
Leaf Area Estimation by Semantic Segmentation of Point Cloud of Tomato Plants

Takeshi Masuda
National Institute of Advanced Industrial Science and Technology (AIST), Japan

t.masuda@aist.go.jp

Abstract

Growth monitoring is an essential task in agriculture for

obtaining good crops and sustainable management of culti-

vation. Though it is essential, it is also a hard task requir-

ing much labor and working time, and many automation

approaches have been proposed. We present an attempt to

estimate the leaf area of the tomatoes grown in a sunlight-

type plant factory. We scanned tomato plants by an RGB-D

sensor that moves vertically to scan one side of the plants

from the pathway. We built a point cloud by merging the

scanned data, and we segmented it into four classes (Stem,

Leaf, Fruit, and Other) based on annotation. With a limited

amount of data, we estimated the stem from Stem points,

and from the number of Leaf points around the stem, we

estimate the leaf area of a specific tomato plant in a plant

factory with the relative error of about 20%.

1. Introduction
Plant phenotype is determined by genotype and envi-

ronment. To obtain good crops, proper management of
the environment is necessary. For improving management,
growth monitoring is one of the most important tasks in
many agricultural fields and plant factories. Many kinds
of research have been proposed on phenotyping plants, and
most of them are targetting small and simple-shaped plants
in the environment in laboratories, artificial-light or com-
pletely controlled plant factories, or specialized phenotyp-
ing facilities [2, 9, 8, 14].

There are trials of reconstruction of much larger and
complex objects. Tan et al. [22] reconstructed tree shapes
from multiview images. Their method only requires 10 to
20 images but from 120° to 200° around the tree. They
extracted branches and leaves and finally generated graphi-
cal models for view synthesis. Instead of preparing many
images, Okura et al. [19] used synthesized images from
generated 3D models for learning to estimated occluded
branches. After learning, their method can estimate the oc-
cluded branches from a single shot. Li et al. [13] modeled
a tomato plant using Kinect and segmented plant parts, but

Figure 1. Target plant factory (left) and scanning system (right).

the plant is potted, small, and simple-shaped.
We are developing a system that facilitates the phenotyp-

ing of the real cultivating environment. Within many growth
indices, leaf area is important. Measuring the correct leaf
area requires hard work. We cut the plant at the root, trim all
leaves, spread, flatten, and scan them. This way of measure-
ment is also destructive, and we cannot apply this method
to all plants.

In this paper, our targets are tomato plants grown in a
sunlight plant factory. There are several technical difficul-
ties. First, plant shape is complex. Tomato plants have com-
pound leaves whose shape is complex. Dense leaves cause
a lot of occlusions. In tomato cultivation, side branches are
pruned off, and there should be only one stem per plant, but
it often happens that petioles are as thick as stems. Sec-
ond, the plants are grown dense. Each plant is placed in the
interval so that photosynthesis is not disturbed but as dense
as possible for economic efficiency. The leaves of neighbor-
ing plants interfere and are hard to separate. This also limits
viewpoints. It is usual that, on each cultivation bench, two

rows of tomatoes are planted. As a result, a plant can be
observed only from one side. Third, leaf area measurement
is hard and destructive, and only a few portions of ground
truth are available.

As mentioned beforehand, tomato plants have a complex
shape, and also similar shapes are repeated. This makes it
hard to use the structure-from-motion approach that is used
in many pieces of literatures. Instead, we used an RGB-D
sensor for measuring the plants to model the plant shape as
a point cloud. To analyze the plant structure, we applied the
semantic segmentation method of the point cloud. After the
stem location is estimated, we segment the leaves around
the stem, and the number of leaf points around the stem
should be correlated with the leaf area. With quite a limited
amount of data, we validated our estimation method of the
leaf area of a specific tomato plant in a plant factory with a
relative error of 20 %.

The outline of our procedure is: first, to scan the tomato
plants and generate point clouds (Sec. 2), to apply seman-
tic segmentation (Sec. 3), then to extract the stems from the
segmentation result (Sec. 4). In Sec. 5, we explain the pro-
cess with the real data and finally evaluate the estimation of
the leaf area.

