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INTRODUCTION 

In musculoskeletal simulations muscle forces are 
transmitted along curves intended to represent the 
centroid of each muscle’s path. The curves are 
assumed to take the shortest path wrapping around 
geometric surfaces that represent bones and other 
structures. The length and rate of length change of a 
muscle’s path affect computed muscle force and the 
geometry of a muscle’s path determines how muscle 
force is delivered to bones. Errors in representing 
how muscles wrap may degrade simulation 
accuracy and performance.  

A common approach to represent muscle wrapping 
uses approximate discretized wrapping curves [1]. 
In dynamics simulations, discontinuous changes in 
wrapping paths due to discretization can degrade 
simulation performance. Another approach to model 
muscle wrapping uses analytical equations for 
simple shapes such as spheres and cylinders [2, 3]. 
This approach does not generalize to muscle paths 
that wrap around more than two surfaces or 
complex wrapping surfaces. 

Here we introduce a novel formulation to compute 
smooth wrapping curves for arbitrary numbers of 
wrap surfaces. The formulation permits the use of 
general smooth geometric surfaces with implicit or 
parametric representations and incorporates fast 
analytical equations for the special cases of simple 
shapes. This method generates smooth wrapping 
paths suitable for high-order time integration, and 
allows biomechanical models of the spine, finger, 
shoulder, and other systems to incorporate wrapping 
paths over multiple anatomical structures with 
complex shapes. 

METHODS 

Our formulation computes the minimum length 
wrapping  path  over   multiple  surfaces  by  finding  

the location of two wrapping points per surface such 
that joining paths are straight lines, wrapping paths 
are geodesic curves, and joining paths connect 
smoothly with wrapping paths (Figure 1). 

 
Figure 1: The shortest path wrapping surfaces is represented 
with two wrapping points on each surface, straight joining 
paths (dotted lines), and geodesic wrapping paths (solid lines). 

A geodesic curve is nominally the shortest path 
along a smooth surface and is uniquely defined for a 
point and direction on that surface. Our formulation 
ensures that the path remains smooth as wrapping 
paths lift off wrapping surfaces during dynamic 
simulations. In the case of an implicit surface 
representation, , with gradient, , we 
aim to find the location of wrapping points, and , 
that satisfy the conditions illustrated in Figure 2. 

 
Figure 2: The local conditions that must be satisfied to find 
the shortest wrapping path. Wrapping points and must lie 
on the wrapping surface and straight-line joining paths and 

must be tangent to the surface. The geodesic curve 
originating from point in the direction of (red line) and 
the geodesic curve originating from point in the direction 

 (blue line) must connect smoothly. 



The wrapping conditions can be stated as follows: 
1. Wrapping points lie on the wrapping surface: 

2. Joining paths are tangent to the wrapping surface: 

where is the surface normal ( for implicit 
surface representations). 
3. The geodesic curves originating from the two 
wrapping points must connect smoothly: 

where , and  and  are the closest 
points on the geodesic curves from and . 

We compose a system of equations using conditions 
(1), (2), and (3) for all  wrapping surfaces as:  

The size of the system is , 
since condition (1) is automatically satisfied for 
parametric surface representations. We solve (4) as 
a root-finding problem using Newton’s method with 
a banded Jacobian to find wrapping point locations 
across all  surfaces. Fast convergence requires 
good initial conditions; to achieve this we take 
advantage of temporal coherence for wrapping in 
dynamic simulations. 

For general smooth surfaces, we find geodesic 
curves using numerical integration. For this 
purpose, we use the mechanical analogy that a 
particle moving along a surface with acceleration 
normal to the surface will trace a geodesic path [4]. 
For a particle , we solve the differential equation 

subject to , which leads to:  

where  and  is the Lagrange multiplier 
that satisfies the implicit surface constraint. 

For spheres, cylinders and other surfaces of 
revolution, it is straightforward to replace the 
general geodesic condition (3) with analytical 
equations to improve speed. 

RESULTS AND DISCUSSION 
 
We evaluated the accuracy of our approach using a 
combined sphere-cylinder test case reported in [3]. 
We chose initial wrapping points on the straight-line 
path between the fixed end points (Figure 3, dotted 
line). Our computed wrapping path (Figure 3, solid 
line) has a length of 22.437 cm, which matches the 
exact solution reported in [3]. We also simulated 
test cases for wrapping multiple bicubic spline 
surfaces, ellipsoids, spheres, and cylinders as shown 
in Figure 4. Videos and source code are available at 
http://simtk.org/home/wrap. This method provides 
high performance muscle wrapping for simulation 
of musculoskeletal dynamics. 

 
Figure 3: Result for wrapping over the sphere-cylinder test 
case from [3]. The initial path is denoted by the dotted line.  

 

 

 
Figure 4: Results for wrapping over multiple surfaces: two 
bicubic spline surface patches (top), three ellipsoids (middle), 
and seven spheres and cylinders (bottom). 
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