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Abstract

Developing accurate algorithms for wheat head detec-
tion is challenging due to the variability of observation
circumstances and the uncertainty of wheat head appear-
ances. In this work, we propose a simple but effective idea—
dynamic color transform (DCT)—for accurate wheat head
detection. This idea is based on an observation that modi-
fying the color channel of an input image can significantly
alleviate false negatives and therefore improve detection re-
sults. DCT follows a linear color transform and can be eas-
ily implemented as a dynamic network. A key property of
DCT is that the transform parameters are data-dependent
such that illumination variations can be corrected adap-
tively. The DCT network can be incorporated into any ex-
isting object detectors. For example, DCT plays an impor-
tant role in our solution participating in the Global Wheat
Head Detection (GWHD) Challenge 2021, where our solu-
tion ranks the first on the initial public leaderboard, with an
Average Domain Accuracy (ADA) of 0.821, and obtains the
runner-up reward on the final complete testing set, with an
ADA of 0.695.

1. Introduction

With the prevalence of affordable camera platforms (e.g.,
unmanned aerial vehicles and smartphones), in-field im-
agery has become a convenient image acquisition choice
for monitoring the characteristics of wheat [4, 5]. One of
the important tasks is wheat head detection. It enables au-
tomatic measurements of wheat traits, such as head popu-
lation, wheat maturity stage, and wheat size. By deploying
wheat head detection, tedious manual measurements can be
avoided, and farmers can make fast decisions based on au-
tomated observation.
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While many methods have been developed for generic
object detection [1, 2, 12, 13, 14, 15], these methods are
not directly applicable to in-filed wheat head detection. In
contrast to images captured in the natural context, in-filed
wheat head images exhibit visual challenges from two as-
pects: first, different observation circumstances affect the
quality of images and wheat head appearances, e.g., wind
can result in blurry images, atmospheric light can lead to
unbalanced image contrast, and the observation conditions
also affect wheat head orientation; second, the phenotypes
of wheat head vary significantly under different growth
stages, e.g., the color of the spike is green at the post-
flowering stage, but turns yellow at the ripening stage.

Recently, much effort has been made to crop detec-
tion [3, 6, 11, 16]. Ghosal et al. [6] proposes a weakly-
supervised framework for sorghum head detection. Chan-
dra et al. [3] tackles crop detection via point supervision
based active learning. On the other hand, Zou et al. [16]
presents a comprehensive study on maize tassels detection.
Different from previous studies that aim to reduce labeling
burdens, we focus on developing high-performance detec-
tors for wheat head detection.

In this work, we find that appropriate treatment of color
cues can greatly benefit wheat head detection, particularly
in alleviating false negatives. Specifically, we present an
analysis on the impact of the color channel and propose to
deal with colors with dynamic color transform (DCT). The
DCT is in the same spirit of recent dynamic networks [9, 10]
that enable date-dependent inference. For example, the
DCT follows a linear color model that dynamically gener-
ates 6 parameters to modulate the color of the input image.
Our main contributions include the following:

• We investigate the impact of the color channel and ob-
serve that modifying the color channel of the input im-
age can improve detection results;

• We introduce a DCT network based on our observa-
tion, which improves wheat head detection;



• Our DCT network achieves the runner-up performance
on the Global Wheat Head Detection Challenge 2021.

2. Impact of the Color Channel
Color is an important attribute of in-filed wheat head im-

ages. However, the color information is often ignored in
existing object detectors. Here we empirically investigate
the impact of the color channel on wheat head detection,
which lays the foundation of our approach. In the follow-
ing, we first introduce the baseline object detector—Scaled-
YOLOv4 [15]. Then, we demonstrate the impact of the
color channel on this model.

Baseline Object Detector. We adopt a state-of-the-art
object detector—Scaled-YOLOv4 [15] as our baseline.
Scaled-YOLOv4 proposes a network scaling method that
can modify the depth, width, resolution, and structure of the
detection network, thus maintaining the balance between
speed and accuracy. The reasons why we choose Scaled-
YOLOv4 include:

1) it reports strong performance on generic object detec-
tion;

2) it is clean to enable flexible modifications.

Color Channel Modification. Specifically, given an ob-
ject detector trained on the GWHD [5] dataset (e.g., we
adopt Scaled-YOLOv4 [15]), we manually modify the value
of each color channel and compare the detection results un-
der different color conditions. In particular, we use a linear
color transform to adjust the color channel as follows:

R′ = αR+ β

G′ = αG+ β

B′ = αB + β

, (1)

where R, G, and B denote the red, green, and blue color
channels of an image, respectively. R′, G′, and B′ are
transformed color channels, and α and β are tunable pa-
rameters.

To investigate the impact of the color channel, we sepa-
rately modify the values of α and β. Specifically, we first
fix β = 0 and vary α (α ∈ {0.7, 1.0, 1.5}). The qualita-
tive results are shown in Fig. 1. Note that when α = 1.0
and β = 0, the transformed image is the same as the orig-
inal image. Interestingly, we observe that modifying α can
improve the detection results. For instance, false negatives
are alleviated in the first and second rows. In addition,
false positives are suppressed in the third row. Next, we
fix α = 1.0 and vary β (β ∈ {−50, 0, 20}). Fig. 2 shows
the qualitative results. Similarly, modifying the value of β
can also improve detection.