2. Point Cloud Generation
2.1. Measurement

Our targets are tomato plants grown in a sunlight-type
plant factory (Fig. 1). In such an environment, the plants are
grown on raised-floor linear cultivation benches. Two rows
of tomatoes are planted on a cultivation bench. Between
two benches, there is a pathway on which a pair of heating
pipes is laid.

As the RGB-D sensor, we used Intel Realsense D435i
[10]. This sensor captures the depth image in addition to the
RGB image. Depth is captured by binocular stereo with two
infrared cameras attached with an RGB camera. This sensor
can work in a bright environment, even in the sunlight, and
in a dark environment with the help of a built-in infrared
random-dot projector.

The sensor is attached to a slide that moves on a pole
vertically driven by a geared motor (Fig. 1), and the pole is
placed on a cart that slides on the heating pipes. To mea-
sure the target plant, we move the cart in front of it and
start capturing and switching on the motor to scan the sen-
sor vertically. The scanning direction is either upward or
downward.

The sensor’s vendor (Intel) provides GUI software (Re-
alsenseViewer) [11] to control the sensor. The sequence
captured by this software is stored as a bag file that is com-
patible with ROS. We decomposed this file using the libre-
alsense SDK [11], and for each frame, we obtain an aligned
pair of RGB and depth images that are considered an RGB-

Figure 2. Tracking of the feature points. Green and red dots signify
inliers and outliers, respectively. Tracked inlier paths are drawn in
yellow.

D frame. The intrinsic camera parameters are calibrated
beforehand and fixed for all experiments.

2.2. Alignment

After scanning a plant, we obtain a sequence of about a
thousand RGB-D frames, and we need to align them before
merging them to build the total point cloud.

We establish the correspondence by tracking AKAZE
feature points [1] on the RGB channels of RGB-D frames
because they have more resolution and reliability than the
depth channel. From the depth channel, we can determine
the XYZ coordinates on each pixel using the intrinsic pa-
rameters. From the correspondence of feature points on
the RGB channels, we can determine the correspondence
of XYZ coordinates which will be used for alignment.

We align each frame to tracks. For each track, we
store the feature point’s XYZ coordinate values relative
to the first frame and the feature vector. A new feature
point initializes a new track by its XYZ coordinate val-
ues and feature vector. For the successive frames, each
feature point corresponds to the track whose feature vec-
tor is the closest in the feature space. The 3D rigid trans-
formation is determined by minimizing Cauchy loss of the
corresponded XYZ coordinate values eliminating outliers
with large alignment errors (> 5 mm). The inlier coordi-
nate values are transformed by the estimated 3D rigid trans-
formation, and each track’s coordinate values are updated
by the cumulative average of the transformed inlier coor-
dinate values. The feature vector of the track is replaced
by the last one matched to the track. This process is re-
peated for all frames, and for each frame, we can determine
a 3D rigid transformation relative to the first frame. The se-
quence of 3D rigid transformations is optimized so that all
transformed feature points of the same track coincide for all
tracks.

The sensor applies the automatic gain control. To com-
pensate for this, we estimate the relative gain change to the

Figure 3. Tracked motion parameters and gain compensation fac-
tors.

next frame using the intensities of inlier image point pairs.
We linearize the intensity response beforehand (Sec. 5.3).
The whole-sequence gain compensation factors are deter-
mined by accumulated product from the first frame.

Finally, the point cloud is transformed in the global co-
ordinates: the z-axis is in the hight direction, the y-axis is
in the depth direction from the sensor to the plant, and the
origin is at the bottom of the sensor position. As a result, for
the i-th frame, we obtain a global 3D rigid transformation
(camera extrinsic parameters) T i, and a global gain com-
pensation factor gi.

For acceleration, we split the sequence into batches of
55 frames with 5-frame overlap for parallel processing and
connect the batches by seaming the overlapped tracks to-
gether between batches.

