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Abstract

We introduce a simple approach to understanding
the relationship between single nucleotide polymorphisms
(SNPs), or groups of related SNPs, and the phenotypes they
control. The pipeline involves training deep convolutional
neural networks (CNNs) to differentiate between images
of plants with reference and alternate versions of various
SNPs, and then using visualization approaches to highlight
what the classification networks key on. We demonstrate
the capacity of deep CNNs at performing this classification
task, and show the utility of these visualizations on RGB
imagery of biomass sorghum captured by the TERRA-REF
gantry. We focus on several different genetic markers with
known phenotypic expression, and discuss the possibilities
of using this approach to uncover unknown genotype × phe-
notype relationships.

1. Introduction

Sorghum is a cereal crop, used worldwide for a variety
of purposes including for use as grain and as a source of
biomass for bio-energy production, which is the context we
primarily focus on in this paper. For biofuel production,
the goal of both plant growers and breeders is to produce
sorghum crops that grow as big as possible, as quickly as
possible, with as few resources as possible. Plant breed-
ers produce new lines of sorghum by crossing together can-
didate lines that have desirable traits, or known genes that
correspond to desirable traits.

In this paper, we propose a simple pipeline for under-
standing and identifying interesting genetic markers that
control visually observable traits. This pipeline could be
leveraged by plant geneticists and breeders to understand
the relationship between single nucleotide polymorpishms
(SNPs, locations in the organism’s DNA that vary between
different members of the population), or groups of related
SNPs, and the phenotypes that they impact.

Figure 1. We train deep convolutional neural network classifiers to
predict whether an image of a sorghum crop contains a reference
or alternate version of particular genetic marker, and then visualize
why the network makes that prediction. In this figure, we show
the visualization for why the neural network predicted an image
showed a plant with a reference version of a SNP that controls
leaf wax composition – the visualization highlights the especially
waxy part of the stem.

The pipeline involves:

• Identifying candidate SNPs, or groups of SNPs, of in-
terest in the sorghum genome;

• Training deep convolutional neural networks (CNNs)
on visual sensor data to differentiate between reference
and alternate versions of the SNP; and

• Visualizing what visual features led to a reference or
alternate classification by the CNN.

We demonstrate the feasibility and utility of this pipeline
on a number of SNPs identified in the sorghum Bioenergy
Association Panel [8] (BAP), a set of 390 sorghum cultivars
whose genomes have been fully sequenced and which show
promise for bio-energy usage.

2. Background
2.1. Sorghum and Polymorphisms

Sorghum is a diploid species, meaning that it has two
copies of each of its 10 chromosomes. Each chromosome



consists of DNA, the genetic instructions for the plant. The
DNA itself is made up of individual nucleotides, sequences
of which tell the plant precisely which proteins to make.
Variations in these sequences, called single nucleotide poly-
morphisms, can result in changes to the proteins the plant is
instructed to make, which in turn can have varying degrees
of impact on the structure and performance of the plant. Un-
derstanding the impact that specific genes have on plants
and how they interact with their environment is a fundamen-
tal problem and area of study in plant biology [6, 7, 13, 35].

Single nucleotide polymorphisms (SNPs) are specific
variations that exist between different members of a popula-
tion at a single location on the chromosome, where one ade-
nine, thymine, cytosine or guanine nucleotide in one plant
may be have one or more different nucleotides in a different
plant. This variation can exist on one or both copies of the
chromosome. A cultivar that has the ‘original’ version of
the SNP on both copies of the chromosome is referred to
as being homozygous reference; a cultivar that has variant
on both copies of the chromosome is referred to as being
homozygous alternate; and a cultivar that has one normal
and one variant version of the SNP is called heterozygous.
In this paper we consider only the homozygous cases, and
how deep convolutional neural networks can be used to pre-
dict whether imagery of sorghum plants shows a plant with
a reference or alternate version of a particular SNP or family
of related SNPs.

