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Abstract

Roots and their temporal development play an important

role in plant research. Over the decades image-based moni-

toring of root growth has become a key methodology in this

research field. The growing amount of image data is of-

ten tackled with automatic image analysis approaches. In

particular convolutional neural networks (CNNs) recently

gained increasing interest for root segmentation. This seg-

mentation of roots is usually only the first step of an anal-

ysis pipeline and needs to be supplemented by topological

reconstruction of the complete root system architecture.

In this paper we present a comprehensive study of dif-

ferent CNN architectures, loss functions and parameter set-

tings for root image segmentation. In addition, we show

how main and lateral roots can be identified based on the

skeletons of segmented root components as a first step to-

wards topological reconstruction of root system architec-

ture. We present quantitative and qualitative results on data

released in the course of the CVPPA Arabidopsis Root Seg-

mentation Challenge 2021.

1. Introduction

Roots are an important organ of plants. They play es-

sential roles in ensuring secure anchorage and in uptaking

vital nutrients from the soil. Hence, root physiology and

status have a major impact on growth and development of

plants and render them a key topic in plant research. Quan-

titative data about root mass and root system development

over time provide a solid basis for understanding functional

relationships between environmental conditions, plant de-

velopment and the status of ecosystems as a whole [3]. As

roots are the plant organs least accessible, in the beginning

of root studies direct manual measurements from excavated

roots dominated the collection of quantitative data.

Meanwhile image-based techniques are well established.

For experiments in soil minirhizotrons are available which

Figure 1. Left, prototypical root image from one of the challenge

data sets, right, corresponding ground truth annotation with back-

ground in black, lateral roots in white and main roots in gray.

allow for non-destructive acquisition of time series data

of roots as basis for developmental studies [9]. Such im-

age data does not provide enough information to recon-

struct the architecture of the complete root system, but data

is restricted to overall root length or mass in the sample

area. As an alternative, growing plants in culture medium

within transparent plates and regular acquisition of images

from such plates (Fig. 1) has become a popular protocol for

studying the development of complete root systems [1].

Automatic analysis of such data typically subsumes two

analysis stages. In the first stage images are segmented to

separate roots from the image background on the pixel level.

Essentially this allows to estimate root mass. Root topology

is extracted in the second stage where different levels are

considered. Identification of the center pixels of the roots

allow for length measurements. The reconstruction of com-

plete root system architectures subsumes in addition explicit

annotation of branching points, as well as distinction be-

tween the main root (MR) and lateral roots.

Over the decades the methodology for root image analy-

sis has emerged from pure manual image annotation to fully

automatic approaches. During the last years particularly

deep learning with convolutional neural networks (CNNs)

has proven suitable for solving the root image segmenta-

tion task. As all methods based on deep learning, such ap-



proaches strongly rely on a sufficiently large set of anno-

tated training data which often forms a serious bottleneck.

Two data sets of annotated root images were released for

the Arabidopsis Root Segmentation Challenge organized in

conjunction with the 7th Workshop on Computer Vision in

Plant Phenotyping and Agriculture held as part of the ICCV

2021 (for details see Sec. 4). The task of the challenge is

to segment all roots from a given image and to identify the

MR and all lateral roots of individual plants (Fig. 1).

In this paper we present a fully automatic approach for

solving the challenge task. Root segmentation is performed

by applying CNNs to individual images of a time series. We

decided to treat the images of a time series independently,

as for the challenge training data annotations are available

only for few, non-consecutive images of each series. To

subsequently identify the MRs in the segmentation results

we rely on topological analysis of root skeletons extracted

from the segmentation results. Our CNN model with which

we successfully participated in the challenge comprises a

U-Net architecture with VGG16 backbone and was trained

by first applying a loss function combining dice loss and

cross entropy, and then by fine-tuning with focal loss. The

model was selected from pre-studies on the challenge data.

The main contributions of this paper are two-fold. On

the one hand we not only discuss our challenge model and

the results, but extend our pre-studies towards a comprehen-

sive comparative overview of additional architectures and

loss functions for the segmentation of Arabidopsis root im-

ages. On the other hand, we present our approach for post-

processing the segmentation results towards proper recon-

struction of the complete root system architecture (RSA),

focusing on the challenge task of extracting the MRs. Root

segmentation results and outcomes of MR extraction are

comprehensively evaluated quantitatively as well as quali-

tatively on the challenge training and test data sets.

