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Abstract

Convolutional neural networks (CNN) are increasingly
being used to achieve state-of-the-art performance for vari-
ous plant phenotyping and agricultural tasks. While con-
structing such CNN models, a common problem is over-
parameterization, which may lead to a model becoming
overfit on a training dataset. This problem is particularly
relevant for plant datasets with limited variation and/or
small samples sizes. Inspection of the loss and accuracy
curves is a common way to detect overfitting in a CNN
model, but it provides little insight into how the model could
be improved. There are several reasons contributing to
the overfitting of a CNN model; however, in this paper, we
aim at explaining overfitting in a CNN classification model
by analyzing the features learned at various depths of the
model. We use three plant phenotyping datasets in our ex-
perimental studies. Our comparative analysis between the
visualizations of the feature maps obtained from overfit and
balanced models reveals that the image background often
influences an overfit model’s behavior. Researchers with
limited deep learning domain knowledge often attempt to
build deeper layer models with the hope of improving per-
formance. Using Guided Backpropagation, we show how
the pairwise similarity matrix between the visualization of
the features learned at different depths can be leveraged to
pave a new way to potentially select a better CNN model by
removing redundant layers.

1. Introduction
The ability of deep learning to extract complex features

from a large amount of data [28] has motivated experts from
agriculture [8, 48] (i.e., precision agriculture, crop breed-
ing, plant phenotyping) to adopt deep learning approaches.
However, plant image datasets often have different char-
acteristics as compared to general image datasets, such as

small sample sizes, limited variation, highly self-similar
foreground objects, and highly simplified backgrounds.
Therefore, when used as a “black box” [44, 32], deep learn-
ing models for plant datasets may perform poorly. To im-
prove the trustworthiness of models and to design them ef-
fectively for the unique challenges of specialized datasets,
many recent studies have focused on explaining the learning
and prediction of deep learning models [29, 44].

Convolutional neural networks (CNN) are the most
widely used type of deep learning models in image-based
plant phenotyping. They can learn features adaptively from
the images in different spatial resolutions. However, when
designing a CNN model, a common phenomenon is model
overfitting. An overfit model can approximate or memorize
the training in a variety of ways to predict the output and
thus fails to generalize to unseen examples in the testing
data [34]. A common way to evaluate a model’s perfor-
mance and detect overfitting is by inspecting accuracy and
loss curves [16, 18], but this does not provide insight into
what and how much a model is learning nor does it allow
a practitioner to understand which features or part of the
image contributed to the model’s prediction.

To explain the learning of CNN models, researchers have
proposed different feature-map visualization techniques [5,
26, 42, 35, 40]. Although feature-map visualization ap-
proaches have been successful in explaining which image
features are learned by a model, to the best of our knowl-
edge, such visualizations have yet to be used to detect or
explain the behavior of overfit CNN models. Furthermore,
there have been few attempts to analyze overfitting in CNN
models used for image-based plant phenotyping tasks that
is understandable by a researcher without the deep learning
models’ domain knowledge.

In this study, we focus on the plant phenotyping task of
plant species classification, which is relevant in digital agri-
culture, e.g. precision herbicide application [47], and is a
popular task for employing CNN models [12, 4]. We exam-



ine the features learned by the intermediate layers of CNN
classifiers to understand overfit models’ behavior and the
contribution of images’ background in overfitting. To exam-
ine how the CNN models learn in various conditions (overfit
or balanced), we use Guided Backpropagation (GBP) [42]
to visualize the features being learned at different layers of
the CNN models. In addition to examining the model be-
havior, we explore whether the GBP-based feature visual-
izations could be leveraged to detect overfitting and provide
guidance to select a CNN model with appropriate depth.

There are two main contributions of this study. First, we
visualize the intermediate layers of different CNN models to
investigate whether there is a difference in the learned fea-
tures of an overfit model and a balanced model (i.e., a model
which neither overfit nor underfit). Our experimental results
with plant classification datasets show that the image back-
ground features may have more influence on model predic-
tion for overfit models than the balanced models. Second,
we propose a novel SSIM-based evaluation technique that
relates overfitting to the depth of the model and provides an
intuitive way to understand the differences between overfit
and balanced models. Here SSIM refers to a measurement
of the similarity between two feature map visualizations.
Our analysis shows that in a model with a large number of
convolutional layers, the features learned in the initial lay-
ers are more diverse than the features learned in the deeper
layers. We discuss how this phenomenon may help detect
potential overfitting in the CNN models or to select a better
model by estimating an appropriate model depth.