2.2. TERRA-REF

We work with data collected by the Transportation En-
ergy Resources from Renewable Agriculture Phenotyping
Reference Platform, or TERRA-REF[9, 23], project which
was funded by the Advanced Research Project Agency–
Energy (ARPA-E) in 2016. The TERRA-REF platform is a
state-of-the-art gantry based system for monitoring the full
growth cycle of over an acre of crops with a cutting-edge
suite of imaging sensors, including stereo-RGB, thermal,
short- and long-wave hyperspectral cameras, and laser 3D-
scanner sensors. The goal of the TERRA-REF gantry was
to perform in-field automated high throughput plant pheno-
typing, the process of making phenotypic measurements of
the physical properties of plants at large scale and with high
temporal resolution, for the purpose of better understand-
ing the difference between crops and facilitating rapid plant
breeding programs. The TERRA-REF field and gantry sys-
tem are shown in Figure 2.

Since 2016, the TERRA-REF platform has collected
petabytes of sensor data capturing the full growing cycle of
sorghum plants from the sorghum Bioenergy Association
Panel [8], a set of 390 sorghum cultivars whose genomes
have been fully sequenced and which show promise for bio-
energy usage. The full, original TERRA-REF dataset is a
massive public domain agricultural dataset, with high spa-

Figure 2. The TERRA-REF Field and Gantry-based Field Scanner
in Maricopa, Arizona, with sorghum being grown in the field.

tial and temporal resolution across numerous sensors and
seasons, and includes a variety of environmental data and
extracted phenotypes in addition to the sensor data. More
information about the dataset and access to it can be found
in [23].

2.3. Deep Learning for Agriculture

To our knowledge, this is the first work that trains clas-
sifiers on visual sensor data to predict whether an image
shows organisms with a reference or alternate version of
a genetic marker in order to better understand the geno-
type × phenotype relationship. There is related work in ge-
nomic selection that attempts to predict end-of-season traits
like leaf or grain length and crop yield [33, 34] from genetic
information. In [25], the most related work to ours, the au-
thors train CNNs to predict quantitative traits from SNPs,
and use a visualization approach called saliency maps to
highlight the SNPs that most contributed to predicting a
particular trait (as opposed to predicting whether a SNP
is reference or alternate, and what visual components led
to that classification). There is additionally work that at-
tempts to use deep learning to predict the relative functional
importance of specific genetic markers and mutations in
plants [43], without focusing on visualizing their specific
impact on the expressed phenotypes.

There is generally significantly more work in apply-
ing deep learning for a wide variety of plant phenotyp-
ing and agriculture tasks that do not incorporate the un-
derlying genetics – for example, deep CNNs have success-
fully been used for fruit detection [40, 32, 22, 4, 24], cul-
tivar and species identification [30, 19, 24, 3, 5, 39, 31],
plant disease classification [42, 16, 27, 36, 42], leaf count-
ing [37, 1, 17, 15], yield prediction [26, 29, 41, 12], and
stress detection [11, 10, 2], among other phenotyping tasks.

3. Methods
Our approach to gaining understanding about the geno-

type × phenotype relationship is to train deep convolu-



Figure 3. We use a standard ResNet-50 architecture, which like many deep convolutional neural networks consists of alternating convo-
lutional and pooling layers (with interspersed activation functions). The network ends with a final convolutional layer, a global average
pooling (GAP) operation, and then a fully connected layer, the output of which is used to make our prediction of whether an image shows a
plant with a reference or alternate version of a particular genetic marker. We use the class activation mapping approach described in [47], in
which the filters in the last convolutional layer are multiplied by the corresponding weights between the respective layer and the predicted
output node. These weighted filters are then added up to produce a heatmap that has its highest values in important regions.

tional neural networks to predict whether an image shows
a sorghum cultivar with the reference or alternate version of
a specific SNP or families of SNPs, and to then visualize
what visual features the network focuses on when making
that determination. If the classifier can perform well above
chance at this classification task, then it is learning some-
thing that is significantly correlated with the genetics being
considered, and the visualizations can help us glean insights
into precisely what those correlations are.