The remainder of this paper is organized as follows.

In Sec. 2 we give an overview of related work before we

present our studies and methods in Sec. 3. Details about the

data sets are provided in Sec. 4, while experimental results

are presented in Sec. 5. A conclusion is given in Sec. 6.

2. Related Work

Deep learning and CNNs became the prevailing

technique in image analysis with the publication of

AlexNet [11] for the task of object classification. In the

following years they have been extended to the task of

semantic segmentation with the proposal of FCN in [13]

and encoder-decoder architectures with SegNet [2] and U-

Net [18]. These architectures have been extended based on

residual-blocks [7], inception modules [24], and the hour

glass architecture [16], see also [5] for an early review.

Besides network architecture another important ingredi-

ent for good performance is training with an adequate loss

function. [8] discuss and evaluate several common ones like

cross entropy and dice loss, and also less common ones like

focal loss. These functions have the drawback to penalize

false positives or false negatives without considering dis-

tances to the nearest annotated and the next predicted fore-

ground pixel, respectively. The Weighted Hausdorff Dis-

tance (WHD) is proposed in [27] to overcome this problem.

The task of segmenting roots from images is often tack-

led with conventional segmentation techniques like inten-

sity thresholding in BRAT [22] or ridge filtering in MyRoot

[6], sometimes still relying on manual user intervention,

e.g., for selecting appropriate threshold values like in EZ-

Root-VIS [19]. Recently CNNs gained larger importance

in this field. SegRoot [25] adopts the SegNet architecture

and applies a dice loss function for extracting roots from

minirhizotron images. [23] build upon the U-Net architec-

ture with a loss combining cross entropy and the dice loss

for the same task. RootNav 2.0 [28] is specifically designed

for assay images using an encoder-decoder configuration in-

tegrating an hourglass network at the interface between en-

coder and decoder. PhenomNet [29] not only tackles the

root segmentation task, but also integrates Recurrent Neu-

ral Networks based on Long Short-Term Memory to cou-

ple phenotypic predictions with genotypic analysis. In [4]

a CNN based on U-Net employing residual blocks is pro-

posed. It applies deep supervision of intermediate results

and adds convolutional layers at the end of the U-Net core.

The separation of roots and background is only the first

step in root image analysis. In many cases subsequent post-

processing steps are applied, e.g., to close gaps and link

segmented components which belong to the same root. In

MyRoot 2.0 [6] a tracking algorithm is implemented which

aims to link all fragments of a root between root tips and

the hypocotyl based on distance heuristics. RootNav [17]

adopts the A∗ search algorithm to extract paths from root

tips to seeds along lateral and MRs. While in the original

paper [17] seeds and tips had to be selected manually by

the user, in RootNav 2.0 [28] these are now automatically

predicted by the CNN in parallel to potential root pixels.

3. Methods

3.1. Semantic Segmentation

For our studies we choose the basic encoder-decoder

variants SegNet and U-Net due to their popularity especially

in the life sciences and their use for the root segmentation

task [23, 25]. They differ mainly in how they incorporate in-

formation from the encoder stage into the decoder. In Seg-

Net, the positions of maximal values selected in the max-

pooling operations are used in the corresponding upsam-

pling step in the decoder to initialize the upsampled feature

maps. The other values are filled with zeros and then in-

terpolated with convolution. In contrast, U-Net upsamples



the last feature map in a resolution level with a trainable

transpose convolution and concatenates the last feature map

from the encoder with the same spatial resolution.

In addition we investigate hierarchical feature integration

(Hi-Fi) proposed in [31] for the task of skeleton detection in

the wild. This can be viewed as an extension of FCN [13]

and Holistically-Nested Edge Detection (HED) [26]. The

latter uses the last feature map of all resolution levels to

compute multiple predictions, the so-called side outputs,

which are subject to intermediate supervision. In addition

they are fused to the final prediction. Hi-Fi proposes a richer

way to incorporate the features of the encoder. First, not

only the last, but all feature maps of each resolution level

are fed into the side outputs. Second, the feature maps are

not directly fused into prediction with a 1×1 kernel, but first

convolved with 3×3 kernels into features maps as a basis

for side output predictions. Third, features from neighbor-

ing resolution levels are combined, which results in Hi-Fi

level 1. This combination of neighboring resolutions may

be recursively repeated yielding further Hi-Fi levels and, as

in HED, all side outputs are supervised. [31] advise to use

one or two levels of the hierarchy. The tasks of edge or

skeleton detection and semantic segmentation share com-

mon challenges. E.g., HED, proposed for edge detection,

was applied to skeleton detection [10, 20, 31]. In previous

studies we found HED suitable for root detection in minirhi-

zotron images. As in addition roots exhibit strong symme-

tries we explore the potential of Hi-Fi for root segmentation.