The sensor (D435i) is equipped with an IMU of a 3D
accelerometer and a gyroscope. We don’t use the motion
information for alignment because the plants are not com-
pletely static and the alignment cannot be achieved just by
the sensor’s IMU. The accelerometer’s output is used to
align the z-axis orientation to the gravity orientation.

Figure 3 shows an example of the results of alignment.
The tracked motion parameters relative to the first frame
are plotted in the translation (mm) and rotation (radians)
parts of the twist representation [17]. In the sensor’s coor-
dinate system, the y-axis is pointing down to the ground. In
this plot, almost constantly increasing y-axis translation is
dominant, which means that the sensor was going down in
nearly constant velocity. The plot of gain compensation fac-
tors shows that the sensor’s gain was changed greatly during
the sequence.

2.3. Merging
Once the RGB-D sequence is aligned, we merge them

to construct the total point cloud. Our objective is to mea-
sure the leaf area, and we chose to build a nearly uniformly
sampled point cloud by voxels.

Assume that the i-th RGB-D frame is converted to
a point cloud of global XYZ-RGB values [X,C] =
[T ix, gic] using the intrinsic parameters, the global rigid
transformation T i and global gain compensation factor gi.
This point cloud is quantized in voxels whose size is � ac-

cording to the global XYZ values X . For each voxel V ,
we determine the signed distance field (SDF) representa-
tion [15, 6, 18], which is a set of [X̄V ,NV , C̄V], where
X̄V and C̄V are the averages of XV = {X|X 2 V } and
CV = {C|C 2 V }, respectively. The normal NV is de-
termined by the vector pointing to the voxel center from the
average of k-closest points (k = 5) of the whole points X
from it. This is done very quickly with the k-d tree algo-
rithm [3]. The normal vector’s length is normalized, and
its orientation is determined so that it is on the viewpoint
side. If the angle between the normal angle and the vector
to the viewpoint is greater than a threshold (45°), the voxel
is considered unreliable and eliminated.

The aligned SDFs in the same voxel are integrated to
form the global SDF. This process is achieved by incre-
mental averaging of each element of the SDF. For each
global SDF element [X̄V ,NV , C̄V], we store the number
of points, the number of frames and the last frame index
integrated into the voxel in addition.

We set the forgetting factor (= 0.9 1) in integrating
each SDF that lightens the weight for the preceding SDF.
This is introduced to reduce the effect of non-rigid motion
of plants that cannot be aligned by a rigid transform. For
example, when the forgetting factor is 0.9, the weight for
the 7-th frame before is about a half (0.5 ⇡ 0.97).

Merging is also parallelized by splitting the frames into
batches. The merging process is dependent on the order, and
we need to keep the frame order throughout the process.

2.4. Pruning
The merged SDF contains many spurious points, which

we need to prune out to generate a clearer point cloud. The
following steps are applied in sequence.

The parts observed only by a few frames are unreliable.
First, we select only the SDF element whose number of
frames integrated into the voxel is greater than the threshold
(=5).

The objects that move non-rigidly cannot be aligned by a
rigid transformation and cause blur. Like the non-maximum
suppression used in Canny edge detection [4], we apply the
non-latest suppression. For each voxel, the voxel is pre-
served if it has the largest last frame index (or, if it is the lat-
est) compared to the voxels in the normal direction, which
is quantized in the 26-neighborhood directions.

The SDFs that are far from the surface are not necessary.
For each voxel, if the sign of the distance is different from
the ones of the neighboring voxels (if the voxel is crossing
the surface), the voxel is preserved.

Finally, the isolated points are detected by the DBSCAN
clustering algorithm [7] on the SDF points X̄V . The DB-
SCAN algorithm is a clustering algorithm that finds the
cluster connected to the specified number (=5) of ’core’
points within the specified neighborhood radius " (=1.5�).

Figure 4. Ortho plot of attributes of a reconstructed point cloud in
front and side views.

The points that don’t have connections to the core points
are detected as the noise points, and in addition, the clusters
whose number of points are less than the threshold (=50)
are removed.

