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ABSTRACT
Muscle paths play an important role inmusculoskeletal simulations by determining amuscle’s length
andhow its force is distributed to joints.Mostprevious approaches estimate theway inwhichmuscles
‘wrap’ around bones and other structures with smooth analytical wrapping surfaces. In this paper,
we employ Newton’s method with discrete differential geometry to permit muscle wrapping over
arbitrary polygonal mesh surfaces that represent underlying bones and structures. Precomputing
distance fields allowsus to speedup computations for the common situationwheremanypaths cross
the same wrapping surfaces. We found positive results for the accuracy, robustness, and efficiency
of the method. However the method did not exhibit continuous changes in path length for dynamic
simulations. Nonetheless this approach provides a valuable step toward fast muscle wrapping on
arbitrary meshes.
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1. Introduction

Musculoskeletal simulation, with multibody dynamics
and cable-like muscles, is a widely used tool in biome-
chanics research (Delp et al. 2007). The way in which
muscles wrap around bones and other tissue forms the
critical two-way connection between the ‘musculo’ and
‘skeletal’ parts of such simulations. Muscle wrapping
defines how skeletal movements affect muscle forces,
through changes inmuscle length, and howmuscle forces
are distributed to joints, through muscle moment arms
(Sherman et al. 2013). For this reason, muscle wrapping
has a significant impact on musculoskeletal simulation
efficiency and accuracy. The prevailing model for muscle
wrapping represents the muscle as a massless, friction-
less cable that follows the shortest path between an ori-
gin point and an insertion point while wrapping around
geometric surfaces that represent bones and other struc-
tures. This shortest-path wrapping formulation presents
an interesting computational problem that has been
approached from many different angles.

Early attempts at shortest-path muscle wrapping in
musculoskeletal models used spherical and cylindrical
wrapping surfaces for which shortest paths can be com-
puted analytically. Exact solutions have been reported
for one (Charlton & Johnson 2001) and two adjacent
wrapping surfaces (Marsden et al. 2008), while an iter-
ative solution has been employed for multiple surfaces
(Garner & Pandy 2000). Computing the shortest path
along general smooth surfaces requires numerically inte-
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grating geodesic equations (Do Carmo 1976; Marsden &
Swailes 2008). Other wrapping approaches approximate
the shortest path by discretizing the muscle path and
applying heuristic refinement (Delp & Loan 1995) or
energy minimization (Audenaert & Audenaert 2008).

Previous wrapping methods rely on simplified shapes
to serve as wrapping surfaces. Creating and tuning these
shapes to achieve desired muscle paths (and moment
arms) across a range of joint angles is an abstract and
tedious process. To avoid this intermediate modeling
step, a few algorithms that wrapmuscles directly on bone
shapes have been proposed using a penaltymethod based
on a distance field to the bone surface (Marai et al. 2004)
or a search method restricted to a convex volume enclos-
ing a portion of the bone surface (Desailly et al. 2010).
These methods showed promise for measuring instanta-
neous muscle length and moment arms, but were only
evaluated in limited contexts and without attention to
continuity in path length during skeletal movements.
Gao et al. (2002) proposed an efficient method to wrap
muscles over cross-sectional slices of a bone shape and
reported that discretization led to non-smooth muscle
activations in inverse-dynamics simulations. Such dis-
continuities in path length (and consequently muscle
force) are problematic for forward-dynamics simulations
which use numerical integration schemes that assume
smoothly varying dynamics.

Recently, a new formulationof the shortest-pathwrap-
ping problem has been proposed that provides path
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2 O. ZARIFI AND I. STAVNESS

length continuity and generalizes to arbitrary numbers
of adjacent smooth wrapping surfaces (Stavness et al.
2012; Scholz et al. 2016). This general wrapping method
represents a muscle cable as piecewise path of alternating
straight and geodesic segments, whereby straight seg-
ments connect surfaces and geodesic segments wrap over
surfaces. It uses Newton’s method to quickly converge to
an exact local shortest path. The approach still requires an
additional modeling step of defining intermediary wrap-
ping surfaces described by smooth analytical equations,
rather than wrapping directly on a model’s existing bone
meshes. The Newton’s solve also requires a good initial
guess for fast convergence, and a robust initialization
procedure has yet to be proposed.