2. Related Studies
Visualization for CNN models. A rich body of research

has examined how changing the intensity of the pixels may
change a CNN classifier’s prediction [42, 41, 51]. This gave
rise to deconvolutional networks (Deconvnet) [51] that pro-
vide insight into the function of a CNN classifier’s inter-
mediate layers by modifying the model’s gradient and dis-
playing the visual patterns in the input image that generated
the activations. Zhou et al. [52] proposed class activation
mapping (CAM), where convolutional and average max-
pooling layers replace the fully connected layers in a CNN
image classifier, which helps achieve class-specific feature
visualization. Gradient-weighted Class Activation Mapping
(Grad-CAM) proposed by Selvaraju et al. [39] is an exten-
sion of the CAM that creates a class-specific heatmap of the
objects in the input image contributing to the prediction by
using the weights and activations of a trained CNN model.

There have been several attempts that deviate from de-
convolutional networks. Simonyan et al. [41] used the gra-
dient of a CNN model’s output with respect to the input
image’s pixel intensities to generate saliency maps. In a
perturbation-based forward propagation approach, Zintgraf
et al. [53] analyzed the difference in prediction by marginal-

izing each input patch and creating saliency maps for each
instance of a CNN image classifier. In PatternNet [24], the
authors trained a linear signal estimator on top of a non-
linear neural network to visualize the relation between the
neural network model’s signal and attributed pattern.

Explainable Models in Plant Phenotyping. Several
recent studies leverage deep learning for plant phenotyp-
ing tasks [33, 45, 20]. However, explainable deep learn-
ing models in plant phenotyping still remain to be an active
field of research with lots of scope for improvement [8].
Ghosal et al. [17] proposed a novel framework to identify
the stress regions on a plant leaf. They visualized feature
maps in various layers that detected the stress regions and
the output of the framework was the summation of the fea-
ture maps. Nagasubramanian et al. [31] used a saliency
map based visualization technique to detect the hyperspec-
tral wavelengths that is responsible for the models’ perfor-
mance. They trainied DenseNet-121 to classify stress levels
in Soybean leaf and used different visualization techniques
to visualize the parts of the leaf that contributed to the mod-
els’ decision. They showed that even when the model mis-
classifies an image, it still detects the correct stress region.

Dobrescu et al. [10] showed that the model always looks
at the leaves in the image in the CNN-based plant classi-
fier. Dobrescu et al. extended their work, and in [11] they
used layerwise relevance propagation and GBP to explain
the learning of intermediate layers of the CNN model count-
ing the leaves in an image. The authors showed that only
the object’s edges contribute to the model prediction, and
covering the object’s area does not affect the results. Escor-
cia et al. [13] studied the visualization of the leaf features
and found the existence of attribute-centric nodes, which,
rather than learning attributes, learns to detect objects. In a
more recent work Lu et al. [25] proposed an explainable leaf
counting framework. They used guided upsampling and
background suppression to improve models’ performance.
However, their explanation was limited to the visualization
of the instances that was responsible for the count.

Overfitting in Deep Learning. Toneva et al. [43] ex-
plained the learning of the CNN models in terms of forget-
ting patterns, where at some point during the training, the
model correctly predicts an example, but eventually, it is
misclassified. They experimented with several benchmark
datasets and empirically proved that some examples are for-
gotten more frequently than others. Omitting such exam-
ples from the training dataset does not affect the model’s
performance. Arpit et al. [3] studied overfitting in deep
learning models by examining the model’s performance on
random labels and true labels. They found that overfitting
depends on the model architecture, optimization process,
and data itself. They also concluded that deep learning mod-
els initially tend to learn patterns rather than memorize in-
put samples and corresponding labels. Feldman [14] took



a different approach and demonstrated that when there are
numerous instances of rare examples in the dataset, the deep
learning models must memorize the labels to achieve state-
of-the-art performance. Feldman and Zhang [15] showed
that along with memorizing outliers, the deep learning mod-
els also memorize training examples and if there are testing
examples similar to it and hence overparameterized models
perform extraordinarily.