Figure 4 shows an example of the merged point cloud
after pruning in the orthographic projection. The front and
side views are the projection on the global x-z and y-z
planes. The global y-coordinates represent the depth value
which is colored in red for close and blue for far points. 2.2,
For this dataset, the point cloud contained 287579 points.
The supervoxel will be explained in the next section, and
the scale parameter for supervoxel clustering was 20 mm.

3. Segmentation
3.1. Annotation

For segmenting the plant point cloud, we need to give
annotation labels. It is too tedious to put labels on all image
frames, even with image annotation tools, and also, it is hard
to use video annotation tools because tracking occluded ob-
jects in a highly cluttered scene tends to fail. Instead, we
build our own GUI tool for point cloud annotation (Fig. 5).

It is also impossible to assign labels on all points of
point clouds manually. We split the merged point cloud into
nearly equal-sized clusters by the mean shift clustering al-
gorithm [5] like “supervoxels”, and we put an annotation
label to each supervoxel. In the GUI tool, the point cloud

Figure 5. Window capture of the annotation tool. The point cloud
is overlaid on the RGB image. The point cloud is segmented in
supervoxels, whose center points are drawn as circular dots, and
we put labels for each supervoxel by the keyboard input while the
mouse cursor is on the dot. Stem, Leaf, Fruit, and Other classes
are colored in blue, green, red, and yellow, respectively.

is overlaid on the RGB image, and the center points of su-
pervoxels are shown as circular dots on the image as the
control points. These 3-D points are projected on the RGB
image using the camera’s intrinsic and extrinsic parameters.
While the mouse cursor is on a circular dot, the label of the
supervoxel is assigned by the keyboard input.

We put the four labels: Stem, Leaf, Fruit, and Other.
A tomato plant should have only one stem per plant be-
cause unnecessary branches are pruned off in cultivation.
Flower clusters and their remain are included in Stem. A
tomato leaf is composed of several parts: petiole, rachis,
and leaflets, and they are all labeled as Leaf. All fruits
are labeled as Fruit regardless of color. Other things than
the plant are labeled as Other, which includes clips, ropes,
cords, pipes, hooks, chains, boxes, and measurement arti-
facts.

It is usual in many plant factories that there are two rows
of plants on a cultivation bench. Scan from the pathway
contains two layers of point clouds: foreground and back-
ground. We segment these layers by applying the spectral
clustering algorithm [21] with two classes on the supervoxel
centers whose y-coordinates are augmented by multiplying
2. We use only the foreground super voxels for annotation.

3.2. Semantic Segmentation
We apply semantic segmentation on the annotated point

clouds. We follow a PyTorch implementation [23] of Point-
net++ [20]. In this implementation, there are four abstrac-
tion layers for feature extraction, four feature propagation
layers, and two convolution layers (Fig. 6). In an abstrac-
tion layer, the points in the neighborhood are sampled and
grouped to form a feature. The radius of neighborhood r
increases twice in the next abstraction layer. The feature is

Figure 6. Overview of the architecture. The abstraction layers are
composed of sampling and grouping points in the neighborhoods.
The feature propagation layers interpolate the previous layer out-
puts and concatenate with the skipped layer outputs.

interpolated and concatenated in a feature propagation layer
with features derived from a skip connection. These layers
are made four-fold, and the output features are converted to
segmentation by applying two-fold convolution layers.

There are several differences to the base implementa-
tion [23]. For semantic segmentation learning, we cut out
points in the cubic block whose size is D. We choose a
point randomly from the whole scene, then add random
shifts in every XYZ axis by the random value in the range
of [�D/2, D/2], which becomes the center of the block.
Within the block, N (=4096) points are randomly sampled.
We applied random rotation in random orientation with the
angle at most 15° for augmentation.

We prepare the datasets for learning so that the XYZ co-
ordinate values are in meters to make their values are around
1.0. The RGB values are already normalized between 0 to
1. The input data for learning has 9 channels, which is a
concatenation of three components: normalized XYZ co-
ordinates, RGB values, original XYZ coordinates. The nor-
malized XYZ coordinates have the origin at the center of the
block. The original XYZ coordinates help classify location-
dependent objects, for example, hooks at the top and bare
stems at the bottom.