Past wrapping approaches do not take advantage of
precomputation that can be shared between muscle
cables in the problem. Broad muscles or ligaments, such
as the pectoral muscles in the chest, are often decom-
posed into multiple parallel cables that take similar paths
around the same intermediate wrapping surface. Despite
the fact that many muscle cables wrap around the same
wrapping surface, past wrapping methods treat each
muscle path independently. The lone exception is the
work of Marai et al. (2004) who use a precomputed dis-
tance field for all muscles wrapping a single bone mesh.
The lack of shared precomputation in past wrapping
methods is a missed opportunity, particularly since there
is a trend toward models of higher fidelity and therefore
greater numbers of parallel muscle cables. For exam-
ple, the recent lumbar spine by Christophy et al. (2012)
includes 238 muscle elements.

In this paper, we extend the general wrapping method
to work with arbitrary meshes and permit direct muscle
wrapping on bone geometry. We use discrete differential
geometry algorithms that allow us to precompute infor-
mation for each wrapping surface that can be reused for
all simulation steps and for all muscles wrapping over
the same surface. We also propose a robust initialization
procedure that can be used to provide a good initial guess
to our method and other Newton’s method based wrap-
ping algorithms. We evaluate the robustness, accuracy,
efficiency, and continuity properties of this new approach
to muscle wrapping over bone surfaces.

2. Methods

Ourwrappingmethod for arbitrarymeshes involves three
main parts: (1) a Newton’s method formulation with
two contact points per wrapping surface; (2) distance
field computations on arbitrary meshes used to estimate
tangents to the geodesic curve connecting the contact
points; and (3) a heuristic initialization procedure to
find a good initial guess for the Newton’s solve. We

Figure 1. A valid wrapping path on a sphere.

Figure 2. A sample configuration of entry and exit points, along
with the vectors that define their respective trihedron.

implemented the method in Matlab and evaluated its
convergence with a number of different arbitrary mesh
shapes. We also evaluated wrapping accuracy compared
to analytical cases, the robustness of the initializationpro-
cedure and the continuity of the path length in dynamic
simulations.

2.1. Newton’smethod formulation

We adopt the general wrapping formulation proposed
previously (Stavness et al. 2012; Scholz et al. 2016). Let
O (origin) and I (insertion) be the endpoints of the path.
Thewrappedpath consists of three segments: straight line
between O and P (entry, located on the surface), surface
geodesic between P andQ (exit, also on the surface), and
a straight line between Q and I. The wrapping path is
said to be valid if it is continuously differentiable; that is,
if left and right unit tangents at both P and Q coincide
(see Figure 1 for an example of a valid wrapping path
around a sphere). Thus, our objective is to find a valid
wrapping, given the endpoints of the path and the mesh
to wrap around.

Weopted for a symmetric problem formulation,where
both entry and exit points are directly controlled (as
opposed to the asymmetric, one-sided geodesic shooting
method described in Scholz et al. (2016)). Given the
points P and Q on the surface we define a trihedron at
P consisting of three unit vectors: TP (unit tangent of
the shortest path from P to Q), NP (unit normal to the
surface at P), and BP = TP × NP (unit bitangent). The
trihedron at Q is defined symmetrically (Figure 2). We
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further define two other vectors:

DP = P − O
‖P − O‖ ,

DQ = Q − I
‖Q − I‖ .

(1)

With the vectors defined above, our residual function is
formed as follows:

f(P,Q) =

⎛
⎜⎜⎝
f1
f2
f3
f4

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

DP · NP
DP · BP
DQ · NQ
DQ · BQ

⎞
⎟⎟⎠ . (2)

We note that the condition f(P,Q) = 0 is necessary, but
not sufficient for a valid path; in particular, the condition
holds whenDP = −TP (or likewise forQ), despite such a
path not being continuously differentiable. However, we
assume that Newton’s method will pursue a valid path
when supplied with reasonably close initial conditions.

At each step of Newton’s method, we set up a local
parametrization (u, v) of the surface at P andQ such that

R(0, 0) = P,
∂R
∂u

(0, 0) = TP,

∂R
∂v

(0, 0) = BP

(3)

and likewise for Q. The residual function can then be
expressed in terms of these coordinates: f(uP, vP, uQ, vQ).
Each Newton step will yield the predicted perturbations
in these principal directions thatwillmoveP andQ closer
to a valid configuration.