Nagarajan and Kolter [30] showed that the weight norms
of the model increase with the number of training exam-
ples. Due to the weight norms, the bounds increase with
the increase of training examples of small batch sizes, and
the generalization error decreases. Rice et al. [36] proposed
that overfitting affects the model’s performance in an adver-
sarial network and observed that early stopping outperforms
other methods. Salman and Liu [37] claimed that overfitting
is caused due to the continuous update of a deep learning
model’s gradient and scale sensitiveness of the loss func-
tion. They also proposed a consensus-based classification
algorithm for limited training examples.

In this paper, we complement these results by systemati-
cally analyzing the visualizations of the features learned by
an overfit CNN classification model.

3. Technical Background
Guided Backpropagation. The GBP is a gradient-

based visualization technique that visualizes the gradient
with respect to images when backpropagating through the
Relu activation function [42]. GBP allows the flow of only
the positive gradients by changing the negative gradients’
values to zero. This allows visualizing the image features
that activate the neurons. Let f be the feature map of
any layer l then the forward pass is f l+1

i = Relu(f l
i , 0).

Since GBP only allows the flow of positive gradients, the
backward pass of the GBP is Rl

i = (f l
i > 0) · (Rl+1

i >
0) · (Rl+1

i ), where R is an intermediate result on the calcu-
lation of the backpropagation for layer l. The final output
of the GBP is an image of the same dimension as the input,
displaying the features of the input image that maximized
the activation of the feature maps. A major advantage of
GBP is that it works for both convolutional layers and fully
connected layers. Figure 1 shows some examples of the vi-
sualization generated by GBP for the Weedling dataset us-
ing ResNet-50 [21]. The grey color in the output of the GBP
images (Figure 1) represents that the features in those posi-
tions of the input image do not contribute to the prediction.

Structural Similarity Index Measure (SSIM). The
SSIM is a measurement of the similarity between two im-
ages [22]. To measure the SSIM, the image is divided into
different windows of the same shape, and the similarity
(based on mean and variance) of different windows are av-
eraged to calculate the final SSIM. An SSIM value ranges
from 0 to 1, where a value of 0 indicates that the images are

very dissimilar, and an value of 1 represents that the image
is highly similar. We used the SSIM function available in
the python library skimage to compute the SSIM values [46]

4. Hypothesis
In a CNN, it is expected that the convolutional layers

will learn features from the foreground objects in images
that are being classified. The background features are con-
sidered irrelevant, and often these features are not consistent
in the images. One of the expected behaviors of an overfit
model is that it extracts some features from the background
of the image. As a result, it performs well for the training
images but fails to classify the testing images due to the ab-
sence of the features that were present in the training set.
Although this is widely believed, no formal exploration has
been done in the plant phenotyping context. We thus ex-
amine the following hypothesis, which will potentially help
elucidate overfitting behavior of a model from the feature
visualizations of its different layers.

H1: An overfit model learns from the background of the
images.

Models with a large number of layers have a very high
representational capacity, and therefore tend to overfit on
training sets with small number of samples. In such a
case, features learned in deeper layers may not be useful
for learning the task due to over capacity in the model. So
we explored the following hypothesis.

H2: In a model with a large number of convolutional
layers, the feature visualizations obtained from the shallow
layers are more diverse than those from the deeper layers.
Furthermore, the diversity of the feature visualizations at a
deeper layer is larger in a balanced model compared to those
in an overfit model.

5. Methodology
We use the GBP approach to visualize the features

learned by the intermediate layers of a CNN (e.g., see Fig-
ure 1). For every layer, GBP creates an RGB image with the
same shape of the input image representing the learned fea-
tures. Figure 2 depicts pairwise SSIM matrices for ResNet-
50 model on different datasets, i.e., each entry (i, j) denotes
the SSIM value between the GBP visualizations obtained
for the ith and jth convolutional layer of ResNet-50. Here
a darker red indicates higher SSIM. From the color-coding,
we can observe that the pairwise SSIM is much lower at the
initial layers compared to the layers at a deeper layer. This
inspired us to find a way to separate the initial (dissimilar)
layers from the later (similar) layers. Let L1, L2, ..., Ln be
the GBP visualization for different convolutional layers of
a CNN model with n convolutional layers. The intuition is
that the number k, where 1 ≤ k ≤ n, with the best sep-
aration between {L1, . . . , Lk} and {Lk+1, . . . , Ln} would



Figure 1. Visualization of the learning of the intermediate layers of ResNet-50 using GBP for Barnyard Grass of the Weedling dataset [6, 7]

suggest a reasonable depth for the model to have a good
performance.

