the leaf we use the Sobel edge detector al-
ready used for clusterization. Let P (pij) and E(pij) be
resp. the probability map of the patch and the computed
edges map, we obtain for patch pij the activation map
Mij = P (pij)⊙E(pij), with ⊙ the component-wise prod-
uct between matrices. A map Mij of a patch pij can be
tiled into n mini-patches denoted by piu,jv , with u, v ∈
{1, . . ., n} and n≤28. For example, if u, v ∈ {1, . . ., 4}, we
get a tiling of the map Mij into 16 mini-patches (or super-
pixels) of size 7×7. Each mini-patch value is computed as

Color coded probability

Detected edges

Recomposed 8-neighborhood
of patch pij

pij

Patch    with high probability of
tip-burn 

pij

Classifier

Label mask

CRF

Segmentation

Split &
Threshold

Component wise 
combination

Figure 8. Prediction: unsupervised tip-burn mask generation by
merging probability outcomes from classification and detected
edges, CRF and segmentation.

follows:

Viu,jv =
1

K

∑
x,y∈piu,jv

wMij(x, y), u, v ∈ {1, . . ., n}

(2)
Here x, y indicate the pixel values of the mini-patch, w is
a mini-patch specific weight reinforcing the contribution of
edges, and K=maxMij . The label map of a patch pij tiled
into n mini patches has tile-level n, and it is defined by a
square n× n matrix thresholding the values defined in (2):

LMn(pij) = η([Viu,jv ]
n×n) (3)

Here η : [Viu,jv ]
n×n 7→ {0, 1}n×n is a thresholding op-

eration based on the max value of the matrix [Viu,jv ]
n×n

quantization. LMn labels each pixel (or superpixel depend-
ing on the tiling level chosen) according to whether it is
most likely healthy or stressed (see Figure 8).

Given a label map LMn of a patch, we combine la-
bel maps into a patch neighborhood system. The N -
neighborhood of a patch is defined by the N=8 patches at
distance δ1, or by the N=24 patches at distance δ2, and
so on. Therefore, a label map induced by a patch has size
N+1. In Figure 8 we show, within the tip-burn prediction
process, the simple computation to obtain a refined label
map for a N -neighborhood with N=8. Given a choice of
N we refine the obtained masks by a random field (CRF),
where the objective is to predict a label xp ∈ {0, 1} for each
pixel (or superpixel) p. Forming unary and binary potentials
and ignoring the partition function, the energy function of
the CRF decomposes into nodes (the pixels p) and edges:

E(xp) =
∑
i

φi(xpi
) +

∑
i,j∈LMn

φi,j(xpi
, xpj

) (4)

Here, the potential φi(xpi) encodes the probability that the
pixel pi denotes either stress or health, and it is encoded
by a classifier, while φi,j(xpi

, xpj
) enforces the labels to



be the same if the pixels are similar and it is encoded by
a distance. Inference is done by MAP minimization of the
energy function:

argmin
xp

E(xp) (5)

In our case the energy function is of class F2 [23] and it is
graph-cut representable. In this case it is known that graph
cut gives an optimal solution for the minimization [22], also
removing noise from the training labels built as described
above. These refined masks are then used for training the
pixel-level segmentation described below.

4.3. Pixel-level segmentation

Tip-burn prediction amounts to obtain the image shown
in Figure 2 where tip-burn regions occurring in the image
of a canopy are segmented. Since the work of [34] many
further progress have been made on U-shaped segmenta-
tion models based on convolution and deconvolution [29].
The idea behind a deep segmentation model is to have a
network built by an encoder and decoder for labeling each
pixel. The encoder contracts the spatial resolution of the
image up to a single vector, which forms the bottleneck,
learning more and more abstract features in this contrac-
tion process. Beyond the bottleneck, deconvolution layers
restore the original image resolution by upsampling layers
[20]. Since DenseNet [17] skip connections have signed
the U-Net evolution enhancing models for recovering fine-
grained details of the target, improving the flow between
layers by connecting each layer to all subsequent ones.

In our case we have to cope with very small regions with
strong shape variation, imposing a relatively shallow net.
Input to the net is a binary image [0, 1]196×196 with N = 48
and the corresponding RGB image cropped from the image
of full canopy, tiled into tray images, to which we applied
only random jittering, as flipping is not necessary, due to the
mask being deformable. The implementation is essentially
a relatively shallow U-net, as described in Section 5. Maps
whose sum is zero are not considered in either training and
validation.