A second focus in our study are loss functions as they op-

timize different characteristics of the segmentation. These

are the cross entropy (CE) commonly used for semantic seg-

mentation and the dice loss (DI) [14] as the inverse of the

dice score which optimizes one of the evaluation metrics.

In addition we combine DI with CE weighted by 0.3 (Com-

bCED) as suggested in [23] to overcome a drawback of DI

yielding a zero loss if no pixel is annotated as root.

We also use the Weighted Hausdorff Distance (WHD)

defined in [27] as:
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1
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where Y+ is the set of annotated foreground pixels, pf (b)
the probability of pixel b to be predicted as foreground,

Ω the image domain, |Ỹ+| =
∑

b∈Ω
pf (b), d(a, b) the Eu-

clidean distance between two pixels, α a weighting factor,

and dmax the maximal distance between two pixels. The

first term is a proxy to the average distance of predicted

foreground pixels to the nearest annotated foreground pixel.

ε = 10−6 is added to avoid division by zero. The second

term is an approximation of the averaged minimal distance

of foreground pixels to the nearest prediction. Setting α>1
emphasizes the second term with respect to the first one.

The WHD as defined is vulnerable in case no or few pix-

els are annotated as foreground and the majority of pixels

is predicted as background with a large probability. Al-

though this prediction is near the correct answer the first

term yields a large value. We cure this problem setting pre-

dictions pf (b) < 0.1 to zero. If no pixel is annotated as

foreground d(a, b) in the first term is undefined and we de-

fine d(a, b) as the minimal distance of b to the border of Ω
plus one. The second term is defined as zero in this case.

In [27] it is reported that WHD leads to unstable training

and is therefore combined with the patch-based point loss

(PPL) defined as
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∑
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where the windows Ωi,j are a partitioning of the image

domain, and p̃f (b) is the predicted probability pf (b) if

pf (b) > λT , zero otherwise. Thus, PPL compares the

sum of these clamped probabilities and the number of fore-

ground pixels in a window summed over all non overlap-

ping windows. Similar to [27] we use a linear combination

µ ·WHD + (1− µ) · PPL, µ ∈ [0, 1], (3)

as loss function after an initial training, where in our exper-

iments we use CombCED.

In analogy we use the focal loss (FL) [12] as a loss func-

tion subsequent to an initial training of weights in an at-

tempt to improve a pretrained network. FL generalizes CE

by adding a modulation factor:

LFL = −
∑

b∈Ω

(1− pt(b))
γ log(pt(b)), (4)

where pt(b) is the predicted probability for the true class. In

case of γ = 0, FL reduces to CE. FL emphasizes the hard

to predict examples during training.

3.2. Postprocessing and main root extraction

Applying the CNNs to the input images provides us with

binary predictions for root pixels and background. How-

ever, as until now no topological knowledge has been con-

sidered in the segmentation process, roots sometimes de-

compose into multiple connected components. While this

is not a serious problem with regard to overall segmentation

accuracy as, e.g., measured by recall and precision rates,

gaps significantly hamper the extraction of overall root sys-

tem architecture and, with regard to the challenge task, in

particular the extraction of the MR for each plant.

Therefore we use a post-processing pipeline on the seg-

mentation results where we also consider temporal informa-

tion from time series. The post-processing consists of two



main stages. First we aim at closing gaps in roots and recon-

nect branches to the main component of a plant that might

have been detached. Subsequently, assuming that each plant

is now represented by a single connected component, the

MR of the corresponding plant is extracted based on topo-

logical skeleton analysis and graph-based path search. Both

stages rely on the skeletons of the connected components

which are extracted with the algorithm of Zhang et al. [30].

Gap closing and branch reconnection Gaps splitting

the segmentation of a root system can be distinguished into

two main categories: (I) gaps within a stretch of a root, (II)

gaps disconnecting the root system at branching points. We

consider both cases in turn.