Given a number k (i.e., a cut position), we first define a
SSIM cut value Ck to obtain an estimation of how good the
cut is for the value k. We define Ck to be the mean pairwise
similarity between {L1, . . . , Lk} and {Lk+1, . . . , Ln}:

Ck =
1

k(n− k)

k∑
i=1

n∑
j=k+1

si,j ,

where si,j is the SSIM between Li and Lj . In the rest
of the paper, we will refer to the function Ck with respect to
k as the SSIM cut curve. If the hypothesis H2 holds, then
one can expected the SSIM curve to have a sharp positive
slope for low values of k, whereas the slope would flatten
for higher cut positions. The cut position where the SSIM
cut curve starts to flatten rapidly (elbow of the curve) is ex-
pected to provide us with the required depth estimation.

We can observe this phenomenon better by examining
the rate of change, as follows. Let Mi be the sum of the
SSIM values of Li with all other layers. Then Ck can be
rewritten as Ck = 1

k(n−k)

(∑k
i=1 Mi −

∑k
i=1

∑k
j=1 si,j

)
.

If the curve appears to be flat around the middle cut posi-
tions, i.e., when k ≈ (n−k), then ∆Ck = Ck+1−Ck = 0. In
other words, we will have ∆Ck ≈ Mk+1−2

∑k
i=1 si,k+1 =

0, and hence
∑k+1

i=1 si,k+1 = 1
2Mk+1. Thus the similarity

of Lk+1 with the earlier layers {L1, . . . , Lk} will be equal
to its similarity with the rest of the layers {Lk+1, . . . , Ln}.

6. Datasets
The use of deep learning in plant phenotypic tasks are

gradually gaining popularity [1, 45, 38, 2], and the dataset
plays a vital role as it contains a large amount of noise
representing the real-world scenarios. Manually measuring
the plant traits is a time-consuming process, which is also
prone to error. Image-based automated plant trait analysis

Figure 2. SSIM matrix (si,j) generated with GBP images for (a)
Barnyard Grass of the Weedling dataset (b) Apple leaf of the Plant
Village dataset using ResNet-50. A darker red indicates higher
SSIM.

using deep learning can help overcome these drawbacks [1].
However, most of the studies explaining the deep learning
models use benchmark datasets (e.g., MNIST [9], Fashion-
MNIST [49], and so on), and very few studies have at-
tempted to explain the learning using a plant dataset [11].
Analyzing the results using plant datasets instead of the
benchmark datasets will help us understand how the deep
learning models are performing on dataset where the pro-
cessing of the data can not be controlled and much more
noise is present in the background of the images.

We used three plant datasets: Weedling dataset [6, 7],
Plant Village dataset [27], and Plant Seedling dataset [19]
which are commonly used for creating deep learning mod-
els for plant phenotyping tasks. For all the dataset, 80% of
the available was used for training and 20% for testing.

In the Weedling dataset, there are RGB images of Barn-
yard Grass, Bean, Canola, Dandelion, Soybean, Canada
Thistle and Smartweeds, and Wheat, which are taken in
a controlled environment from different distances and an-
gles. Researchers used the EAGL-I system to capture the
images by attaching a camera to a robotic arm and placing
the plants in front of a blue screen. The system automat-
ically captured, cropped, and labeled the images to gener-
ate the dataset representing a single plant in every image.
This dataset consists of 80407 training and 23535 testing



images, of which 34666 are publicly available at this time
at Dryad [7].

The Plant Village dataset was created by taking RGB im-
ages of nine classes of leaves, i.e., Apple, Blueberry and
Cherry, Corn, Grape, Orange, Peach and Pepper, Soybean,
Strawberry and Squash, and Tomato. We randomly selected
training and testing images and ended up with 28693 train-
ing images and 6892 testing images.