The vectors required in our residual function (surface
normals and geodesic tangents) are computed at each
vertex of the mesh (see Section 2.2). To find values of
these vectors at arbitrary points on the surface we use
linear interpolation with barycentric coordinates. That
is, if X = αv1 + βv2 + (1 − α − β)v3 is a point in a
triangle with vertices v1, v2, v3 (where 0 ≤ α,β ≤ 1 are
barycentric coordinates ofX), then value of a vector field
at X is approximated by

VX = αV1 + βV2 + (1 − α − β)V3, (4)

whereV1,V2,V3 are values of the vector field at v1, v2, v3,
respectively. This scheme provides a simple method of
interpolation. It further allows for easy differentiation
of interpolated vectors, which is necessary for Jacobian
computations required by Newton’s method. In particu-
lar, if a vector Z lies in the plane of X’s triangle, then we

can write

Z = μ(v1 − v3) + ν(v2 − v3) (5)

for some μ, ν. Then for a small perturbation t, we have

VX+tZ = (α + tμ)V1 + (β + tν)V2

+ (1 − α − β − t(μ + ν))V3, (6)

so that

dVX+tZ

dt
= μ(V1 − V3) + ν(V2 − V3). (7)

This fact, along with the normalization identity:

d
dx

v(x)
‖v(x)‖ = (v(x) · v(x))v′(x) − (v(x) · v′(x))v(x)

‖v(x)‖3 ,

(8)
allows us to calculate most of the entries of the Jacobian
matrix of f . Here we provide details of the derivatives
of f with respect to changes in uP, vP and note that,
by symmetry, derivatives with respect to uQ, vQ can be
obtained analogously.

The first Jacobian term, ∂f1/∂uP, involves the rate of
change of the entry and normal vector atPwith respect to
uP. This requires expressions for ∂DP/∂uP and ∂NP/∂uP,
since

∂f1
∂uP

= ∂(DP · NP)

∂uP
= ∂DP

∂uP
· NP + DP · ∂NP

∂uP
. (9)

For ∂DP/∂uP, from the definition ofDP and (8) it follows
that

∂DP

∂uP
= ‖P − O‖2TP − ((P − O) · TP)(P − O)

‖P − O‖3 . (10)

For ∂NP/∂uP, suppose that P is located in a triangle with
vertices v1, v2, v3 and its barycentric coordinates are 0 ≤
α,β ≤ 1. If we define ÑP = αN1 + βN2 + (1 − α −
β)N3 (where N1,N2,N3 are surface normals at v1, v2, v3,
respectively), then NP = ÑP/‖ÑP‖. Finally, we let T̃P =
μ(v1 − v3) + ν(v2 − v3) be the projection of TP on the
v1, v2, v3 triangle. If we defineW = μ(N1−N3)+ν(N2−
N3), then

∂NP

∂uP
= ‖ÑP‖2W − (ÑP · W)ÑP

‖ÑP‖3
. (11)

Expressions (10) and (11) can be substituted into (9) to
obtain ∂f1/∂uP. The same rationale applies to ∂f1/∂vP.

The second Jacobian term, ∂f2/∂uP, involves the rate
of change of the bitangent vector to the geodesic atPwith
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respect to uP:

∂BP

∂uP
= ∂(TP × NP)

∂uP
= ∂TP

∂uP
× NP + TP × ∂NP

∂uP
. (12)

where ∂TP/∂uP can be computed similarly to ∂NP/∂uP.
The same procedure can be used to calculate ∂f2/∂vP.

The third Jacobian term, ∂f3/∂uP, involves ∂DQ/∂uP
and ∂NQ/∂uP. In our symmetric formulationof the resid-
ual function, P and Q are controlled independently, so
that movement of P does not result in location change
for Q. For this reason, NQ and DQ are constant with
respect to perturbations of P and therefore

∂f3
∂uP

= 0,
∂f3
∂vP

= 0. (13)

The fourth Jacobian term, ∂f4/∂uP, involves ∂BQ/∂uP.
If Pmoves along the geodesic connecting P and Q (i.e. a
small distance in the direction uP), the geodesic curvewill
shorten at P’s end, but the trihedron Q should remain
unchanged. Thus, a small perturbation in the geodesic
tangent direction of P should leave the vectors at Q
unaffected, therefore:

∂f4
∂uP

= 0. (14)

The same reasoning, however, does not hold for ∂f4/∂vP.
If P moves perpendicular to the geodesic connecting
P and Q (i.e. a small distance in the direction vP) the
trihedronQ should rotate about NQ and therefore mod-
ify the residual term f4. For continuous surfaces, these
derivatives can be computed via parallel transport of
the geodesic curve (see Scholz et al. 2016, Section 3.3).
For arbitrary meshes the parallel transport of geodesic
curves is an open problem, therefore we currently use
finite differences to estimate ∂f4/∂vP (and by symmetry
∂f2/∂vQ).

2.2. Distance field computation

The Newton’s method formulation described above
requires computing the tangent vector at each end of
a geodesic curve connecting points P and Q on a sur-
face, i.e. TP and TQ in Equations (10) and (12). For
continuous surfaces, the problem of finding a geodesic
curve between two points is commonly formulated as a
two-point boundary value problem (Gliklikh & Zykov
2007). For arbitrary meshes, we can recast this problem
as that of finding the negative gradient of a distance field
radiating fromPmeasured atQ and vice versa. For this to
be feasible, we require a fast method to calculate distance
fields across arbitrary meshes.

Recently, Crane et al. (2013) proposed an efficient dis-
crete differential geometry approach for approximating
distance fields on arbitrarymeshes that they term the heat
method. Motivated by Varadhan’s formula, this method
utilizes the heat kernel to determine the distance field
on the mesh from a given source set of vertices. The
algorithm consists of three main steps:

(i) Integrate the PDE ẇ = �w to some time t.
(ii) Compute the negative normalized gradient: Y =

−∇w/‖∇w‖.
(iii) Compute the divergence of Y and solve �φ =

∇ · Y.
The Laplacian is discretized on the triangular mesh using
the linear cotan scheme (MacNeal 1949) and the heat
equation is integrated in time via a single Backward Euler
step. Gradient and divergence operators are likewise dis-
cretized using standard linear schemes. After discretiza-
tion, steps (i) and (iii) of the above algorithm reduce to
solving sparse linear systems of equations, with constant
symmetric positive-definite coefficient matrices that can
be pre-factored. Thus, after the initial build phase, heat
method allows us to quickly re-compute distance fields
from changing source sets.

In order to visualize the wrapping path, we compute
a geodesic path by integrating the negated gradient of
the distance field starting at one of the contact points.
In practice we blend the geodesics shot from the entry
and exit points to obtain a visually smoother path. We
note that finding the actual geodesic is only required for
visualization, as the path length is given by the distance
field, and the rate of path length change by the velocity of
the contact points (see Scholz et al. 2016, Section 3.5).

2.3. Initialization procedure

Newton’s method works well when starting from an ini-
tial set of parameters that are close to the final solution.
To acquire a good initial guess, we developed a simple
automatic heuristic Marching algorithm. It is slower and
less accurate than Newton’s method, but more robust
when the guess is far from the solution. The Marching
procedure occurs for points P andQ simultaneously.

We define a two-dimensional residual vector:

e =
(
e1
e2

)
=

(
(DP × TP) · BP

−(DP × TP) · NP

)
. (15)

The point P is then moved in the direction of TP by ke1
and in the direction of BP by ke2, where k is a positive
constant (Figure 3). This process is repeated until we
arrive at a satisfactory initial guess for Newton’s method,
i.e. a user-defined convergence tolerance on ‖e‖. Note
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Figure 3. Initialization procedure to alignD (red) and T (blue) vectors by Marching in the tangent (a) and bitangent (b) directions.

Figure 4. Test cases for robustness evaluation (only first 50 trials for the ellipsoid are shown).

that the initialization routine needs to be called only
once, before the first wrapping is performed. Subsequent
wrappings can use the configuration from the previous
time step as a starting point.

Choice of k governs both the accuracy of the method
as well as its convergence speed. If k is small, P is more
careful with its movement, and the method can give a
more accurate result. For larger k, we arrive at a reason-
able guess in fewer iterations, at the cost of asymptotic
accuracy. Since we use this initialization process only for
acquiring of an initial guess, a larger k is preferred.