In this paper, we focus on five specific families of ge-
netic markers, as defined in Table 1. Each famility of ge-
netic markers is defined by one or more related SNPs, which
have been identified in prior work as having a particular
phenotype that is impacted depending on whether the cul-
tivar being grown has the reference or alternate version of
the marker. (When grouping multiple SNPs together, we
consider a cultivar to be reference if it is reference for all
of the SNPs, or alternate if it has any alternate SNPs – this
is because even one polymorphism can significantly impact
the phenotype being controlled.)

We train a ResNet-50 deep convolutional neural net-
work architecture [18] with a single fully connected layer
on the reference vs. alternate classification task. A general
overview of this type of network architecture is shown at
the top of Figure 3.

For all families of genetic markers, the network is trained
on 256 × 256 pixel RGB images from the TERRA-REF
Stereo Top RGB cameras, and optimized using adam [21]
with a learning rate of 0.0001 for 20 epochs. For data aug-
mentation, we subtract by dataset channel means and divide
by dataset channel standard deviations, and during training

we perform random horizontal flips. The 256 × 256 pixel
images extracted by resizing the image on its largest side
to 256 and extracting a random crop at training time, and
a center crop at testing time. We use imbalanced batch
sampling during training to fill 100 image batches with a
roughly equal number of reference and alternate images per
batch, even if there is an imbalance in the number of refer-
ence and alternate images in the training set.

We then use the Class Activation Mapping approach de-
scribed in [47], which highlights the image regions that
most contributed to a classification of the neural network.
This approach is visualized in the bottom of Figure 3, where
the filters in the last convolutional layer are multiplied by
the corresponding weights between the respective layer and
the predicted output node. These weighted filters are then
added up to produce a heatmap that has its highest values
in important regions (e.g., the blue regions in Figure 1). We
can then look at the heatmaps for the most confident predic-
tions from a neural network trained on a particular genetic
marker family to understand the visual traits that are highly
correlated with being either reference or alternate, as in Fig-
ures 6 and 7.

4. Dataset Details

For each family of genetic markers, we select the culti-
vars within the BAP lines that are either homozygous ref-
erence or alternate (ignoring heterozygous cultivars). We
determine whether there are more reference or alternate cul-
tivars, and select the minimum to define the number of culti-
vars that are put into our training and testing sets – the test-



Genetic Marker Family SNP Details
Chromosome Gene Position Known Controlled Phenotype

Leaf Wax

1 001G269200 51588525

Wax composition [38]1 001G269200 51588838
1 001G269200 51589143
1 001G269200 51589435

dw 6 006G067700 42805319 Plant height and structure, stem length and internode length [46, 20]6 006G067700 42804037

Dry Stalk (d) locus

6 006G147400 50898459

Plant height and structure, and sugar composition [45]

6 006G147400 50898536
6 006G147400 50898315
6 006G147400 50898231
6 006G147400 50898523
6 006G147400 50898525

ma 6 006G057866 40312463 Flowering time and maturity [14, 28]6 006G004400 2697734
tan 9 009G229800 57040680 Pigmentation and tannin production [44]

Table 1. Details about the genetic marker families of interest. Single nucleotide polymorphisms are grouped by the phenotypes they
control, and classification is performed by genetic marker family. Cultivars are defined as reference if they have the reference version of all
SNPs on both copies of the chromosomes, and as alternate if they have the alternate version of all SNPs on both copies of the chromosomes
(we do not consider heterozygous cultivars).

Genetic Marker Family # Train Cultivars # Test Cultivars # Train Images # Test Images
Ref Alt Ref Alt Ref Alt Ref Alt

Leaf Wax 67 114 34 34 16750 28500 8500 8500
dw 80 105 40 40 20000 26250 10000 10000

Dry Stalk (d) locus 43 127 21 21 10750 31750 5200 5200
ma 21 167 10 10 5250 41750 2500 2500
tan 133 53 27 27 33250 13250 6750 6750

Table 2. Dataset Statistics. Specifics on the numbers of cultivars and images used in the training and testing sets for each of the genetic
marker families.

ing set includes half of the cultivars from whichever class
has fewer cultivars, and an equal number of the better rep-
resented class. There is no overlap between the training and
testing cultivars.