Gaps of type (I) are characterized by pairs of end points

in the skeleton where both points are only a short distance

apart from each other and the skeleton segments located

next to the end points do not significantly differ in their

orientations. Thus, we initially locate skeleton end points

as points with not more than one neighboring pixel in the

skeleton. Subsequently all pairs of end points are detected

which satisfy the following three criteria: (i) small distance,

(ii) similar orientation of the skeletons at both end points,

(iii) which are in turn similar to the orientation of the line

connecting both end points. Thresholds for these criteria

are set empirically. To connect such pairs of end points

we apply a Dijkstra shortest path search. To this end we

convert the local image patch around both end points into

a graph representation with the pixels as graph nodes and

their 8-neighbors connected by edges. The weight of the

edges is defined as the response of an anisotropic vesselness

filter measuring the correlation between the local intensity

structure and the theoretical landscape of locally linear root

structures (for more details see [15] where the same idea is

used to close cell contours). If the final path is not longer

than 1.5 times the distance between the end points they are

connected. The width of the connecting segment is derived

from the width of the root segments to be connected.

In case of type (II) gaps typically only a skeleton end

point exists in the detached branch, but not in the root to be

connected to. To check if an end point of a branch should be

reconnected to a nearby root component we estimate the ori-

entation of the final part of the skeleton branch and search

in its direction for nearby root pixels. If at least one pixel is

found within a maximum distance we insert a line segment

and derive its width from the width of the branch.

Main root extraction The root system of an Arabidop-

sis plant consists of a single MR and any number of lateral

roots. According to biological experts there is no clear def-

inition of the MR except that it starts at the hypocotyl and

is usually the longest root. In many images of the challenge

data sets the hypocotyl cannot easily be localized, as it is of-

ten hidden by leaves and their stems. Thus, we define it as

the end or branch point of the skeleton of the plant compo-

nent located topmost in the image. As tip of the MR we use

the pixel of the component closest to the bottom image bor-

der. The MR can then be found as the shortest path between

root tip and hypocotyl applying a Dijkstra path search.

Obviously this approach assumes that each plant is rep-

resented by a single component. In practice this assump-

tion is often not fulfilled as even after gap closing multiple

components may survive for one root system, and further

components may result from clutter or leaves. Hence, to se-

lect a single component per plant we define position priors

for the hypocotyls and restrict locations of tip points with

positions in the previous frame. In all experiments of the

challenge test data set four seeds are initially planted in the

upper third of the images at approximately constant posi-

tions. Thus, we define four regions of interest (ROIs) in the

upper third of the image around the four seed positions and

process each of these ROIs independently. We identify the

largest connected component within the ROI and detect the

MR within this component as described above.

The localization of the tip of the MR as described fails

in some cases. One such situation occurs if the roots of

two or more plants overlap and the corresponding compo-

nents merge. We detect such cases by comparing the size of

the components of each plant between subsequent frames.

In case of overlapping roots the size usually almost dou-

bles and the connected component covers more than one

plant. As a consequence it contains the tip points of several

MRs and the lowest pixel selected as tip may be the wrong

one. We avoid this by enforcing additional constraints on

the tip point of a plant, i.e., enforce a certain maximal dis-

tance from the position in the previous frame. This maxi-

mum distance, however, may lead to cases where no tip is

found at all. This happens if a wrong connected component

was initially selected, e.g., due to clutter in the ROI. In such

cases we process the second largest component which in the

majority of situations is the correct one.

Finally we remove all components which are too small

and/or too far away from any MR component (see Sec. 5.2).

4. Data Sets

We conduct our experiments on the data sets of the Ara-

bidopsis Root Segmentation Challenge 2021. For model

training two data sets with partial annotations were pro-

vided. Due to time constraints we use only the one with

binary labels consisting of 34 video sequences yielding a to-

tal of 1542 images. For 207 images annotations of roots and

background is given, yielding data set Dbin. The challenge

test data set Dtest provided without annotations comprises

22 video sequences with a total number of 933 images.

We randomly partition Dbin into training Dtrain
bin , valida-

tion Dval
bin and test Dtest

bin data with the ratio of 70:20:10. We

crop images to size 512 × 512 pixels with an offset of 384
or to size 256× 256 pixels with an offset of 192.