5. Experiments
Here, we explore more in-depth the key implementation

details of the models used for our experiments. All our net-
works are implemented in Tensorflow 2.3 and training are
performed on a RTX-GPU 2080 and on a GTX 1050Ti. Re-
ported values and thresholds for training are established em-
pirically within a standard range.
WGAN implementation for sample generation. The
Generator and the Critic are deep CNN architectures. Re-
garding the training procedure, we apply to every samples
from two to three random rotations to increase the origi-
nal dataset dimension and use batch size of 62. The im-
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Figure 9. Patch-level classification network (Stress vs darkSpot).

ages are also normalized in the range [−1, 1]. The noise
dimension for the Generator is set to 256. We use standard
RMSprop with learning rate 1e−5 for both the Generator
and the Critic. The networks are trained for 1500 epochs
with the Critic being updated 5 times more than the Gen-
erator during each step. The convergence of the WGAN
depends on a clipping value c. Formally, c enforces a Lips-
chitz constraint that makes the computation of the Wasser-
stein distance to be tractable [3]. Practically, if set too low
or too high, vanishing and exploding gradients respectively
can occur. In our case, we empirically devised that setting c
equal to 0.02 is a good compromise between network con-
vergence and training time.
VGG-16 for generated data metric. We use the VGG-16
pretrained model on the ImageNet dataset, provided by ten-
sorflow.org. The base network implementation [40] works
with inputs of size (224×224×3). Tensorflow allows to cre-
ate links between different model layers. We exploit this to
make the base VGG-16 accept smaller inputs, up to a mini-
mum of (32×32×3), requiring us to rescale the images. We
also convert them to the BGR format and zero-center each
channel with respect to the ImageNet dataset. We freeze the
base model and train only the head for 30 epochs, with batch
size of 32 and Adam optimizer with learning rate scheduled
on epochs, starting from 1e−3. At last, we unfreeze the
base model with a learning rate set to 1e−5.
Patch-level classification networks. Both the two class-
classifier architectures use their own DarkNet-19 network
as backbone (Figure 9). The head of the network is re-
placed with two dense layers with relu and sigmoid func-
tions respectively, a dropout of 0.5 in-between them, and
L2 weight regularization in each convolutional block. The
structural difference between the Stress VS no-darkSpots
and the Stress VS darkSpots lies in the number of param-
eters used: the former has 4 times the number of parameters
in each convolutional block than the latter. Both the archi-
tectures are trained from scratch, using a total of 60k im-
ages evenly divided between the two class categories. The
dataset is split into training and validation sets with a ra-
tio of 90/10. We use batch size of 64 and normalize the



Table 1. Performance metric of the proposed CNN models for patch-level and pixel-level detection and segmentation tasks
Metric Patch-level detection Pixel-level detection Patch-level detection Pixel-level

(healthy class split) (via patch classification only) (Ablation: no healthy class split) segmentation
Validation Test Test Validation Test Test

Accuracy 96.01% 87.05% 86.51% 74.65% 49.23% -
Recall 96.52% 40.45% 65.12% 98.02% 98.02% -
Precision 95.68% 8.34% 67.74% 69.04% 2.12% -
F1 96.10% 13.83% 64.80% 81.01% 4.15% -
mAP - - - - - 87.00%
IOU - - - - - 77.20%
Dice score - - - - - 75.02%

images in the range [0, 1]. We use SGD with Nesterov Mo-
mentum and learning rate 1e−5 to train the Stress VS dark-
Spots model for 38 epochs. The training process automati-
cally stops if, after 5 consecutive epochs, the validation loss
does not show meaningful improvements. The Stress VS
no-darkSpots model is trained for 32 epochs. SGD with
Nesterov Momentum is again used but the learning rate is
now set smaller, to a value of 6e−6. Batch size and the early
stopping criteria are the same as the previous model.
Pixel-level segmentation network. The network follows a
U-net structure with 4 convolution layers, both for the en-
coder and the decoder, with kernels of size 3 and leaky-relu
as activation functions. Instance normalization and dropout,
with a value of 0.3, are applied respectively before and af-
ter the max-pooling operation to reduce overfitting. We use
batch size of 1 and Adam optimizer with learning rate set to
1e−4. We train the model for 50 epochs with binary cross-
entropy as loss function. As for the metrics, we use both the
intersection over union and the dice coefficient. The inter-
section over union is computed as the ratio between the area
of overlap among the ground truth and the predicted mask,
and the union of ground truth and predicted mask, in pixels.
The dice coefficient is defined as:

2× |Gt(mask)| ∩ |Pred(mask)|
|Gt(mask)|+ |Pred(mask)|

(6)

and it benchmarks the similarity between two samples.