Within each testing class, we randomly select the same
number of images (the number is limited by whichever cul-
tivar has the fewest images). This guarantees that our test-
ing set is balanced both by number of images per class and
number of cultivars per class. All remaining cultivars are
put into the training set, without limiting the number of im-
ages per cultivar – this allows us to use a large number of
training examples, even if there may be imbalance in the
number of images per class (reference vs. alternate) or per
cultivar. This imbalance is dealt with at training time by an
imbalanced sampler per batch, which selects roughly equal
numbers of images from the population of reference and al-
ternate examples.

Table 2 shows the exact number of cultivars and images
used in the training and testing sets for each genetic marker
family. We only consider images from June of 2017, mid-
way through the growing season when plants are not too
small, exhibiting many of the phenotypes of interest, and
not yet lodging (falling over) on top of each other.

5. Results

In Table 3, we show the classification accuracy by image
and by cultivar for each of the five genetic marker families
of interest. The per image accuracy is simply the average
accuracy of predicting whether every image in the test set is
correctly labeled as homozygous reference or homozygous
alternate. When computing the per cultivar accuracy, we
take the mode of all images within a cultivar and use that to
make the prediction. We then report the average accuracy
over all cultivars. Due to the balancing described in Sec-
tion 4, random chance on either of these tasks is guaranteed
to be 0.5. For each of the genetic markers of interest, our
models achieve well above chance accuracy, ranging from
between 62.75% accuracy for the dw marker and 68.59%
accuracy for the tan marker when considering each individ-
ual image. Taking the mode by cultivar provides an average
improvement of nearly 20% when compared with consider-
ing images individually.

We additionally show the accuracy on each day in June
in Figure 4. There is a slight trend across all of the markers
showing slightly improved performance towards the middle
of the month, with performance degrading significantly at



Genetic Marker Family Classification Accuracy
Per Image Per Cultivar

Leaf Wax .6325 0.7647
dw .6275 0.8375

Dry Stalk (d) locus .6743 0.8333
ma .6565 0.8500
tan .6859 0.8519

Table 3. Classification Accuracy by Image and by Cultivar. Ac-
curacy by image is computed on each image in the test set sepa-
rately. Accuracy by cultivar is computed by taking the mode of the
image predictions from each cultivar. The test set for each genetic
marker family is balanced such that the classification accuracy by
both image and by cultivar are 0.5.

the end of the month. This is likely explained by the pheno-
types of interest being better expressed during this time and
therefore being more recognizable, while the end of sea-
son degradation may be related to lodging that happens as
the season progresses, where plants in adjacent plots start
falling over into each other.

In Figures 6 and 7, we show 15 of the most confident
and correctly predicted reference and alternate images and
their corresponding heatmaps for each of the genetic mark-
ers. These visualizations provide compelling insights into
what the networks have learned to focus on, and therefore
what visual plant features are highly correlated with a plant
either being reference or alternate for a particular genetic
marker. In the following paragraphs, we will discuss no-
table observations from these visualizations and how they
correspond to the phenotypes these markers are known to
control. In all visualizations, blue regions indicate visual
features that are more important for the classification, while
red regions are less important.

In Figure 6(a), we show the most confident correct pre-
dictions for the leaf wax genetic marker family. Cultivars
with the reference version of these SNPs are known to be
more waxy, while the alternate versions are less waxy. In
the reference heat maps, the important (blue) regions are
often diffuse, covering much of the leaf, while the alter-
nate visualizations are very focused on the spine of the leaf.
Looking at the images, it is apparent that in the alternate im-
ages, this spine is more brightly differentiated from the rest
of the leaf, while in the reference images the spine has less
contrast. This corresponds to the wax build up on the leaf
in the reference images, which cause the overall leaf to be
whiter, resulting in lower contrast on the spine. When the
reference visualizations are not diffuse, they focus specifi-
cally on the interface between the sorghum plant spine and
leaf – this is shown in greater detail in Figure ??. When
reviewing these visualizations with a biologist on our team
that does in-field ground truth phenotyping of traits includ-
ing leaf wax, they said: “That’s exactly the place I look at
when determining waxiness in the field – it’s where there’s

Figure 4. Genetic Marker Family classification accuracy by
date. Here we show the accuracy per image for each genetic
marker family on each day in June (mid-way through the growing
season). In general performance is slightly better in the middle of
the month, and worse at the end of the month when plants begin to
lodge.

