
ar
X

iv
:2

01
0.

15
97

8v
1 

 [
cs

.S
E

] 
 2

9 
O

ct
 2

02
0

Examining the Relationship of Code and

Architectural Smells with Software Vulnerabilities

Kazi Zakia Sultana

Montclair State University

sultanak@montclair.edu

Zadia Codabux

University of Saskatchewan

zadiacodabux@ieee.org

Byron Williams

University of Florida

byron@cise.ufl.edu

Abstract—Context: Security is vital to software developed for
commercial or personal use. Although more organizations are
realizing the importance of applying secure coding practices, in
many of them, security concerns are not known or addressed
until a security failure occurs. The root cause of security failures
is vulnerable code. While metrics have been used to predict
software vulnerabilities, we explore the relationship between code
and architectural smells with security weaknesses. As smells are
surface indicators of a deeper problem in software, determining
the relationship between smells and software vulnerabilities
can play a significant role in vulnerability prediction models.
Objective: This study explores the relationship between smells
and software vulnerabilities to identify the smells. Method: We
extracted the class, method, file, and package level smells for
three systems: Apache Tomcat, Apache CXF, and Android. We
then compared their occurrences in the vulnerable classes which
were reported to contain vulnerable code and in the neutral
classes (non-vulnerable classes where no vulnerability had yet
been reported). Results: We found that a vulnerable class is
more likely to have certain smells compared to a non-vulnerable
class. God Class, Complex Class, Large Class, Data Class, Feature
Envy, Brain Class have a statistically significant relationship with
software vulnerabilities. We found no significant relationship
between architectural smells and software vulnerabilities. Con-
clusion: We can conclude that for all the systems examined,
there is a statistically significant correlation between software
vulnerabilities and some smells.

Index Terms—Vulnerability, Code Smell, Architectural Smell,
Software Security

I. INTRODUCTION

Software is critical to many industries. Software develop-

ment organizations need to ensure that software safeguards

sensitive and confidential information while providing quality

services to its users. Software companies must fulfill the

requirements of their stakeholders while preventing malicious

attempts from potential attackers. In addition to security mea-

sures like firewalls and intrusion detection systems, designing

and developing secure software should also be of paramount

importance. However, in many software companies, security

concerns are often not known or addressed early in the

software development lifecycle and only become known when

they manifest themselves as post-release vulnerabilities.

A vulnerability is “a security exposure that results from

a product weakness that the product developer did not in-

tend to introduce and should fix once it is discovered”.1

1https://msdn.microsoft.com/en-us/library/cc751383.aspx

MITRE Corporation defines an information security vulner-

ability as “a mistake in software that can be directly used

by a hacker to gain access to a system or network”.2 For

instance, injection flaws (e.g., SQL injection) occur when

untrusted data is sent to an interpreter as part of a command

or query.3 While traditional metrics have been used to detect

software vulnerabilities, we intend to uncover additional ways

of identifying software vulnerabilities. In this study, we aim

to determine whether there is a relationship between code and

architectural smells (referred to as “smells” in this paper) and

software vulnerabilities and to determine what are the leading

smells in vulnerable classes. Companies such as Facebook

and Google that have rigorous quality processes in place are

already extracting smells or performing static analysis [1], [2].

Therefore, software practitioners can make additional use of

this data to identify vulnerable components in their software.

Code smell, a term coined by Kent Beck, refers to a surface

indication that usually corresponds to a deeper problem in

the system [3]. However, it may not be true in all cases as

advocated by Martin Fowler: “Smells aren’t inherently bad on

their own - they are often an indicator of a problem rather than

the problem themselves”.4 Many studies have identified code

smells as indicators of fault-proneness that directly relate to

the system’s quality [4]–[6]. Code smells are also related to

weak system design, bad implementation methods, micro and

nano-patterns which may lead to poor quality [7]–[9]. So, the

identification and management of smells is an important part

of software quality assurance to build quality software.

Although researchers investigated the correlations between

vulnerabilities and code smells [10]–[13], a more extensive and

rigorous study on analyzing code smells and their impact on

vulnerabilities is still needed for secure software development.