6. Results
In Table 1, the Patch-level detection column shows the

combined performances of the two class-classifiers on the
validation and test set, respectively. Let τ be a threshold (in
our case set to 0.37):

predicted(pij) =

{
stress if P (pij) > τ
healthy otherwise

(7)

Here we consider TPs all the patches labeled as stressed
and predicted as stress. FPs are all the samples labeled as
healthy and predicted as stress, FNs all patches labeled as
stress, and predicted as healthy. TNs all patches labeled

and predicted as healthy. The huge drop in both preci-
sion and recall for the test set shows that patch-level detec-
tion, despite its flexibility, needs further refinement to re-
move FPs. In fact, the two patch-level models predict about
[1000 − 4500] more stress samples than there actually are.
To check pixel-level accuracy, we collect a test set of 10
canopy images where tip-burn masks have been manually
extracted by the agronomists. First we tested the pixel-level
accuracy of the Patch-level detection, shown in Table 1 (col-
umn Pixel level-detection), by computing TP, FP, TN, FN
via the intersection of patches and test masks, we see that
precision and recall actually improve. Then we tested the
tip-burn segmentation, obtained by unsupervised labeling,
CRF and U-Net segmentation. Table 1 column Pixel-level
segmentation shows the IOU and Dice score metrics for the
test obtaining values higher than 75%.

6.1. Ablation study

An ablation study is motivated by the specific decision of
splitting the healthy class into two subsets, taken during the
experiments. We conduct the ablation study by training a
third CNN classifier avoiding the informative sampling for
the healthy class, hence no split is made between darkSpot
or no-darkSpot type. The settings and hyper-parameters
used for training are the same as the one presented for
the other two networks. In such a scenario, the validation
loss starts oscillating immediately after 7 epochs until the
model completely overfits the training dataset in less than
30 epochs. Stopping the model before that, leads to the per-
formance metrics shown in Table 1, column Patch-level de-
tection (Ablation:..). A drop for both the validation and test
sets, most notably precision, is visible. Increasing network
capacity, learning rate scheduling and loss and weights reg-
ularization were unsuccessful. We noticed that most of the
misclassified samples were of the darkSpot type. Increasing
the importance of these misclassified samples via cost sen-
sitive learning proved unsatisfactory yet again. We strongly
believe that this issue can be overcome even without split-
ting the samples in two categories. Simply increasing the
number of samples given as input could do the trick, we
reserve the search for a better solution in a future study.



(a) Guava [mAP: 93%] (b) Jamun [mAP: 85%] (c) Jatropha [mAP: 80%] (d) Pomegranate [mAP: 79%]

Figure 10. Comparison results on PlantLeaves

7. Comparison on other datasets

Models performance on PlantVillage and PlantLeaves
As already gathered in Section 2, as far as we know there
is no work on canopy segmentation, nor on disease seg-
mentation even on a single image. The closest methods
is [21], which provides bounding box detection of stressed
leaves on a custom apple leaf disease dataset obtaining a
mAP of 78.80%. Similarly, [5] obtains mAP scores ranging
from 91.8% to 92.7% in bounding box detection of a new
PlantDisease[10] dataset not publicly available.

Given a lack of comparable works, to prove that our
method is quite flexible and easy generalizable, we test
it on the PlantVillage and PlantLeaves datasets, by ran-
domly sampling images from both dataset, despite the net-
works were trained on our canopy dataset. Figure 10 shows
the mAP accuracy of segmentation maps from samples
of PlantVillage, while Figure 11 shows the accuracy of
segmentation maps for PlantLeaves dataset. Our method
achieves a mean Average Precision (mAP) of 67% and 85%
respectively for PlantVillage and PlantLeaves showing very
challenging results, especially considering the above results
of [21] and [5] obtained by training on their own datasets.

8. Conclusions

This study has explored, for the very first time, how DL
can solve the problem of tip-burn detection on highly dense
plant canopies in Plant Factories. We propose a WGAN to
overcome the problem of dataset imbalance. The quality
of the generated synthetic samples is confirmed by preci-
sion and recall metrics [25]. Two Deep CNNs estimate the
probability of images containing tip-burn which refined by
labeling maps and CRF, allow to extract masks for the most
probable regions. At last, patch merging and pixel-level
segmentation with a deep network allow to carry out a pixel-
level segmentation of the whole canopy images achieving a
mAP value of 87%. The quick fix provided to overcome
the local minimum caused by the full Healthy dataset can

definitely be improved and we leave for a future study the
task of finding a better solution to it. In addition to this, the
auspicious results presented in the ablation study motivate
us to extend the developed system also on the other other
plant varieties grown inside Plant Factories and their rele-
vant stresses. Finally, we shall deliver the collected dataset
to the entire research community so as to foster the search
of better implementations to the same problem or finding
new ones for other applications.
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