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Abstract

Most of the success of deep learning is owed to su-
pervised learning, where a large-scale annotated dataset
is used for model training. However, developing such
datasets is challenging. In this paper, we develop a semi-
self-supervised learning approach for wheat head detec-
tion. The proposed method utilized a few short video clips
and only one annotated image from each video clip of wheat
fields to simulate a large computationally annotated dataset
used for model building. Considering the domain gap be-
tween the simulated and real images, we applied two do-
main adaptation steps to alleviate the challenge of distribu-
tional shift. The resulting model achieved high performance
when applied to real unannotated datasets. When fine-tuned
on the dataset from the Global Wheat Head Detection Chal-
lenge, the performance was further improved. The model
achieved a mean average precision of 0.827, where an over-
lap of 50% or more between a predicted bounding box and
ground truth was considered as a correct prediction. Al-
though the utility of the proposed methodology was shown
by applying it to wheat head detection, the proposed method
is not limited to this application and could be used for other
domains, such as detecting different crop types, alleviating
the barrier of lack of large-scale annotated datasets in those
domains.

1. Introduction
Considering the continuous growth of the human pop-

ulation, the use of computational approaches for increas-
ing the quantity and quality of crops is imperative to en-

*Corresponding author (farhad.maleki@mail.mcgill.ca)

sure food security. These methods could be used for tasks
such as predicting and monitoring crop growth, water stress,
lodging, soil fertility, crop diseases, and deciding on effec-
tive prevention and management strategies for damage con-
trol [32, 21, 12].

Deep learning models have been successfully used to
tackle real-world problems, including the vision for self-
driving cars [38], speech recognition [20], and recommen-
dation systems [7]. Deep learning models have also shown
their potential for precision agriculture [13]. However, most
of this success is owing to deep supervised learning models
that rely on large-scale human-annotated datasets for model
training. Human annotation is tedious, expensive, and time-
consuming. This hinders developing deep learning models
for many areas; therefore, methodologies that facilitate de-
veloping deep learning models in the absence of large-scale
annotated datasets are of great interest.

Self-supervised learning is a branch of machine learn-
ing aimed at removing this barrier by relying on automati-
cally generated labels for training deep learning models. In
self-supervised learning, the supervisory signals come from
data itself and are generated computationally, alleviating the
need for human annotation. Often, a pretext task is de-
signed, and a deep learning model is developed to learn the
pretext task. Examples of pretext tasks are image coloriza-
tion [39], image inpainting [23], and jigsaw puzzle [22]. To
solve this pretext task, the model needs to extract latent rep-
resentations of the inputs. These representations then can be
used for accomplishing downstream tasks by fine-tuning the
resulting model using a relatively small amount of training
data.

Semi-supervised learning is another approach for deal-
ing with the lack of large-scale labeled datasets. In semi-
supervised learning, a small set of labeled data and a large



set of unlabeled data are used for model building. The goal
is to develop a model with a performance superior to the
model developed using only the labeled subset of data in a
supervised manner or only the unlabeled subset of data in
an unsupervised manner [4].

The need for large-scale annotated datasets still is a chal-
lenge faced by many application domains and impedes the
development of deep learning models. In this paper, we
propose a semi-self-supervised learning approach for wheat
head detection to alleviate the need for large-scale training
datasets. The contribution of this work is twofold: (1) We
propose a methodology for object detection tasks that could
lead to a high-performance model for wheat head detection.
Although we focus on wheat head detection, the proposed
method is independent of crop type and could be general-
ized to other crops. (2) The proposed method could also
be used to facilitate and accelerate the labeling process, en-
abling the development of a wide range of supervised learn-
ing object detection systems.

2. Related works
Object detection models can be classified into two cate-

gories: one-stage detectors and two-stage detectors. One-
stage object detection models use a single network that
could be optimized end-to-end. OverFeat [29] is the first
deep learning-based object detection model that followed
this approach. SSD [16] and YOLO [24] are more recent
methods with improved performance compared to Over-
Feat. Also, YOLO has gone through further improvements
to increase its accuracy in object detection [25, 26, 2]. In
two-stage detectors, first, a sparse set of proposals are gen-
erated. This step aims to filter out the majority of negative
object location proposals while preserving the location pro-
posals for actual objects. The goal of the second stage is to
classify the remaining proposal to object classes or a back-
ground class. Selective Search [36] is one of the early works
following this approach. R-CNN followed the same ap-
proach but used a convolutional neural network for the sec-
ond stage [9]. R-CNN substantially improved performance
compared to Selective Search. In this line of research, “Fast
R-CNN” accelerated R-CNN by feeding the whole image
once to the convolutional neural network instead of feeding
each object proposal [8]. “Faster R-CNN” [27] further ac-
celerated the “Fast R-CNN” by utilizing a feature proposal
network instead of the Selective Search used in R-CNN and
“Fast R-CNN”.