The loss function is the negative log likelihood loss. The
weights are determined by wc = pow((maxc2C hc)/hc,
1/3), where hc is the occurrence of the class c among the
whole classes [23].

For testing, the block whose size is D is swept with at
least D/2 overlap to cover the whole point cloud, and the
class is determined by voting multiple segmentation results.

4. Stem Extraction
As the result of semantic segmentation, we get the point

cloud segmented in four classes. The stem points are not
complete, and we need to interpolate. At first, we remove
isolated noise points from the stem points by applying the
DBSCAN clustering algorithm[7]. Usually, multiple stems
are in a point set, and we built a simple GUI for users to
specify the required stem (Fig. 7), which is different to the
annotation GUI tool. We use s̃l = (s̃x, s̃y, sz)l as the con-

Figure 7. The stem extraction tool. We give the initial state by
clicking a few points by mouse, and it is optimized to fit the stem
as shown by the red curve overlaid on the segmentation result (left)
and on the segmented stem points (middle). The error function is
based on the distance to the stem points (right, ticks are in voxels).

trol points where l signifies the z-level and 0 l < L.
The user samples a few stem points (usually 1-4 points are
enough) by mouse clicks on the x-z projection of the stem
points, and the initial values of the x-y coordinates of the
control points (s̃x, s̃y)l are given by the polynomial inter-
polation of these points at (sz)l. From the initial state, we
optimize the x-y coordinates of the control points (s̃x, s̃y)l
by minimizing the error function:

E({(s̃x, s̃y)l|0 l < L}) =
X

0l<L

min
s2S

d(s̃l, s)

+ ws

X

1l<L�1

ks̃l�1 � 2s̃l + s̃l+1k2 ,

where the first term is the sum over the minimum distance
from each control point s̃l to the stem points s 2 S, and the
second term controls the stiffness of the stem curve. Basi-
cally, the stem is estimated to trace the local minimum of
the distance function to the stem points (Fig. 7 right). The
weight ws is set as 0.01.

An example of the results is shown in Fig. 7 (left and
middle). Figure 7 (right) shows the distance function from
the stem points, where L = 10 with the interval of 50 ⇥ �.
The ticks of the plot are in voxel size � = 5mm, and the
height range is from 0 m to 2.25 m.

5. Experiment
5.1. Sensing

In the experiments, the sensor settings were: for the
stereo module, 1280 ⇥ 720 pixels at 30 fps in 16-bit depth
values; for the RGB camera, 1280 ⇥ 720 pixels at 30 fps
in 8-bit intensity values (Fig. 8). It took 40-50 seconds for
each scan. This sensor’s stereo module didn’t produce all
frames as RGB images, and each scan contains 500-1500
RGB-D frames. In the plant factory (Fig. 1), we captured

Figure 8. The depth and RGB channels of an RGB-D frame.

two rows of cultivation benches. There were 160 plants in
total, and we captured 162 sequences.

5.2. Point Cloud Reconstruction

Each sequence of input RGB-D frames (Fig. 8) were
aligned (Sec. 2.2) and merged (Sec. 2.3) to form a point
cloud. We selected the voxel size as � = 5 mm, and the av-
erage minimum point-to-point distance is about 5 mm. We
cut off the points farther than 1200 mm from the sensor for
alignment. On a notebook PC with an 8-core CPU, align-
ment takes about 5 minutes, and merging takes about 20
minutes with parallel processing.

5.3. Gamma Correction

For proper gain compensation, we need a linear inten-
sity response. The sensor has an option parameter named
“gamma,” but its property is not documented. We did a
simple calibration to linearize the intensity response. We
printed a very small black-and-white random dot pattern
with liner density gradation on a sheet of paper. The dot
size was made smaller than the pixel resolution, and each
pixel should have an average intensity within the pixel. We
captured the pattern for various gamma settings g (100
g 500), and assuming that the gamma is a linear function
like �(g) = �0+g�k, we estimate the parameters so that the
recovered intensities pow(I, 1/�(g)) become linear by the
least square regression, where I signifies the original image
intensity (0 I 1). The optimized result was concisely
approximated by pow(I, 1/(2.5 � g/300)). The “gamma”
option parameter was set as g = 300 in this experiment, and
we could linearize the intensity using �(300) = 1.5.