2.4. Evaluation

We evaluated the performance of our wrapping algo-
rithm in a number of ways: robustness of the initializa-

tion scheme and accuracy, continuity, and efficiency of
the wrapping scheme. Our test cases used three meshes:
an ellipsoid mesh attained by stretching an icosahedral
sphere (2562 vertices, 5120 faces), a femur mesh (5138
vertices, 10272 faces) and thewell-knownStanfordbunny
mesh (2503 vertices, 4968 faces, with filled holes).

Robustness of the initialization method was evaluated
both with the ellipsoidmesh and the femurmesh. For the
ellipsoid, 500 trials were performed, with the endpoints
of the path randomly generated such that the line seg-
ment connecting them intersected the ellipsoid. Due to
difficulty in randomly generating trials for the femur, we
manually crafted a test suite consisting of 20 represen-
tative experiments. Figure 4 shows the unwrapped test
cases (only the first 50 trials for the ellipsoid are in the
diagram). For both meshes, the initialization algorithm
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Figure 5. Wrapping results for ellipsoid, bunny, proximal femur
and distal femur meshes.

was set to start searching at one of the triangles closest
to the endpoint (for both origin and insertion points).
The tests were performed with several combinations of
convergence tolerances and step sizes (k constant for the
Marching method). An iteration limit was set at 200; if
the routine failed to converge within tolerance in 200
iterations, a failure was reported.

Accuracy of the wrapping method was assessed by
comparing an analytical sphere solution to wrapping on
a sphere mesh with three different levels of discretization
(162, 642, and 2562 vertices, respectively). Five hundred
test caseswere randomly generated in a similarmanner to
the robustness test above. Our initialization scheme was
used to find a satisfactory initial guess, and the iteration
limit was set to 200. Of the 500 test cases, we counted

the number of tests that failed to converge. For the tests
that converged, we compared results obtained with our
method to analytical solutions for a sphere. Length error
was calculated at the total path length relative to the exact
length of the analytical path. Tangent error was defined
to be the average angle between the computed tangent
vectors and their analytical counterparts at entry and exit
points. Lastly, surface error was computed as the average
distance between approximate and exact entry and exit
points. Note that we did not compensate for the natural
deviation caused by discretization of the sphere.

To assess the continuity properties of our wrapping
method, we performed simulations in which one
endpoint of the path was moved incrementally at each
timestepwith a constant velocity while the opposing end-
point andwrapping surface were stationary.We analyzed
path continuity for endpoint motion in three directions:
the tangent direction (to elicit an overall shortening of
the path, but no change in the surface path segment),
the negative normal direction (expected to bend the path
around the surface), and the bitangent direction (ex-
pected to slide the path along the surface). For each trial,
we recorded the evolution of path length over time, as
well as its rate of change. This rate of change was then
compared to the analytical result, which was computed
using the method derived in Scholz et al. (2016). Our
continuity tests were performed on the ellipsoid mesh
with a fixed simulation timestep size of 0.02 s for 50 steps.

Convergence of our wrapping method was measured
for 500 tests on the ellipsoid with randomly generated
endpoints. Convergence tolerance was set to 10−8 and
the initial guess was formed by first using our initial-
ization procedure. We recorded the number of failures
to converge (within 100 iteration limit). In addition, we
counted the number of Newton iterations for each trial,
as well as the running time. The tests were executed on a
Windows 8.1 machine with an Intel Xeon E5-2637 CPU
(running at 3.5GHz) and 32GB of RAM. Runtime is
difficult to assess in practical terms because our prototype
was implemented inMatlab, an interpreted environment,
which does not produce timing results representative of
a realistic fast implementation. For example, the distance
field calculations inMatlab were several orders of magni-
tude slower when compared to the optimized C++ imp-
lementation of the heat method reported in Crane et al.
(2013)1. Nevertheless, the computed speed-up factors
allowed us to estimate the likely running times of a faster
implementation.