Recently, Tan et al. [34] proposed EfficientDet, utiliz-
ing a weighted bi-directional feature pyramid network and
a compound scaling approach [33]. They achieved the state-
of-the-art despite using a relatively smaller network with a
shorter inference time than previous methods.

A number of computer vision studies have reported
approaches for detecting, localizing, and counting wheat

heads from field images. The majority of these studies
have employed supervised deep learning methods, such as
customized image patch-based classification networks [41,
28] or standard object detection networks (e.g., Faster-
RCNN) [18]. The advantage of detection methods is that
individual wheat instances are localized, which may be im-
portant in certain applications such as measuring wheat
head disease [31]. Obtaining a count or density of wheat
heads may be sufficient for certain applications, e.g., in-
forming selections in wheat breeding programs, in which
density estimation approaches have shown promising re-
sults [37]. To avoid the cost of generating bounding box
annotations for wheat heads, a recent work has explored un-
supervised learning methods for wheat head counting [35].
The majority of previous wheat head detection/counting
methods have been trained and evaluated on small-sized
datasets, usually from one field, growing season, or grow-
ing region, which often result in models that are not gen-
eralizable. To address the potential lack of generalizabil-
ity of previous wheat head counting approaches, the Global
Wheat Head Dataset (GWHD) was assembled to increase
the size and diversity of wheat head images available to re-
searchers [5]. Indeed, these data create an interesting case
of domain shift between wheat plants and images across the
world and have been integrated as a sub-dataset within a
meta-dataset of in-the-wild distribution shifts [14]. Recent
work has begun to investigate domain adaptation methods
for the wheat and plant counting [1, 10].

3. Method
Acquiring unlabeled image datasets for plants is often

neither challenging nor expensive. However, the proposed
pipeline further facilitates this by using short video clips of
plant fields and background scenes, e.g. fields with no crop,
and extracting image frames from these video clips to build
a large unlabeled dataset. Top-down views of both back-
ground and wheat field video clips were taken using Sam-
sung cameras with 12 and 48 Megapixels resolution. Fig-
ure 1 illustrates sample image frames from both the back-
ground and the wheat fields videos.

For each clip Fi of a wheat field, an image RFi
is cho-

sen, and the set of all wheat heads HRFi
= {hj | 1 ≤ j ≤

nRFi
} in that image are contoured, where nRFi

is the num-
ber of wheat heads in the representative image RFi

. Ideally,
RFi

should be a good representative of image frames in Fi.
The main consideration is that the chosen frame includes
wheat heads. The rest of the frames, excluding those in a
buffer of 5 seconds before and after the chosen image RFi ,
are assigned to a set IFi

of unlabeled image frames. The
exclusion criterion is applied to avoid having images with
overlap with RFi

. For each video clip of background Bk,
all image frames are extracted and added to a set IBk

of
background images, i.e., images with no wheat head.



Figure 1. Snapshots of video clips from the background scenes
(rows 1–6) and the wheat fields (row 7).

To simulate an image/label pair, first, we randomly select
a background image from a set IBk

and a random subset of
wheat heads from HRFi

. Then the chosen wheat heads are
augmented and randomly placed on the background image.
Through this process, the location of each wheat head is
used to provide its corresponding bounding box annotation.
It should be mentioned that we segmented RFi

, instead of
annotating it with bounding boxes. After rotating a bound-
ing box, the axis-aligned box encompassing the rotated ver-
sion might not be the tightest bounding box for the wheat
head. This introduces error to the computational annota-
tions. Therefore, we created a segmentation mask for RFi

since the tightest bounding box for the rotated segment can
be precisely calculated. The background images also un-
dergo a data augmentation before the random placement of
wheat heads on them. Through this process, for each back-
ground video clip BK and each wheat field video clip Fi,
we can simulate a set Sk,i of computationally annotated im-
ages. Figure 2 shows the process for simulating image/label
pairs. This process could be used to simulate a large-scale
computationally annotated dataset.

After simulating a large-scale annotated dataset, we train

an object detection model for wheat heads. Since the data
from the source domain (i.e., simulated images) is likely
to have a distributional shift from the target domain (i.e.,
images of real wheat fields), we need to apply a domain
adaptation approach.