5.4. Annotation

Using our custom-made GUI tool (Sec. 3.1), we assigned
one of the labels of four classes (Stem, Leaf, Fruit, Other)
on each supervoxel. Among the whole plants, there were
24 plants whose corresponding true leaf areas are known.
We treat the datasets of these plants as the test data. There
were multiple plants within a scanned dataset, and we avoid
using for training the 72 datasets that have overlap with the
test data and 13 bad datasets. The remaining 53 datasets
were used for training. We used annotations of 77 datasets
in total. It takes 10–20 minutes per dataset for annotation.

Figure 9. Number of points used for learning (top), stem IoU and
recall of each test datasets (bottom).

Estimated \ Truth Stem Leaf Fruit Other
Stem 0.552 0.39 0.005 0.052
Leaf 0.032 0.962 0.000 0.005
Fruit 0.459 0.242 0.259 0.039
Other 0.247 0.166 0.010 0.577

Table 1. Confusion Matrix. Each row is normalized so that the
sum is equal to one.

5.5. Semantic Segmentation

For semantic segmentation (Sec. 3.2), we set the block
size D = 0.5m, the neighborhood radius of the first ab-
straction layer r = 5cm, number of points N = 4096, and
the batch size was 16. These parameters were determined
empirically. The number of points in the datasets used for
learning is shown in Fig. 9 (top). Leaf class is the major-
ity, and in addition to the weights defined in (Sec. 3.2), we
doubled the weight for Stem for improving Stem class clas-
sification performance, and the weights for each class were
[4.72, 1.00, 4.12, 2.75] for four classes respectively.

We applied Adam optimizer with �1 = 0.9, �2 = 0.999,

Figure 10. Semantic segmentation results. For each dataset, a pair of plots of annotation (left) and estimation (right) classes are shown.

✏ = 10�8, ⌘ = 10�3, and the weight decay for the L2
regularization is 10�4. We iterated up to 500 epochs, and
this seemed enough for convergence. The IoU and recall of
Stem class in each test data are shown in Fig. 9 (bottom),
and the total confusion matrix of the test data is shown in
Tab. 1. The recall of Stem was about 55%. We use only
Stem and Leaf points in the next step, and the performance
of Fruit is not important. The cause of the low fruit de-
tection rate can be considered due to the sensor property.
The sensor doesn’t use the projected random dot pattern in
a bright environment, and the passive binocular stereo tends
to fail to capture fruits’ spherical shapes, which have nearly
textureless and glossy surface (Fig. 8).

In Fig. 10, we show the semantic segmentation results
with the corresponding annotation. In each segmentation
result, the top and bottom parts are segmented well. We
could find stems hidden in the leaves in the annotation stage,
but they could not be fully detected by semantic segmenta-
tion. Especially, the datasets (p), (s), (u), (v), and (w) lost
the stem severely.

5.6. Stem Extraction

Figure 11 shows the results of stem extraction. As ex-
plained in Sec. 4, the stem was extracted by fitting a curve
with a human-giving initial state, and the result depends on
it. But even for the dataset whose stem points were lost by
the semantic segmentation, the stem is just extrapolated by
the stiffness term and pulled by the points of other stems.
The evidently failed cases can be found for the datasets (p),
(s), (t), (u), (v), and (w) and treated as outliers.

5.7. Leaf Area Estimation
We have only 24 ground truth datasets of leaf area,

and we estimate the extent of the target plant statistically.
Assuming that the leaves spread homogeneously from the
stem, we count the leaf points within the horizontal radius
from the stem. For each quantized radius, we plotted the re-
lationship between the ground truth and the number of leaf
points and evaluated its linearity by the R2 factor. It be-
comes the peak when the radius is equal to 20 cm (Fig. 12).
The failed stem extraction in Sec. 5.6 are treated as outliers
and not included in this computation. It can be observed
that the number of leaf points is linear to the ground truth
leaf area, and we can estimate the leaf area from the number
of leaf points to some extent.