Most of the current research focused on a particular context,

for example, either they worked on a specific class of code

smells to relate them to vulnerabilities or they focused on the

vulnerabilities in a particular system like Android. Besides, to

the best of our knowledge, this is the first study on investigat-

ing the relationship between architecture smells (defined later)

and software vulnerabilities.

Ten common defects account for about 75% of all software

2https://cve.mitre.org/about/terminology.html
3https://www.owasp.org/index.php/Top 10 2013-Top 10
4https://martinfowler.com/bliki/CodeSmell.html

http://arxiv.org/abs/2010.15978v1


vulnerabilities [14]. Existing studies are mostly confined to

predicting software vulnerabilities using software metrics (e.g.,

code churn, complexity, fault history) [15], [16]. Although

traditional software defect metrics can be used for predicting

the existence of vulnerabilities, vulnerability prediction is a

bit challenging since vulnerability data is relatively limited,

resulting in difficulties for training a model [17]. Another study

that evaluated 45 e-business applications showed that 70% of

security defects were caused by poor software design [18].

According to Mumtaz et al. [13], “Code smells indicate

design flaws that can degrade the quality of software and can

potentially lead to the introduction of faults.” Therefore, the

objective of this work is to explore whether smells extracted

from source code are related to software vulnerabilities.

The contributions of this study are:

• We analyze the smells in the vulnerable and neutral (non-

vulnerable) code of the systems under study to find the

correlation between software vulnerabilities and smells.

The correlation analysis will help guide software prac-

titioners in secure software development by indicating

area in the codebase that are more prone to vulnerability.

For example, as developers are made aware of certain

vulnerable smells, they can modify their testing strategy

and apply appropriate quality assurance approaches (e.g.,

static analysis).

• This study can be used as a baseline to establish a pre-

diction model for software vulnerabilities using smells.

Smell extraction is achieved using a set of metrics

and thresholds that have been validated by existing re-

search [19], [20]. This study examining the relation-

ship between smells and software vulnerabilities opens

a new research direction of vulnerability prediction using

smells.

The rest of the paper is organized as follows. Section II

introduces background information on code and architecture

smells. Section III highlights the relevant related work. Sec-

tion IV focuses on the methodology of the study including

the research goal, questions, and study design. Section V

describes the data analysis and provides insights into the

results. Section VI presents the discussion. Section VII lists

the threats to the validity of this study. Section VIII concludes

and outlines future work.

II. BACKGROUND

In this study, we refer to a class as a vulnerable class

if it has been confirmed and formally reported to contain

vulnerable code by a developer (e.g., a task that results in

a defect being fixed). A neutral class is a class where no

known vulnerability has yet been reported. The scope of this

work is restricted to determining the correlation (not causation)

between vulnerabilities and smells.

Code or bad smells are potential design weaknesses in

source code that can cause the software to be more change and

defect prone, slow down the software development process and

make software maintenance harder [4], [6], [21]. For example,

a God Class (GC) code smell is a central class in a system

that has taken on a lot of responsibilities, delegating only

trivial tasks to other classes. In short, a god class is a class

“which knows too much and does too much.” It violates the

Single Responsibility Principle. A god class features a high

complexity, low cohesion, and heavy access to data of foreign

classes and is defined using the following formula [20]:

GC = (AFTD > FEW ) ∧ (WMC >= V ERYHIGH) ∧ (TCC < 0.33)

where Access to Foreign Data (ATFD) represents the num-

ber of external classes from which a given class accesses

attributes, directly or via accessor-methods; Weighted Method

Count (WMC)) is the sum of the cyclomatic complexity of all

methods in a class; Tight Class Cohesion (TCC) is the relative

number of methods directly connected via attributes.

Code smells are also referred to as design smells and the

terminologies “code smell” and “design smell” have been used

interchangeably in the literature [22], [23]. However, design

smells are also perceived as being distinct from code smells.

A design smell is defined as a weakness in the design that

violates fundamental design principles and negatively impacts

quality [24]. A code smell is also considered as an indicator

or symptom of design smell [25].