We apply a two-stage domain adaptation approach. First,
we create a dataset D including all 360 different rotations of
each image RFi

(rotations of θ = 0, . . . , 359 degrees). This
ensures that all rotated versions of each image RFi

are used.
These images, unlike the simulated images, represent the
wheat field and have smaller deviations from the real data
distribution. To increase the variability of the images in D,
we used a pipeline of image augmentation, including a wide
range of augmentations (see the Appendix). Figure 3 illus-
trates this process. Note that while the augmented images of
wheat heads in RFi

has been used for data simulation, the
model still is not fully exposed to RFi itself. We fine-tune
the model pretrained on the simulated dataset using D.

As the second step for domain adaptation, the result-
ing fine-tuned model is used to detect objects in images of
I = ∪IFi

, i.e., all unlabeled images extracted from different
video clips of wheat fields. These pseudo-labels are then
used as training data to further fine-tune the model using
the real data.

3.1. Model training and evaluation

For all experiments, we used an implementation1 of
YOLO architecture [2] with the binary cross-entropy loss
for objectness and CIoU loss [40] for bounding box regres-
sion. We used SGD optimizer [11] with a learning rate of
0.01and a momentum of 0.937. For training the model us-
ing the simulated dataset, we utilized 90% of samples from
the simulated dataset for training and 10% for validation.
For model evaluation, we used an external evaluation [19]
using the test subset of the GWHD 2021 dataset [5], includ-
ing 1381 annotated images.

We used 17 short background video clips (B1, . . . , B17:
a total of roughly 41 minutes) and three video clips of wheat
fields (F1, F2, and F3: a total of roughly 11 minutes). These
resulted in the extraction of 294,511 image frames from
background videos; three representative images of wheat
fields (RF1 , RF2 , and RF3 ); and 17,979 image frames from
the video clips of wheat fields, which were used as unla-
beled datasets IF1

, IF2
, and IF3

. We simulated 36,000 com-
putationally annotated samples. Figure 4 depicts examples
of the simulated images.

Using all rotations of the images representing the three
wheat fields, we created a dataset D of 1080 images. Fig-
ure 5 illustrates examples of images from the labeled dataset
D with strong augmentations being applied. These im-
ages are originated from the three representative images ex-
tracted from the three video clips of wheat fields. Note that

1cloned from https://github.com/ultralytics/yolov5 on May 14



Figure 2. The procedure for simulating computationally annotated images.

Figure 3. Developing a strongly augmented dataset using a few labeled images.

the strong augmentation is applied dynamically. In each
epoch of the training process, a stochastic sequence of im-
age augmentations is applied to each image resulting in an
increased data variability across iterations and reducing the
chance for overfitting.

The whole pipeline was implemented using Python ver-

sion 3.9.4 and Pytorch version 1.8.1 on a NVIDIA TESLA
V100 GPU machine. All augmentations were conducted
using the Albumentation package version 0.5.2 [3]. More-
over, we used images of size 1024x1024 for all experiments
to be consistent with the image sizes in the GWHD dataset.



Figure 4. Examples of simulated images. The distributional shift from real images of wheat fields can be observed.

Figure 5. Examples of the strongly augmented images from the small labeled dataset.

4. Results

For each experiment, the YOLO model was trained for
25 epochs. Note that instead of simulating a smaller dataset
and increasing the number of epochs, we chose to simulate
a larger dataset and train the model for a smaller number of
epochs. This was done to decrease the chance of overfitting
to the simulated dataset.

Figures 6, 7, and 8 illustrate the performance of the
trained models on randomly chosen images from the
GWHD dataset (external evaluation). Table 1 shows the re-
sults of the external evaluation of models A, B, C, D, E,
and a baseline model. Model A was the model trained on
simulated images, and models B and C were the models re-
sulting from the first and second steps of domain adaptation,
respectively. Model D was the result of fine-tuning model
C on the training subset of the GWHD dataset. Model E re-
sulted from first pseudo-labeling the test set of the GWHD
dataset using model D and then fine-tuning model D us-
ing the training set and the pseudo-labeled test set of the
GWHD dataset. Note that models A, B, and C are not ex-

posed to any information from the GWHD dataset. Model
D is not exposed to the test set of the GWHD dataset, and
model E is only exposed to the pseudo-labels for the test
set of the GWHD dataset, not the actual labels. The base-
line model was trained using the “train“ set of the GWHD
dataset.

Model C, i.e., the model that was fine-tuned using the
pseudo-labels of the images frame dataset I, achieved a
mean average precision of 0.601. We further trained this
model by first training on the training set of the GWHD
dataset and then pseudo-labeling the test subset of the
GWHD dataset. Then the resulting model was trained using
all samples in the GWHD dataset.