Finally, using the number of leaf points within 20 cm
from the stem, we applied the leave-one-out estimation and
compared it to the ground truth. The standard deviation was
0.16 m2, and the relative error to the average of ground truth
was 0.21.

6. Conclusion
In this paper, we presented an attempt to estimate the

leaf area of a tomato plant in the sunlight type plant factory.
We scanned the plant with an RGB-D sensor, integrated the
scanned data as a uniformly sampled point cloud, applied
semantic segmentation with Pointnet++, extracted the stem
and leaf points, and estimated the leaf area from the num-
ber of leaf points around the stem. The final relative error
was about 20%, which is comparable to the non-destructive
simplified leaf area estimation methods (e.g., estimation
method from the leaf width and length) usually used in real

Figure 11. The stem extraction results. Red curves signify the extracted stems. For each dataset, the stem-only front and side view,
segmentation front, and view images are shown from left to right.

Figure 12. The plot of the R2-score of linear regression of the
number of leaf points in accordance with the radius from the stem
(top left), the number of leaf points within 200mm from the stem
compared with the ground truth (top right). The outliers (Sec. 5.6)
are marked by ’x’, and the plot of the leave-one-out estimation
with the ground truth (bottom). The green dotted lines signify
±20% error bound.

cultivation sites.
In this research, the amount of available data was quite

limited. The ground truth was available only for 24 plants.
We scanned 160 plants, but to avoid the overlap between
training and test datasets, we used 53 datasets for learning.
This amount of data is not enough for end-to-end learning or
the intrinsic segmentation for segmenting individual plants.

We need more data for better results and reliable evaluation.
We used voxel sampled point clouds for processing. The

voxel size was 5 mm, which is not precise, but considering
the sensor’s resolution and accuracy, this is near the lower
bound. There are several possible next steps: for example,
we can replace the sensor with newer ones like compact
LiDARs [12, 16].

In this paper, we rely on only the point clouds, but im-
ages have much resolution than the 3D data. We might be
able to improve the performance with multimodal methods
using point clouds and images. Our annotation on the point
clouds can still be used for image annotation.

The limitation of this work is that we needed to detect
the stem to estimate the extent of the plant, and the problem
is the stem tends to be highly occluded. For the cases where
the stem is completely covered, we need to find another way
to identify the plant extent. In the future, we would like
to make the system much simpler, smarter and reliable for
efficient farming management.

Acknowledgments
This work was financially supported in part by a grant

from commissioned project study on “the research project
for the future agricultural production utilizing artificial in-
telligence,” Ministry of Agriculture, Forestry and Fisheries
of Japan. We thank the National Agriculture and Food Re-
search Organization staff for providing us with opportuni-
ties for experiments and the leaf area data.

References
[1] P. F. Alcantarilla, J. Nuevo, and A. Bartoli. Fast ex-

plicit diffusion for accelerated features in nonlinear
scale spaces. In British Machine Vision Conference,
Bristol, UK, 2013. 2

[2] Pedro Andrade-Sanchez, Michael A. Gore, John T.
Heun, Kelly R. Thorp, A. Elizabete Carmo-Silva, An-
drew N. French, Michael E. Salvucci, and Jeffrey W.
White. Development and evaluation of a field-based
high-throughput phenotyping platform. Functional

Plant Biology, 2014. 1
[3] Jon Louis Bentley. Multidimensional binary search

trees used for associative searching. Communications

of the ACM, 18(9):509–517, 1975. 3
[4] John Canny. A computational approach to edge de-

tection. IEEE Transactions on Pattern Analysis and

Machine Intelligence, PAMI-8(6):679–698, Novem-
ber 1986. 3

[5] D. Comaniciu and P Meer. Mean shift: a robust ap-
proach toward feature space analysis. IEEE Transac-

tions on Pattern Analysis and Machine Intelligence,
24(5):603–619, 2002. 4

[6] Brian Curless and Marc Levoy. A volumetric method
for building complex models from range images.
pages 303–312, 1996. 3