The Plant Seedling dataset has 4739 RGB images be-
longing to twelve species at several growth stages. We ran-
domly selected 3761 training and 978 testing images.

7. Deep Learning Models
ResNet-50: In this study, we used the ResNet-50 model

with random weight initialization and adam optimizer as the
optimization function. We also replaced the top layer of the
model with a fully connected layer with Softmax activation
function and neurons representing the number of classes for
the classification. We trained the model for 100 epochs and
only used the model with the highest testing accuracy.

2-Conv-ResNet: Keras ResNet-50 model is an imple-
mentation of the architecture proposed by He et al. [21],
where the authors used five convolutional blocks. However,
we also used a smaller version of the ResNet-50, where we
only used the layers in Conv1 and Conv2_x (see Table 1, He
et al. [21]). Apart from discarding the convolutional blocks
Conv3_x, Conv4_x, and Conv5_x, the rest of the architec-
ture remained the same. We used this 2-Conv-ResNet to see
whether decreasing the depth helps avoid overfitting.

ResNet-50-10% and 2-Conv-ResNet-10%: In an at-
tempt to create overfit models for this study, we trained the
ResNet-50 and 2-Conv-ResNet on 10% training data for the
Weedling and Plant Village dataset; but we left out the Plant
Seedling dataset due to its small size.

Shallow CNN: Along with the ResNet-50, we also used
two shallow CNN models for our experiments: one with
6 convolutional layers and the other with 13 convolutional
layers, which we named Shallow CNN, 6 Layers and Shal-
low CNN, 13 Layers, respectively. In the shallow CNN
models, we only used a combination of convolutional lay-
ers and avoided using the residual connection. The purpose
of these models is to examine whether the observations ob-
tained from the comparative analysis between ResNet-50
and 2-Conv-ResNet also hold for shallow CNN models.

For the shallow CNNs, we used categorical cross-
entropy as the loss function, random weight initialization,
and adam optimizer to optimize the models. Similar to
ResNet models, we trained shallow models for 100 epochs
with a minibatch size of 16, and chose the model with maxi-
mum testing accuracy. While training the shallow CNNs on
the Weedling dataset, we resized the images to 512 × 512.
For the other datasets, the size of the images was 224×224,
as it is required for the ResNet models. We used vary-

ing zoom range, image flipping, distorting images along an
axis (shear angle) for data augmentation, and added an addi-
tional batch of augmented images during each epoch. The
model architecture and more details of the shallow CNN
models are in the supplementary document1.

The training and testing accuracy of different models on
the different datasets is in Table 1. If the difference be-
tween training and testing accuracy was more than 10%,
we considered the model an overfit model; otherwise, we
considered it a balanced model. For the Weedling and
Plant Village dataset, both the ResNet-50-10% and 2-Conv-
ResNet-10% were overfit. All the CNN models for the Plant
Seedling dataset were overfit except the shallow CNN with
13 convolutional layers, which had a very poor accuracy in-
dicating the model was not optimized for the classification.

Table 1. Performances of different models for various datasets.
Dataset
Name

Model
Name

Training
Accuracy (%)

Testing
Accuracy (%)

Weedling ResNet-50 98.70 96.70
ResNet-50-10% 99.89 50.70
2-Conv-ResNet 99.88 95.53

2-Conv-ResNet-10% 99.89 52.10
Shallow CNN,

6 Layers 94.00 89.60

Shallow CNN,
13 Layers 96.23 95.45

Plant
Village ResNet-50 98.59 98.04

ResNet-50-10% 87.99 77.93
2-Conv-ResNet 99.25 99.17

2-Conv-ResNet-10% 90.91 82.57
Shallow CNN,

6 Layers 98.26 96.46

Shallow CNN,
13 Layers 96.96 96.46

Plant
Seedling ResNet-50 91.26 81.90

2-Conv-ResNet 85.16 68.75
Shallow CNN,

6 Layers 90.51 76.79

Shallow CNN,
13 Layers 68.41 69.22

8. Result and Discussion
8.1. Learning of Intermediate Layers

A CNN model is expected to perform better when it
extracts features from the foreground of the images [50].
Hence we first examined GBP visualization of the features
being learned by the intermediate layers in various models.