Figure 5. One of the features the neural network trained on the
leaf wax SNPs learned to focus on when classifying an image as
“reference” was the interface between the stem and either leaves or
panicles. Field biologists who reviewed these visualizations were
excited to see this feature highlighted, as this is often the feature
they look at in the field as it’s where wax build up is most obvious.

the wax is most obvious!” Excitingly, this indicates that the
network has learned, without explicit direction, to focus on
the same plant parts as expert humans.

In Figures 6(b and c) and 7(d), the alternate visualiza-
tions appear to frequently focus on particular panicles at dif-
ferent growth stages (the panicles focused on for the dw and
ma genetic markers are earlier in their life cycle when com-
pared to the panicles in the d locus visualizations). This cor-
responds to the knowledge that polymorphisms in these ge-
netic markers control features like plant growth rate (SNPs
in the dw and dlocus families are considered ‘drawfing’
markers, controling growth rate and ultimate plant height),



flowering time and maturity. The d locus reference visu-
alizations also appear to focus on particular leaf shapes –
the ends of broad leaves – which similarly may relate to the
fact that the markers are known to exhibit control over plant
structure.

In Figure 7(e), we show the confident images and
heatmaps for the tan SNP, which controls tannin production
and pigmentation. Notably, plants with the reference ver-
sion of the SNP are known to have less tannin production,
resulting in a less bitter taste in the plant seeds. This is in-
terestingly manifested in the reference visualizations which
highlight panicles where all of the seeds have been eaten –
likely because they taste better to birds!

6. Conclusions & Future Work
In this paper, we demonstrated the feasibility of a

pipeline to help understand the genotype × phenotype re-
lationship in sorghum by training deep convolutional neural
networks on visual sensor data to predict whether differ-
ent crops have reference or alternate versions of particu-
lar genetic markers. We show for several genetic markers
that whose phenotypic expression is well understood that
these networks can achieve well-above chance performance
on this task, and that visualizations that highlight the most
important parts of the images that led to the classification
correspond with the known phenotypes.

This approach can be extended to not only help better un-
derstand well-established genotype × phenotype relation-
ships, but to explore new, less well understood relation-
ships. The same approach could be deployed for SNPs and
families of SNPs whose phenotypic expression is not un-
derstood, to uncover new and interesting polymorphisms.

This paper presented a very simple, yet effective
pipeline, focused on a relatively limited time period of high
resolution data from the TERRA-REF gantry system (data
from the entire month of June, mid-way through the grow-
ing season in 2017). We recognize that not all phenotypes,
however, are observable during this time period. Especially
when considering unknown genetic markers, it may be ben-
eficial to consider longer time periods including both early
and late growing periods when different phenotypes are ex-
pressed. This is a direction for future work: longer time
periods may require more complex training protocols that
more explicitly incorporate time – for example, using re-
current approaches, or training a multi-headed network that
simultaneously predicts the genetic class and the date. Ad-
ditional work could focus on extending the approach to sen-
sors other than RGB cameras, as some phenotypes may be
more readily observed in different sensing modalities, such
as hyperspectral or thermal imagery, or in the structural in-
formation from the 3D laser scanner.
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Figure 6. Confident and correct examples for the classification of leaf wax, dw and d locus genetic markers. Blue regions are important to
the prediction, while red regions are less important or even detract from the prediction.
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Figure 7. Confident and correct examples for the classification of ma and tan genetic markers. Blue regions are important to the prediction,
while red regions are less important or even detract from the prediction.
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