5. Discussion

In this paper, we presented a semi-self-supervised learn-
ing approach followed by two domain adaptation steps for
wheat head detection. The main contribution of this pa-
per is the proposed semi-self-supervised approach followed
by its domain adaptation steps, making it possible to pro-



Figure 6. Examples of predictions made by the model A, which is only trained on the simulated dataset. The images are from the GWHD
dataset unseen by the model. Due to the domain gap between the simulated data and the real data, model A failed to detect many wheat
heads.

Figure 7. Example predictions made by model B, i.e. the model resulting from the first step of domain adaptation. We fine-tuned model
A (see Figure 6) on the strongly augmented labeled dataset D. The resulting model is referred to as Model B. The images are from the
GWHD dataset unseen by the model.

Figure 8. Example predictions made by model C, i.e., the model resulting from the second step of domain adaptation. We use model B (see
Figure 7) to pseudo-label the large dataset of unlabeled images frames. Then model B is further fine-tuned using the images in I and their
pseudo-labels. The fine-tuned model is referred to as model C. The images are from the GWHD dataset unseen by the model.

duce a high-performance wheat head detection model with
short unannotated video clips and only three contoured im-
ages. The model developed using the simulated dataset

achieved a mean average precision of 0.09 on the test set
of the GWHD dataset, highlighting the domain gap and the
need for domain adaptation. The domain adaptation steps



Table 1. The performance of the trained models in terms of pre-
cision, recall, and mean average precision for five models. Model
A was the model trained using the simulated dataset. Model B
was the model resulting from fine-tuning model A by training on
dataset D. Model C was the model resulting from fine-tuning
model B using the pseudo-labels of the unlabeled dataset I ex-
tracted from the video clips of wheat fields. The pseudo-labels are
generated using model B. Model D was generated by further train-
ing of model C on the training subset of the GWHD dataset. We
used model D to pseudo-label images in the test set of the GWHD
dataset. Then all the images in the GWHD dataset were used to
further train model D. This resulted in the final model (model E).
The baseline model was trained using the “train“ set of the GWHD
dataset in a supervised manner. All the performance measures
were calculated on the test set of the GWHD dataset.

Model Precision Recall mAP 50
A 0.318 0.130 0.090
B 0.779 0.477 0.513
C 0.801 0.534 0.601
D 0.867 0.731 0.794
E 0.877 0.774 0.827
Baseline 0.832 0.688 0.741

resulted in a substantial improvement resulting in a model
with a mean average precision of 0.601. When fine-tuned
on the dataset from the Global Wheat Head Detection Chal-
lenge, the performance was further improved. The model
achieved a mean average precision of 0.827, where an over-
lap of 50% or more between a predicted bounding box and
ground truth was considered as a correct prediction. This
is substantially higher than the baseline model trained using
the GWHD dataset, which is a large-scale annotated dataset.

In self-supervised learning, a pretext task is often de-
signed to computationally determine data labels without
manual annotation. Then, using these computationally gen-
erated labels, a model is trained in a supervised manner to
learn the pretext task, with the goal of capturing a latent rep-
resentation for input data. This model is retrained on a rela-
tively small dataset for a downstream task of interest. Note
that the computationally generated labels might be com-
pletely irrelevant to the downstream task. In this paper, we
used a semi-self-supervised approach followed by two do-
main adaptation steps. Our semi-self-supervised approach
computationally generates labeled data for the main task.
This is different from self-supervised learning, in which a
pretext task such as image rotation or inpainting is used to
generate labels that might be entirely irrelevant to the main
task. The semi-self-supervised approach also differs from
self-supervised learning as it requires a few manually la-
beled samples to synthesize a large computationally anno-
tated dataset. It also differs from semi-supervised learning,
in which a small set of labeled data and a relatively larger
set of unlabeled data are used for model development. We
only used a few manually labeled samples. Using back-

ground images with no wheat head, we computationally
generated a large dataset for the main task (wheat head de-
tection here). Note that the semi-self-supervised learning
approach should not be mistaken with the second step of do-
main adaptation, i.e., the pseudo-labeling approach, which
is a semi-supervised approach.

We used a cut and paste approach similar to Dwibedi et
al. [6] for generating simulated images. Dwibedi et al. uti-
lized a cut and paste approach to synthesize images for de-
veloping an object instance augmentation. They first trained
an FCN network [17] to be able to separate foreground ob-
jects. The trained model was used to segment the objects in
the Big Berkeley Instance Recognition Dataset [30]. These
segmented objects were then placed on background images
from the UW Scenes dataset [15]. In this paper, we used
a similar cut and paste approach for data simulation. How-
ever, unlike the proposed method by Dwibedi et al. that re-
lies on another model to be trained and used for segmenting
foreground objects to simulate images, we only used three
annotated images and used video clips both for background
and wheat fields. This makes our approach easily adapt-
able to different domains where a large-scale dataset is not
available. In addition, video clips of crops could be easily
acquired at little to no cost. In addition, we utilized domain
adaptation techniques that substantially improved the per-
formance of the model trained on the simulated datasets.