Figure 3 shows the GBP visualization of the last con-
volutional layer of different CNN models for the Barnyard
Grass of the Weedling dataset. From Table 1, we can see
that both the ResNet-50-10% and 2-Conv-ResNet-10% are

1https://github.com/SakibMostafa/CVPPA_PID_
0041.git



Figure 3. GBP visualization of the last convolutional layer of different CNN models for the Barnyard Grass of the Weedling dataset.

Figure 4. GBP visualization of the last convolutional layer of different CNN models for the Apple leaf of the Plant Village dataset.

Figure 5. GBP visualization of the convolutional layers of the Black grass of the Plant Seedling dataset for Shallow CNN, 13 Layers.

overfit models. Figure 3 reveals that an overfit model may
fail to extract relevant features. In particular, the 2-Conv-
ResNet-10% learned features from the image background.
For ResNet-50-10%, the background’s contribution is not
prominent, but it could not properly extract features from
the top left leaf and bottom-right leaf. Although the model
did not extract all the relevant features, it still achieved
99.89% training accuracy, which indicates that the model
might be relying on the features in the background of the
training data. However, due to the absence of the back-
ground features in the Figure 3 (b), hypothesis H1 remains
inconclusive.

Figure 4 shows the GBP visualization of features learned
by the last convolutional layer of different CNN models for
the Plant Village dataset. The background of the images in
this dataset consists of a grainy texture, e.g., see Figure 4.
Both ResNet-50-10% and 2-Conv-ResNet-10%, which are
overfit models, extracted features from such grainy pixels.
This supports the observation of the Weedling dataset. The
2-Conv-ResNet had the highest classification accuracy. An-
alyzing the output shows that the model extracted features
from the edge of the leaf, and very little contribution of the
background is present. This is consistent with the finding of
Dobrescu et al. [21], where covering the leaf areas did not
affect the performance of regression neural networks.

For both datasets, the Shallow CNN with 6 Layers
and Shallow CNN with 13 Layers were balanced models.
They achieved reasonable performance, and the influence
of background features appeared to be smaller when com-
pared with the overfit models.

8.2. Contribution of Model Depth to Performance

When designing a CNN model, a common practice is
to increase the depth of the model to achieve better perfor-
mance. In this experiment, we studied whether increasing
the depth of the model helps learn better features. For every
class in a dataset, we randomly selected an image from the
testing set and calculated the SSIM cut values for the im-
ages (see Section 5). Next, for every layer of a CNN model,
we averaged the SSIM cut values over all the images. Thus
for every model, we ended up with an SSIM cut curve.

The SSIM cut curve resembles the ‘elbow method’, com-
monly used in cluster analysis [23] to choose the number
of clusters that optimize the clustering cost. For the SSIM
cut curve, the elbow of the curve is a point when moving the
cut position more to the right no longer improves the SSIM
cut value significantly. Figure 7 shows the SSIM cut curves
of ResNet-50 for different datsets. Initially, every SSIM cut
curve shows a sharp positive slope, which indicates the fea-
ture visualizations for the initial layers are very dissimilar



Figure 6. Comparison of the Cut Position (Layer) VS SSIM cut curve for the 2-Conv-ResNet, Shallow CNN, 6 Layers, and Shallow CNN,
13 Layers for different datasets. The value in the legend of the chart indicate the training and testing accuracy of the model.

Figure 7. Comparison of the Cut Position (Layer) VS SSIM cut
curve for the ResNet-50 models for different datasets. The value
in the legend of the chart indicate the training and testing accuracy
of the model.

from the rest of the layers. The slope becomes flatter with
the increase in cut position, which supports hypothesis H2.

To evaluate whether the SSIM cut curve’s elbow point
could be used as a guide for selecting the depth of the
model, we examined the performances of truncated ResNet-
50 (i.e., 2-Conv-ResNet) for the same datasets. We ob-
served that (Table 1) 2-Conv-ResNet achieved similar per-
formance when compared with ResNet-50 for the Weedling
dataset and even better performance for the Plant Village
dataset. For the Seedling dataset, both the ResNet-50 and
2-Conv-ResNet remained overfit.