5. Results

5.1. Semantic Segmentation

Experimental Setup For SegRoot training we use the

SegNet implementation1 and optimizer described in [25].

The U-Net architecture in the original structure and in

the VGG16 structure as well as the Hi-Fi architecture are

our own implementations in PyTorch. Training and test is

based on the code2 used in [23]. We implement FL as well

as WHD and PPL in addition to the existing dice and CE

losses. In PPL we set the patch size to 32, as suggested in

[27], and λT = 0.5 as this is our threshold for prediction.

During training we use the stochastic gradient descent as

optimizer with a momentum 0.99 and weight decay 10−5.

As a result we always choose the epoch with the best vali-

dation results and also test our net on this epoch.

SegRoot The SegRoot network [25] was initially de-

signed for root segmentation in minirhizotron images. Here

we retrain the network from scratch in different configura-

tions. The SegRoot code supports to configure the network

structure, i.e., the number of feature maps in the first convo-

lutional layer (width), which is then doubled subsequent to

each max pooling, and also the number of resolution levels

(depth). In the original work a width of 8 and a depth of 5,

i.e., an 8-5-net, was proposed as best compromise between

network complexity and segmentation performance. Con-

figurations with larger widths showed slightly better perfor-

mance, but generally required more training time.

We tested configurations with widths of 8, 16 and 32, and

depths of 4 and 5. A learning rate lr=10−2 was applied for

the 8-5-net in [25], and for wider configurations lr=10−4

was chosen. For widths of 16 and 32 lr = 10−4 worked

well in our studies, but with lr=10−2 no learning process

was observed on the 8-4- and 8-5-nets, i.e., scores dropped

instantly close to zero and never recovered. Thus, we tested

also learning rates of 10−3, 10−4 and 10−5, but with lr =
10−3 learning neither happened. Batch sizes varied with

available memory from 64 for the 8-5- and 16-4-nets, 32
for the 16-5- and 32-4-nets to 16 for the 32-5-net. SegRoot

requires to use crops of size 256×256. The dice scores for

the various experiments on Dtest
bin are shown in Tab. 1.

The best dice score on Dtest
bin was achieved with the 32-4-

net performing slightly better than 16-4 with lr=10−4 and

32-5 with lr=10−5. Configurations like 8-4 and 16-5 with

lr = 10−4 performed also well. On the contrary, trainings

with lr = 10−5 performed significantly worse, except for

the 32-5-net, but with lr=10−4 no training at all could be

initiated for this net. According to studies on configurations

with a width of 64 in [25] it might be hypothesized that such

network models could boost the SegRoot performance fur-

ther, and we plan to extend our study towards these models.

1https://github.com/wtwtwt0330/SegRoot
2https://github.com/Abe404/segmentation of roots in soil with unet

depth = 4 depth = 5

width lr=10−4 lr=10−5 lr=10−4 lr=10−5

8 0.833 0.614 0.825 0.699

16 0.870 0.776 0.847 0.781

32 0.874 0.817 fail 0.870

Table 1. Dice scores for Dtest

bin for different SegRoot widths (8, 16,

32), depths (4, 5) and learning rates (lr = 10
−4,10−5). For the

32-5-net with lr=10
−4 no learning process could be observed.

U-Net and Hi-Fi As an alternative to SegNet we investi-

gate U-Net and Hi-Fi. As the structure of the encoder resp.

backbone we employ VGG16 [21] and the one proposed in

the original U-Net paper [18]. As loss functions CE, DI, and

CombCED are used, group normalization as opposed to no

normalization, and learning rates of 10−3 and 10−4. Thus,

a total of 48 combinations of hyper parameters result.

First, we conducted 8 replicates of the hyper parameter

combination used for the challenge submission (see below)

to estimate the variance due to random initialization. The

mean dice score on Dtest
bin is 0.910 with a maximal differ-

ence of 0.0020. In the following we consider differences of

the dice score in the second decimal place as considerable

and not to be attributed to random effects.

CombCSD CE dice

0
.7

0
0
.8

0
0
.9

0

group normalization

CombCSD CE dice

0
.7

0
0
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0
0
.9

0

no normalization

CombCSD CE dice

0
.7

0
0
.8

0
0
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CombCSD CE dice

0
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0
0
.8

0
0
.9

0

no normalization

Figure 2. Boxplot of dice scores on Dtest

bin for different backbone

structures, loss functions, and normalizations. Top row: VGG16

structure, bottom row: original U-Net structure.