Moreover, we also compare the detection performance of
Scaled-YOLOv4 under different α’s and β’s on the GWHD

(a) α = 0.7 (b) α = 1.0 (c) α = 1.5

Figure 1: Qualitative results of Scaled-YOLOv4 [15] under
different α’s (α = 1.0 denotes original image), where β is
fixed to 0. The numbers above the red detection boxes are
the confidence scores. Best viewed by zooming in.

(a) β = −50 (b) β = 0.0 (c) β = 20

Figure 2: Qualitative results of Scaled-YOLOv4 [15] under
different β’s (β = 0 denotes original image), where α is
fixed to 1.0. The numbers above the red detection boxes are
the confidence scores. Best viewed by zooming in.

2021 test set. Table 1 illustrates the detailed results, where
α = 1.0 and β = 0 denote the baseline, and ADA is the
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Figure 3: An overview of our method. The input image x is first transformed to x′ by DCT network, then x′ is sent to
detection network for calculating loss `cls and `loc, which are used to update the DCT and the detection network.

Table 1: Quantitative results of Scaled-YOLOv4 under dif-
ferent α’s and β’s on the GWHD 2021 test set. The evalua-
tion metric is ADA.

Type α β Test ADA

Varying α
0.7 0 0.652
1.0 0 0.641
1.5 0 0.614

Varying β
1.0 -50 0.618
1.0 0 0.641
1.0 20 0.644

evaluation metric (see Sec. 4.1 for details). We notice that
an appropriate choice of α and β can indeed improve detec-
tion. For example, setting α = 0.7 improves the ADA from
0.641 to 0.652. Our results in Table 1 are consistent with
the observation in Fig. 1 and Fig. 2.

To summarize, our results indicate that color is an im-
portant clue in wheat head detection, which motivates us to
leverage the color information. However, we remark that,
despite color is useful, it is not sufficient to tackle object
detection based on colors solely. The reasons are two-fold:

1) since wheat heads vary significantly in different do-
mains, color information is not shared among different ar-
eas;

2) color is sensitive to observation/illumination condi-
tions, thus color distortions may occur when perturbation
appears.

Therefore, we relieve the role of the color and incorpo-
rate color information into existing object detectors to im-
prove detection.

3. Dynamic Color Transform Network

We first give an overview of our method. Then, we ex-
plain the details of color transform modeling before we in-
troduce the loss functions and implementation details.

3.1. Overview

Motivated by the observation that modifying color chan-
nels can improve detection results (Sec. 2), we propose
a DCT network for accurate wheat head detection. An
overview of our method is depicted in Fig. 3. Specifically,
we first pass the input image x through the DCT network
to obtain the transformed image x′. Then, we perform stan-
dard object detection to compute the loss, which is used to
update the DCT and the detection network.

3.2. Color Transform Modeling

Given an input RGB image x, we adopt a linear function
to model color transform

R′ = αRR+ βR

G′ = αGG+ βG

B′ = αBB + βB

, (2)

where R, G, and B denote the red, green, and blue color
channels of the input image x, respectively. R′,G′, andB′

are transformed color channels. αR, αG, αB , βR, βG, and
βB are predicted color transform parameters. Note that we
model the transform of each color channel independently.

Formally, a DCT network φ parameterized by θ is ap-
plied to the input image x, predicting color transform pa-
rameters {α,β} by

{α,β} = φθ(x) , (3)

whereα = [αR, αG, αB ] and β = [βR, βG, βB ]. The trans-
formed input image x′ can be written as

x′ = α · x+ β , (4)

where · denotes channel-wise multiplication.
Practically, DCT can be easily implemented as a dy-

namic network [9, 10]. In particular, any off-the-shelf
networks can be adopted as the DCT network φ, e.g.,
ResNet [7]. Note that, the structure of the DCT network
is not limited to existing networks, and a few convolution
layers may also work.



Table 2: Final and partial leaderboard of the Global Wheat Head Detection Challenge 2021.

Final Leaderboard Partial Leaderboard
Rank Participants ADA Rank Participants ADA

1 randomTeamName 0.700 1 SMART 0.821
2 SMART 0.695 2 kosung 0.812
2 david jeon 0.695 3 wheat hunters 0.811
4 keyhan najafian 0.692 4 randomTeamName 0.807
5 hitsz 0.689 4 david jeon 0.807
6 maxim 0.682 6 hitsz 0.805
7 kosung 0.676 7 augly wheat 0.792
8 augly wheat 0.671 8 Wu Chun Huan 0.790
9 Wu Chun Huan 0.669 9 UoL 0.787
10 Ural 0.666 10 vlad barbu 0.786

3.3. Loss Function

Given an object detector f parameterized by ω and the
transformed input image x′, the training loss is formulated
as:

min
θ,ω
L(fω(x′), {yi, bi}) , (5)

where {yi, bi} is the ground-truth label (yi is the class label
and bi is the bounding box). In practice, L is composed of
classification loss and localization loss [1, 15]. Thus, Eq. (5)
can be rewritten as follows:

min
θ,ω

`cls(fω(x
′), {yi, bi}) + `loc(fω(x

′), {yi, bi}) . (6)

where `cls and `loc are classification loss and localization
loss, respectively.