To examine whether shallow models could achieve high
performances (as we have seen above for 2-Conv-ResNet),
we compared the SSIM cut curve for the 2-Conv-ResNet,
Shallow CNN with 6 Layers, and Shallow CNN with 13
layers (Figure 6). For the Weedling and Plant Village
datasets, the Shallow CNN models achieved comparable
performance to the ResNet-50 models. Furthermore, the
Shallow CNN models with 6 layers performed similarly to

CNN models with 13 layers. In both cases, we observed
a steady increase in the SSIM cut value. For the Seedling
dataset, the Shallow CNN with 13 layers performed poorly
and relied on the background features (Figure 5). The Shal-
low CNN with 6 layers was overfit, but its training and test
accuracy were higher than Shallow CNN with 13 layers.

To examine the diversity of the feature visualizations
between balanced and overfit models (H2), we compared
SSIM cut curve of ResNet-50, and ResNet-50-10% mod-
els for the Weedling and Plant Village dataset (Figure 8).
For both the datasets, ResNet-50 models were balanced and
ResNet-50-10% models were overfit. In both cases, the
SSIM curve of the overfit model had a sharper positive slope
initially, which suggests an earlier elbow point. The similar
trend can also be seen for the per class analysis in Figure 9.

In summary, our experimental results suggest that some
overfit models learn additional features from the image
background, which provides some evidence towards H1.
However, we also found overfit models where the contri-
bution of the image background was not clearly visible in
GBP visualizations. Hence H1 remains inconclusive. Our
analysis of the SSIM curve shows that the GBP visualiza-
tions of the initial convolutional layers of a model are much
more diverse than the GBP visualizations for the deeper lay-
ers (H2). Furthermore, the features learned by balanced
models at deeper layers are more diverse (i.e., has smaller
SSIM cut values) than overfit models. The rate of change
and the SSIM cut curve’s elbow point can potentially pro-
vide some insight into whether a model could be designed
with a smaller depth.

9. Limitation and Future Work
The results of the visual analysis is subject to human per-

ception and interpretation. Quantifying the contribution of
the background to asses its impact can be a good way to
move forward. Also, including more datasets and examin-



Figure 8. Comparison of the Cut Position (Layer) VS SSIM cut curve for the ResNet-50, and ResNet-50-10% models for different datasets.
The value in the legend of the chart indicate the training and testing accuracy of the model.

Figure 9. Comparison of the Cut Position (Layer) VS SSIM cut curve for different classes of the ResNet-50 (blue), and ResNet-50-10%
(orange) models for (top row) Weedling and (bottom row) Plant Village dataset.

ing other CNN models could further strengthen our results.
It would also be interesting to explore other feature-map
visualization techniques in this context. In our SSIM cut
curve analysis, the elbow point may not always correspond
to a sharp elbow or be identified unambiguously in practice,
which is a commonly known limitation of elbow heuris-
tics [23]. We also envision to run a user study involving
deep learning experts, where one can show the output of dif-
ferent models by hiding the labels and record their opinions
to see whether it is possible for a domain expert to detect an
overfit model by only observing the GBP visualization of
the intermediate layers. Due to the presence of the residual
connection in the ResNet models, there might be a possibil-
ity that it may avoid overfitting and the influence similarity
of the GBP visualizations of various layers. Hence it would
be interesting to investigate the contribution of the residual
connections in an overfit model’s performance. Another di-
rection of the future experiments would be to investigate the
SSIM cut curve at different granularity of the depth of the
model.

10. Conclusion

In this paper, we explained the overfitting in a CNN
model for plant phenotyping by visualizing the intermediate

layers’ learning. We used guided backpropagation to visual-
ize the learning of the intermediate layer of different CNN
models. We used four different models on three different
plant classification datasets, and our experiments showed
that an overfit model sometimes relies on the background of
the images. We proposed a novel SSIM cut based analysis
to measure the similarity among the features learned in the
intermediate layers of a CNN. Our SSIM cut curve revealed
that in a more complex model, the shallow layers learn more
diverse features as compared to the deeper layers and that
a more distinct transition between these regimes is notice-
able for overfit models. The SSIM cut curve method can
help detect a potential overfit condition or inform a practi-
tioner that a shallower model may be more appropriate for
training with a particular dataset. We believe our study con-
tributes to better understanding of the behaviour of overfit
CNN models and provides new directions for creating met-
rics to detect and avoid model overfitting in plant phenotyp-
ing tasks.
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