The boxplots in Fig. 2 show that CombCED yields a bet-

ter dice score in almost all cases compared to CE. This may

be partly attributed to the fact, that we assess performance

with the dice score which is part of the CombCED loss func-

tion. In addition, however, CE is less robust with respect to

hyper parameters which are thus more difficult to tune. DI

can be expected to perform well, as it coincides with the

performance measure. However, training is quite unstable

in this case resulting in a dice score of less than 0.02 for

8 of the experiments. As evident from Tab. 2 only one of



lr CombCED CE DI

U-Net, VGG16 Structure

10−3 0.902 0.882 0.895

10−4 0.903 0.802 0.900

U-Net, Original U-Net Structure

10−3 0.910 0.890 0.890

10−4 0.904 0.809 0.900

Hi-Fi, VGG16 Structure

10−3 0.910 0.870 0.906

10−4 0.893 0.753 0.890

Hi-Fi, Original U-Net Structure

10−3 0.907 0.863 0.902

10−4 0.891 0.764 0.006

Table 2. Dice scores on Dtest

bin using group normalization.

these instable trainings occurs when using group normal-

ization. In contrast we find only one such experiment for

CE, and none for CombCED. In case of successful train-

ing in most cases competitive dice scores result compared

to CombCED, which is true for all experiments with group

normalization and VGG16. We speculate that CE alleviates

the instability of DI in the combination still giving the ad-

vantage of dice as the performance measure.

Next we analyze the effect of group normalization. Fig. 2

indicates that adding normalization tends to produce a more

stable performance. Comparing all experiments with re-

spect to normalization variants, CombCED gives a consid-

erable better dice score in two thirds of experiments and

comparable results otherwise. For CE no clear tendency can

be observed if the single experiment with a lack in proper

learning is omitted. Due to these findings we only consider

training with group normalization in the following.

Tab. 2 shows that using CombCED the four combina-

tions of network type and backbone structure perform com-

parable with the exception of Hi-Fi and lr=10−4. Training

with DI yields comparable results except for one experi-

ment where no learning happened at all. This dice score of

0.90 ± 0.01 for these experiments is the best performance

on our test set we observed. The CE delivers consider-

able worse dice scores for most of the cases, especially for

lr = 10−4. With respect to learning rate lr = 10−3 out-

performs 10−4 for several combinations. However, we feel

that more experiments should be performed and expect that

the appropriate one depends on the other hyper parameters.

In all experiments where learning was successful preci-

sion and recall vary slightly and quite symmetric around

the stable dice score. In Fig. 3 the evolution of performance

during training on Dval
bin is displayed.

In summary, we find a slight advantage of CombCED

loss and group normalization, while both network types –

U-Net and Hi-Fi – and backbone structures perform compa-

20 25 30 35 40

0
.7

0
0

.9
0

Figure 3. Performance on Dval

bin in the course of training. Black:

dice score, red: precision, green: recall.

µ lr = 10
−8 lr = 10

−9 lr = 10
−10

0.4 0.846/0.883/0.864 0.859/0.886/0.872 0.862/0.896/0.879

0.5 0.844/0.845/0.845 0.864/0.888/0.876 0.862/0.895/0.878

0.6 0.818/0.601/0.693 0.863/0.891/0.877 0.862/0.896/0.879

Table 3. Test results on training with a linear combination of

WHD and PPL with varying weighting factor µ as loss function

and different learning rates. For lr = 10
−8, 10−9 and 10

−10

recall/precision/dice are given.

lr Recall Precision Dice

10
−7 0.856 0.946 0.899

10
−8 0.889 0.929 0.908

10
−9 0.907 0.914 0.910

10
−10 0.908 0.912 0.910

Table 4. Test scores for focal loss with γ = 1.0 trained on pre-

trained weights with different learning rates.

rable. Obviously, still more combinations of hyper param-

eters could be examined. However, we speculate that no

significant improvements may be achieved especially tak-

ing ambiguities of groundtruth annotation into account, see

also “Qualitative results” below.