3. Results

The initialization procedure worked well with the ellip-
soid and succeeded to find a reasonable initial guess in
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Figure 6. Continuity results for three tested path motions. The surface segment length and rate of length change are shown.
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(a) (b)

(c) (d)

Figure 7. Example wrapping paths. Our approach requires that the surface wrapping segment (blue) is the locally shortest distance
path between contact points. This approach works for configurations in which the path bends (a) or even takes the long way around an
obstacle (b), but will fail for cases in which the path wraps completely around to enclose an obstacle (c, d).

almost all cases (Table 1). The trade-off between speed
and accuracy was also evident: increasing the step size k
from 0.125 up to 0.25 resulted in appreciably fewer iter-
ations required on average, at the cost of a higher chance
to fail (7 failed trials as opposed to none). A step size of
k = 0.2 resulted the fewest failures and the second-fastest
performance across all test cases. Robustness tests with
the femur mesh resulted in higher chance of failure. We
note that even in the failed cases, the algorithm still man-
aged to get close to a satisfactory guess, but its inaccuracy
prevented the convergence tolerance from being met.
This can be seen by observing that the number of failures
fell as convergence tolerance was loosened. Furthermore,
for the most problematic trial, the algorithmmanaged to
reduce the residual to 0.0519, which although above the
tolerance of 0.05, still provided a sufficiently good initial
guess that Newton’s method converged within a couple
of iterations.

The wrapping procedure was successful for all test
meshes (Figure 5) and the sphere mesh results were rea-

sonable close to the analytical solution for all trials
(Table 2). Furthermore, the error and number of conver-
gence failures decreased as themesh resolution increased.

We found that path length was not smooth during
movement simulations (Figure 6). Simulating path end-
point motion at the same speed in different directions
produceddifferent rates of path length change. Path short-
ening by displacement of one endpoint in the tangent
direction produced the expected result of no change in
surface segment length. However, both bending and slid-
ingmotions (displacement of the endpoint perpendicular
to the tangent direction) produced errors in path length
change. Path bending motions fared better than sliding
motions, as they evolved more smoothly, but these dis-
continuities may hamper forward dynamics simulations
with high accuracy tolerances.

We found consistently good convergence of the wrap-
ping algorithm following initialization. Of the 500 trials
comprising our efficiency test suite, the algorithm failed
to converge within 100 iterations just once. For the rem-
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Table 1. Robustness results of the initialization procedure for 500 random trials with an Ellipsoid mesh and 20 trials with the Femur
mesh.

Convergence Iterationsa (Failuresb)

tolerance k = 0.125 k = 0.15 k = 0.2 k = 0.25

Ellipsoid 0.05 32.29 (0) 25.89 (0) 19.17 (0) 15.30 (7)
Femur 0.05 61.44 (2) 51.11 (2) 45.05 (1) 36.94 (2)
Femur 0.06 58.16 (1) 48.21 (1) 41.95 (0) 34.32 (1)
Femur 0.07 53.79 (1) 51.95 (0) 38.70 (0) 31.63 (1)
aAverage number of iterations until convergence.
bTotal number of trials that failed to converge.

Table 2. Accuracy results of the wrapping algorithm for 500 random trials with a Sphere mesh.

Mesh size Length Tangent Surface Convergence
vertices (faces) errora (%) error (◦) error failures

Sphere 162 (320) 0.99 1.25 0.0263 7
Sphere 642 (1280) 0.47 0.71 0.0150 3
Sphere 2562 (5120) 0.31 0.78 0.0153 2
aLength errors are relative to exact length.

aining 499 successes, an average of 4.94 iterations were
required (with a standard deviation of 1.96 iterations),
and the average running time was 2.40 s; this rate of
convergence translates to a projected average running
time of under 0.03 s for a faster implementation.

4. Discussion

Few previous muscle wrapping methods permit wrap-
ping muscle cables directly on polygonal mesh
representations of bones and other model structures. We
accomplish this by using distance fields across a mesh to
find the shortest path geodesic to connect entry and exit
points of a wrapping surface. The distance field approach
has the benefit that distance information can be precom-
puted and reused when wrapping multiple cables over
the same wrapping surface. For example, three wrapping
surfaces can accommodate over 40wrappingmuscles and
ligaments in the Lenhart et al. (2015) knee model.