[7] Martin Ester, Hans-Peter Kriegel, Jiirg Sander, and
Xiaowei Xu. A density-based algorithm for discov-
ering clusters in large spatial databases with noise.
In KDD’96: Proceedings of the Second International

Conference on Knowledge Discovery and Data Min-

ing, pages 226–231, August 1996. 3, 5
[8] Alexander Feldman, Haozhou Wang, Yuya Fukano,

Yoichiro Kato, Seishi Ninomiya, and Wei Guo. Easy-
DCP: An affordable, high-throughput tool to measure
plant phenotypic traits in 3d. Methods in Ecology and

Evolution, 2021. 1
[9] Miki Fujita, Takanari Tanabata, Kaoru Urano, Saya

Kikuchi, and Kazuo Shinozaki. RIPPS: A plant
phenotyping system for quantitative evaluation of
growth under controlled environmental stress condi-
tions. Plant Cell Physiol., 59(10):2030–2038, July
2018. 1

[10] Intel. Intel Realsense Depth Camera D435i.
URL: https://www.intelrealsense.com/
depth-camera-d435i/. 2

[11] Intel. IntelRealsense/librealsense: Intel Re-
alSense SDK. URL: https://github.com/
IntelRealSense/librealsense. 2

[12] Intel. Intel® RealSense™ LiDAR Camera L515.
URL: https://www.intelrealsense.com/
lidar-camera-l515/. 8

[13] Dawei Li, Lihong Xu, Chengxiang Tan, Erik D. Good-
man, Daichang Fu, and Longjiao Xin. Digitization
and visualization of greenhouse tomato plants in in-
door environments. Sensors, 15:4019–4051, 2015. 1

[14] Zhenbo Li, Ruohao Guo, Meng Li, Yaru Chen, and
Guangyao Li. A review of computer vision technolo-
gies for plant phenotyping. Computers and Electron-

ics in Agriculture, 2020. 1
[15] Takeshi Masuda. Registration and integration of mul-

tiple range images by matching signed distance fields
for object shape modeling. Computer Vision and Im-

age Understanding, 87(1-3):51–65, July 2002. 3
[16] Microsoft. Azure kinect dk. URL:

https://azure.microsoft.com/en-us/
services/kinect-dk/. 8

[17] Richard M. Murray, Zexiang Li, and S. Shankar Sas-
try. A Mathematical Introduction to Robotic Manipu-

lation. CRC Press, 1994. 3
[18] Richard A. Newcombe, Shahram Izadi, Otmar

Hilliges, David Molyneaux, David Kim, Andrew J.
Davison, Pushmeet Kohli, Jamie Shotton, Steve
Hodges, and Andrew Fitzgibbon. KinectFusion:
Real-time dense surface mapping and tracking.
In IEEE ISMAR. IEEE, October 2011. URL:
http://research.microsoft.com/apps/
pubs/default.aspx?id=155378. 3

[19] Fumio Okura, Takahiro Isokane, Ayaka Ide, Yasuyuki
Matsushita, and Yasushi Yagi. Intelligent Image

Analysis for Plant Phenotyping, chapter Image-based
structural phenotyping of stems and branches, pages
143–154. CRC Press, October 2020. 1

[20] Charles R. Qi, Li Yi, Hao Su, and Leonidas J. Guibas.
Pointnet++: Deep hierarchical feature learning on
point sets in a metric space. In Proceedings of the

31st Conference on Neural Information Processing

Systems (NIPS 2017), Long Beach, CA, USA, 2017.
4

[21] Jianbo Shi and Jitendra Malik. Normalized cuts and
image segmentation. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 22(8):888–905,
2000. 4

[22] Ping Tan, Gang Zeng, Jingdong Wang, Sing Bing
Kang, and Long Quan. Image-based tree modeling.
ACM Transactions on Graphics, 26(3), July 2007. 1

[23] Xu Yan. Pointnet/Pointnet++ Pytorch. URL:
https://github.com/yanx27/Pointnet_
Pointnet2_pytorch. 4, 5