WHD and PPL loss We employ a linear combination

of WHD and PPL to train a U-Net with the VGG16 struc-

ture which was pretrained using CombCED, lr = 10−4 and

group normalization. Due to memory limitations caused by

WHD crops sized 256 × 256 pixels are used and α is set

to 4. We train 15 epochs and then choose the epoch with

the best validation dice score for testing and present results

in Tab. 3. Training with lr = 10−9 and lr = 10−10 results

in a slight decrease of the dice score compared to the pre-

trained network and a slight imbalance between precision

and recall developments. Using lr = 10−8 intensifies this

effect especially with increasing µ from 0.4 to 0.5 and 0.6.

To summarize, at least based on these three performance

metrics WHD does not give an improvement, but rather a

decline in performance. Potential improvements with re-

spect to the aim of geometry-awareness are hard to quantify

and need to be scrutinized more carefully.

Focal loss As a second loss to further train the same

U-Net with VGG16 structure we use the focal loss. In

Tab. 4, we show recalls, precisions and dice scores for dif-

ferent learning rates. With respect to these performance

measures lr = 10−10 and 10−9 are obviously too small



to make a difference. With the increase of the learning rate,

precision and recall diverge with considerable higher preci-

sion while reducing the recall. This leads to an insignificant

change of the dice score. With lr = 10−7 the imbalance

of recall and precision further increases and the decrease of

the dice score gets considerable. Whether this increase in

precision for the price of smaller recall is an advantage and

if so to which degree is to be answered by the application.

Qualitative results For our challenge results we choose

the U-Net with VGG16 structure, CombCED, lr = 10−4,

and group normalization due to best performance in our pre-

liminary tests on Dtest
bin (data not shown). After 40 epochs

we continued training with FL setting γ = 1.0 using lr =
10−8 as visual inspection indicated superior performance

on Dtest. We observed that including training with FL de-

creases false positives (FPs) in the leaf regions. While it

also induces more false negatives (FNs) in root gaps this is

at least partially compensated by gap closing in the post-

processing stage. Note, that we trained using crops of size

256 × 256 during the preliminary tests, thus the perfor-

mances given in Tab. 2 and 5 slightly differ.

Qualitative aspects of the results achieved with this net-

work are discussed next. While the roots are usually quite

well segmented in the middle and lower parts of the im-

ages, errors seem to appear more frequently in the upper

parts containing the leaves. To validate this quantitatively,

we evaluate the region at the top including most leaves and

the rest of the images separately. The leaf region is sized

2000× 645 pixels and located with its top left corner at po-

sition (620, 0). In Tab. 5 recalls, precisions, and dice scores

are given.

Recall Precision Dice

Image complete 0.884 0.940 0.911

Leaf region 0.844 0.912 0.879

Non-leaf region 0.902 0.951 0.926

Table 5. Evaluation results on leaf and non-leaf regions in Dtest

bin .

Performance is best in non-leaf regions and outperforms

all scores on the complete images. For the leaf regions per-

formance significantly drops compared to the non-leaf re-

gions, but also with regard to complete images, e.g., the dice

score drops from 0.926 and 0.911, respectively, to 0.879.

Thus, improving segmentation in particular in leaf regions

seems to be promising for boosting segmentation quality.

Given the above observations we further investigated

root segmentation in leaf regions by visual groundtruth

comparisons. It turns out that root annotations seem incon-

sistent sometimes which occasionally causes errors with re-

gard to groundtruth although the segmentation appears rea-

sonable according to the image data. First, roots covered by

leaves are sometimes annotated as foreground, sometimes

A B C D

Figure 4. Examples for inconsistent annotations of roots covered

by leaves (columns A and B), and examples for rough hypocotyl

localization (columns C and D). Top row: input images, mid-

dle row: groundtruth, bottom row: overlay of our segmentations

(white: true positive, red: FP, blue: FN).

not. For the samples in Fig. 4 our network predicts parts

of the roots behind the leaves, which for the example in the

left column (A) results in FNs as well as TPs, while for

the example in the second column (B) FPs result. Second,

the hypocotyl position is sometimes very roughly localized

so that parts of the stem are marked as root. In Fig. 4,

third column (C), the hypocotyl is properly localized and

our segmentation is consistent with the annotation, while in

the forth column (D) parts of the stem are also annotated as

foreground which we miss in our segmentation.

Additionally, in some images there are spurious pixels

annotated as foreground distant to the nearest root system.

While these incorrect annotations have only weak impact

on the dice score the effect on the Hausdorff Distance, one

of the challenge metrics, may be considerable.