The distance field approach is limited to finding wrap-
ping paths for which the surface segment is a locally
shortest path along the surface. Our method will fail
for wrapping paths that fully wrap around an enclosed
surface.While such wrapping is observed in cable-driven
mechanical systems, e.g. for pulleys, we know of no such
cases for muscle and ligament wrapping in the human
body. Muscle and ligament paths will generally bend
around a bone and continue in the same direction (Figure
7(a) and (b)), rather thanwrapping fully around an object
and bending back in the opposite direction (Figure 7(c)
and (d)). It is important to note that our method does
permit the overall path to ‘take the long way around’ a
structure (Figure 7(b)), as happens for some muscles in
the shoulder.

The automatic initializationprocedureperformedwell
and was robust to a wide variety of initial conditions. The
procedure was designed and tested for the case of a path
wrapping a single obstacle. It is not clear whether the
proposed heuristic will extend to the more general case
ofmulti-obstaclewrapping.Nonetheless, the schememay
be useful in practice as many wrapping problems involve
only single obstacles. For example, muscles in the Arnold
et al. (2010) lower extremity model exclusively involve
single-obstacle wrapping.

Accuracy, robustness and efficiency tests were gener-
ally positive, but our method did not provide continuous
changes in path length during dynamic simulations. The
continuity results were better for stretching and bend-
ing motions of the path (tangent and normal motions
of the endpoint) than for sliding motions of the path
(bitangent motion of the endpoint). The magnitude of
length change error was comparable to errors found for
wrapping methods that use a discretized elastic path (see
Scholz et al. 2016, Figure 7(d)).

Previous wrapping studies have only reported tests
for a small number of ‘representative’ wrapping con-
figurations. In this study, we devised a test suite with
a variety of meshes and a large random sample of test
configurations. Results for a large number of test cases
provide us with some confidence that our method will
work for the large variety of wrapping conditions present
in musculoskeletal models.

5. Future work

We did not achieve path length continuity with our cur-
rent implementation. However, we expect that the conti-
nuity could be improved by replacing linear interpolation
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(4) with a smoother scheme, such as using local quadratic
patches (Nagata 2005) near each contact point. Smoother
interpolation may also allow coarser meshes to be used
without sacrificing accuracy.

We do not currently consider the problem of a wrap-
ping path lifting off, or coming into contact with, a wrap-
ping surface. At present, the contact problemwould have
to be handled outside of the wrapping algorithm, e.g.
checking for lift off or contact before engaging wrapping.
Likewise, while our approach works with non-convex
shapes, such as the femur mesh used for testing, the
wrapping segment remains on the surface, rather than
lifting off over concave regions. The lift-off/contact prob-
lem has been examined by selected previous works (Gao
et al. 2002; Scholz 2016), but an analysis with respect to
path continuity for arbitrary meshes remains an open
problem.

Our current implementation pre-factors the matrix
used to compute distance fields and reuses that
information in each step and for each strand over the
same surface.We could instead precompute the entire set
of distance fields for each mesh, often called an affinity
matrix, which would significantly speed up the wrapping
calls at the cost of greater memory usage. Indeed, our
preliminary tests show that the run-time can be red-
uced by two orders of magnitude by taking advantage of
such massive precomputing: the aforementioned
efficiency tests on the ellipsoid required an average run-
ning time of just over 0.02 s (compared to 2.4 s). Sur-
prisingly, the increase in memory usage associated with
this modification is not too great in practice. For exa-
mple, the symmetric affinitymatrix for the ellipsoidmesh
with 2562 vertices only requires 25MB of memory (and
scales quadratically with the number of vertices). Fur-
ther, we would no longer need to store the matrix pre-
factorization, and therefore the net memory footprint
increase would only be approximately 40% (from 15 to
25MB).

6. Summary

We have developed and tested a new algorithm for mus-
cle wrapping around arbitrary bone meshes in muscu-
loskeletal models. The algorithm uses initialization and
Newton’s method to rapidly converge on a valid wrap-
ping path based on distance fields computed across the
mesh surface with the geodesic heat method. The heat
method is well suited to the problem since, after the
initial build phase, it allows for fast distance field
computations from changing source points. Moreover,
a single build operation is performed for each wrapping
surface, regardless of the number of paths that wrap
around it. While path length discontinuity remains a

challenge for our discrete differential geometry scheme,
the approach provides an important step toward allowing
musculoskeletal modelers the freedom to use mesh rep-
resentations of wrapping surfaces in their future models.

Note

1. An optimized library is provided at http://www.cs.
columbia.edu/keenan/index.html#code.
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