We used video clips for developing deep learning models
for wheat head detection. The use of video clips as the data
source for crop detection has several benefits. Collecting
video clips has little to no costs in comparison to develop-
ing large-scale datasets. Also, it takes a few minutes to take
a video clip while developing a large-scale image dataset is
tedious and time-consuming. This approach also makes it
possible to extract a large number of images from videos
computationally. Therefore, our approach makes develop-
ing deep learning models for crop detection more accessible
for domains where large-scale datasets are unavailable.

We utilized an external model evaluation approach using
the test set of the GWHD dataset. Note that we differenti-
ate the validation and evaluation performance. The former
is calculated on the validation set and the latter on the test
set. External evaluation is the most reliable means of model
evaluation, providing an unbiased estimate of the general-
ization error [19]. Validation error, on the other hand, is
a biased estimate of generalization error [19]. The models
developed using the semi-self-supervised approach and the
two steps of domain adaptation are not exposed to the data
from the GWHD dataset either in the semi-self-supervised
phase or in the domain adaptation steps. Therefore, the re-
sulting performance measures are highly reliable consider-
ing the scale of the GWHD dataset and its high degree of
variability, representing different stages of wheat growth.
It should be mentioned that our evaluation for the models



fine-tuned on the GWHD dataset (i.e., models D and E) is
considered internal evaluation [19], as we used the test set
of the same dataset for evaluation.

In this paper, we only used three short clips of wheat
fields representing three stages of wheat growth. We ex-
pect that including video clips representing different growth
stages of wheat further improves the model performance.
Also, we only used one representative image for each field.
This was conducted to highlight the feasibility of object de-
tection using very few annotated images of wheat fields.
Annotating more images from each video clip could result
in a higher diversity in the training data, more representa-
tive samples, and further improvement in the model perfor-
mance.

We used an implementation of YOLO; however, the pro-
posed method is independent of the model being used for
object detection. Also, we used only one representative im-
age for each wheat field, and this image was partially used
for building both training and validation sets (but not the
test set). Therefore, the training and validation (not the test
data) might be partially dependent. Note that the proposed
method alleviates this issue following two different strate-
gies. In data simulation for the semi-self-supervised ap-
proach, we used background images independent of the rep-
resentative images; also, the wheat heads extracted from a
representative image were augmented and randomly placed
on the background images. In the first step of domain
adaptation, we used strong data augmentation to decorrelate
the images used for fine-tuning (training) and validation as
much as possible. By using only two representative images
for each wheat field, this issue would be resolved, and the
performance measure for model validation would be more
reliable.

We observed that pseudo-labeling is an effective way of
improving model performance during which a model is ex-
posed to the data coming from the target data distribution. If
appropriately utilized, pseudo-labeling could be a practical
approach for domain adaptation. In this paper, we used only
one step of pseudo-labeling. This could be further improved
by applying two steps of pseudo-labeling.

6. Conclusion
In this research, we proposed a semi-self-supervised ap-

proach followed by two domain adaptation steps for wheat
head detection. The proposed approach only uses short
video clips of wheat fields and background scenes. Using
only a few contoured images and the video clips, we sim-
ulated a large-scale computationally annotated dataset and
a large-scale unlabeled dataset. Using these datasets, the
proposed approach led to a high-performing model. The
model was further improved when fine-tuned on the GWHD
dataset. Although we showed the utility of the proposed ap-
proach for wheat head detection, it is not limited to this pur-

pose. The proposed method could be used for a wide range
of applications, including detection for other crop types.

Appendix
In this research, we used a wide range of image aug-

mentations from the Albumentations package. These was
acomplished through developing an stochastic sequence of
the following image augmentations: Blur, ChannelShuf-
fle, CLAHE, ColorJitter, Equalize, FancyPCA, Flip, Gaus-
sianBlur, GaussNoise, GlassBlur, HorizontalFlip, HueSat-
urationValue, InvertImg, MedianBlur, MultiplicativeNoise,
Posterize, RandomBrightnessContrast, RandomFog, Ran-
domGamma, RandomRain, RandomSnow, RandomSun-
Flare, RGBShift, Solarize, ToGray, VerticalFlip.
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