5.2. Root Segmentation Challenge

According to the challenge organizers our CNN de-

scribed in the previous paragraph achieved a dice score of

0.761 and completeness and correctness scores of 0.894
and 0.955, respectively, on a subset of 132 images of Dtest

which were used for producing the challenge results. Com-

pared to a human annotator who provided annotations for

comparison and achieved a dice score of 0.802 with com-

pleteness and correctness scores of 0.957 and 0.948, respec-

tively, this is only slightly worse. However, if we compare

to the dice scores on Dtest
bin of roughly 0.91 that we observed



a) b) c)

d)

e) f) g)

Figure 5. a), Sample segmentation result on Dtest. Tip segments of the lateral roots are frequently missed (red: TP of MRs, green: TP of

lateral root). Image courtesy to the Root Segmentation Challenge Team. b)-g), examples for errors in MR root segmentation according to

our own judgement of groundtruth (orange: TP, yellow: FN, purple: FP). For further details refer to the text.

during training of our model, the challenge results are sig-

nificantly worse. The primary reason for these large devi-

ations seem to originate from the fact that we often miss

larger parts of lateral root tips as shown in Fig. 5 a. This

could point to significant differences in image characteris-

tics between our training data Dbin and the test data Dtest.

Our post-processing stage for extracting the MRs relies

on several empirically chosen parameters which were set

rather liberal. As the challenge evaluation metrics consid-

ers the total number of detected components, our intention

was to reduce the number of components as much as pos-

sible while accepting some small erroneously closed gaps.

Hence, we extract paths between end points with a max-

imum distance of 40 pixels and a maximum deviation in

orientations of 50◦. For reconnecting branches the maxi-

mal distance is set to 20 pixels. After extracting the MR we

remove all components smaller than 75 pixels, components

smaller than 250 pixels if more distant than 100 pixels to all

plant components, and components smaller than 500 pix-

els if more distant than 350 pixels. This allows to eliminate

clutter, but keep branches and other root parts that could not

be linked to the main component of a plant.

We performed a thorough analysis of the quality of our

MR extraction by visually inspecting all 933 images of

Dtest. In 17 out of the 22 video sequences almost 90%
of the MRs seem to be identified correctly. This is also con-

firmed by our challenge results where we achieve a com-

pleteness of 0.918 and a correctness of 0.952 on the MR

pixels. If MR extraction fails to a large extent this is mostly

attributable to one of three typical issues. In the early im-

ages of a video sequence where plants start to grow it is

often hard to distinguish between small components result-

ing from clutter and correct root components (Fig. 5 b).

From our subjective assessment and without knowing the

groundtruth we may sometimes miss small roots and MRs

in the first images of a sequence. Likewise, sometimes

wrong components are selected as root components lead-

ing to MRs located in noise components. A third more

serious source of errors are path errors where the correct

component is traced, however, the MR path includes wrong

root segments. This mainly happens at the top or bottom

of root components if the hypocotyl or tip point is wrongly

detected, e.g., due to the roots growing out of the image or

plate, or the seed points and roots being covered by parts

of a leaf or stem (Fig. 5 c, d). In some rare cases the MR

path is wrongly extracted due to ambiguities in the image

data (Fig. 5 e,f) where it is hardly possible to correctly trace

the MR without considering additional temporal informa-

tion. Including such data in MR extraction would be one

of the most promising directions for improving the qual-

ity of MRs. Anyway, most of the MR errors due to these

issues affect only small portions of the MR. In three video

sequences, however, MR extraction fails seriously for a cou-

ple of images. In these sequences components for different

plants merge and the path extraction in parts follows roots of

the wrong plant (Fig. 5 g). Here also temporal information

and path alignment between successive time points might

help to extract MR paths more robustly.

6. Conclusions

CNNs are a common approach for semantic segmenta-

tion and have also gained interest to segment root images.

Here we present our approach for the segmentation task of

this year’s CVPPA Arabidopsis Root Segmentation Chal-

lenge. In general, we achieve fair segmentation scores and

particularly succeed in identifying the main roots, while

complete segmentation of the tips of lateral roots remains

challenging. Thus, our study on alternative CNN architec-

tures, loss functions and parameters could guide the devel-

opment of more powerful models. Together with consider-

ing additional temporal information from time series in the

post-processing stage this may lead to further performance

boosts and foster progress in root image segmentation.
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