It is worth mentioning that our DCT network is not lim-
ited to specific object detectors. Here we only instantiate an
application of the DCT network on Scaled-YOLOv4 [15].

3.4. Implementation Details

The Structure of the DCT Network. We adopt
ResNet18 as the DCT Network, where the output channels
of ResNet18 are set to 6 (i.e., αR, αG, αB , βR, βG, and
βB). The parameters of the DCT network are 11.2M . We
remark that the architecture of the DCT network is not lim-
ited to existing networks. One may design their own DCT
network.

Training Details. Following [15], the model is trained for
300 epochs. The learning rate of the DCT network and
Scaled-YOLOv4 are set to 0.01 and 0.1, respectively. We
adopt Stochastic Gradient Descent (SGD) as the optimizer.

Testing. To further improve the detection performance,
we adopt model ensemble and pseudo labeling [8] dur-
ing testing. We apply model ensemble on a set of predic-

tions, where predictions are obtained by test time augmen-
tation (i.e., up-down flip, left-right flip, and rotation). About
pseudo labeling [8], we retrain the model with a fusion of
the training and testing data, where the predictions of our
model are treated as pseudo labels on the test set.

4. Results and Discussion
4.1. Experiment Setup

Dataset. The Global Wheat Head Dataset 2021 [5] is used
by the Global Wheat Head Detection Challenge 20211. It
contains 3.6K training images, 1.4K validation images,
and 1.3K test images. Note that the validation set and the
test set correspond to the partial leaderboard and the final
leaderboard, respectively.

Evaluation Metric. We use Average Domain Accuracy
(ADA) as the evaluation metric. The accuracy of each im-
age is calculated by:

Accuracyimage =
TP

TP+ FN+ FP
, (7)

where TP, FN, and FP are true positive, false negative, and
false positive, respectively. A ground-truth box is consid-
ered to match with one predicted box if their Intersection
over Union (IoU) is higher than a threshold of 0.5. The ac-
curacy of all images from the same domain is averaged to
obtain the domain accuracy. The ADA is the average of all
domain accuracy.

4.2. Quantitative Results on the GWHD Dataset

Table 2 shows the competition results, the username of
our team is SMART. We ranks second in the final leader-
board of the Global Wheat Challenge 2021, with an ADA
of 0.695. In addition, we rank first in the partial leaderboard

1https://www.aicrowd.com/challenges/global-wheat-challenge-2021



Figure 4: Visualization of detection results. Red boxes are
the results our DCT Scaled-YOLOv4, while blue boxes are
the results of the standard Scaled-YOLOv4 (without DCT).

Table 3: Ablation Study of our DCT on Scaled-YOLOv4.

Method Test ADA

Baseline 0.641
Baseline + DCT 0.661

(i.e., initial public leaderboard), with an ADA of 0.821.
Note that we only show the results of the top 10 teams, we
refer readers to the leaderboard page2 for full results.

4.3. Ablation Study

Table 3 shows the comparison results of standard Scaled-
YOLOv4 and DCT Scaled-YOLOv4. Our DCT boosts the
baseline from 0.641 to 0.661, which validates the effective-
ness of our method. To understand the impact of DCT, we
further visualize the detection results in Fig. 4. Our DCT

2https://www.aicrowd.com/challenges/global-wheat-challenge-
2021/leaderboards

(a) Duplicate predictions on the same object.

(b) Missing detections on blurred images.

Figure 5: Failure cases of our DCT on the GWHD 2021 test
set. The predictions are in red, while the ground-truth boxes
are in green.

model is robust to various illumination conditions and per-
forms consistently better than standard Scaled-YOLOv4.
For instance, we significantly reduce the number of false
negatives. In addition, our model is capable of suppressing
false positives in the bright area.

4.4. Failure Case Analysis

Although our method achieves promising results on the
GWHD 2021 dataset, some limitations exist. Fig. 5 illus-
trates the failure cases of our DCT. First, our model tends to
predict duplicate boxes on the same object, which leads to
false positives. Second, the blurred image may render de-
tection failure, i.e., missing detections. We may incorporate
the attributes of the wheat head objects (e.g., the relation-
ship between objects) to address the above problems.

5. Conclusion

In this work, we introduce a simple but effective idea —
dynamic color transform — for wheat head detection. By
incorporating our DCT network into an existing object de-
tector, we observe a notable improvement in detection per-
formance. The DCT network exhibits robustness to various
illumination conditions and indicates that a simple idea can
make a difference if it is done right. Experiments and com-
parisons on the Global Wheat Head Detection Challenge
2021 dataset validate the effectiveness of our method.
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