Architecture or architectural smells, as introduced by Garcia

et al. [26], are “decisions that negatively impact system inter-

nal quality. Architectural smells may be caused by applying

a design solution in an inappropriate context, mixing design

fragments that have undesirable emergent behaviors, or apply-

ing design abstractions at the wrong level of granularity.” Ar-

chitectural smells are defined at the architecture (higher) level

(e.g., components, connectors, styles, packages, subsystems,

communications). In our study, we considered the smells: Hub-

Like Dependency, Unstable Dependency, Cyclic Dependency,

and Unhealthy Inheritance Hierarchy that Fontana et al. [27]

categorized as architectural smells as they indicate architec-

tural decisions that negatively impact the system’s internal

quality. Some code smells have been classified as both code

smell or design smell e.g. god class is referred to as a code

smell [21], design smell [28] and even architecture smell [29].

We adopt the convention that code/design smells are too

similar to distinguish. Therefore, we evaluate two types of

smells in our study: code/design smells and architectural

smells. For simplicity, smells that assume both the code smell

and design smell characteristics will be referred to as “code

smells.” For this study, we extracted smells at class, method,

package, and file levels. The smells considered in this study

are described in Table I.

III. RELATED WORK

In this section, we highlight existing research that focused

on the relationship between smells and vulnerabilities.

Elkhail et al. [11] conducted an empirical study to analyze

the relationship between code smells and vulnerabilities. They

used Apache Tomcat software vulnerabilities which were

identified by static code analysis. According to their study,

most code smells (except “Field Declarations Not at Start

of Class”) have a slight impact on vulnerabilities. Islam et

al. [10], [34] performed a large quantitative empirical study of



TABLE I
SMELLS CONSIDERED IN THE STUDY

Granularity Smell Type Smell Description

Class Code God Class A class that tends to centralize the intelligence of a system, performs most of the work, delegating only minor
details to a set of trivial classes and using the data from other classes [20]

Code Lazy Class A class that is not doing enough. It either needs to be removed or its responsibility needs to increase [30]
Code Complex Class A class having at least one method having a high cyclomatic complexity [31]
Code Large Class A class that has a large number of lines of code, global variables, and methods, as well as a complicated

function [3]
Code Data Class A dumb data holder without complex functionality but other classes strongly rely on them [20]
Code Refused Bequest A subclass that has a weak connection to its parent’s class, by insufficiently using the data and methods

inherited from the parent’s class [20]
Code Brain Class A class that tends to centralize the functionality of a system but unlike god classes, they do not use too much

data from foreign classes and are a little more cohesive [20]
Architecture Hub-Like Dependency When an abstraction has (outgoing and incoming) dependencies on a large number of other abstractions [32]

Method Code Feature Envy A method that seems more interested in the data of other classes than that of their own class [20]
Code Long Method A method that is too long and tries to do too much on its own [30]
Code Long Parameter List A method that takes too many parameters [30]
Code Brain Method A method that tends to centralize the functionality of a class [20]
Code Shotgun Surgery When the method changes, it implies many small changes to a lot of different classes [20]

Package Architecture Unstable Dependency A subsystem (component) that depends on other subsystems that are less stable than itself, with a possible
ripple effect of changes in the project [32]

Architecture Cyclic Dependencya A subsystem (component) that is involved in a chain of relations that break the desirable acyclic nature of a
subsystem’s dependency structure [32]

File Architecture Unhealthy Inheritance Hierarchy A parent class that depends on its children, or a client class depending on both parent and child [33]

aCyclic Dependency can be at both class or package level granularity

the software vulnerabilities in cloned and non-cloned code for

C and Java-based open-source software systems. Code clones

are the stinkiest of all of the code smells [3]. They identified a

set of five vulnerabilities that appear more frequently in cloned

code compared to non-cloned code [34]. They also revealed

that the software vulnerabilities found in code clones have

higher severity of security risks compared to those in non-

cloned code [10]. Mumtaz et al. [13] showed that refactoring

of bad smells helps improve the security of an application

without compromising the overall quality of software systems.

Ghafari et al. [12] introduced the term “security smells” -

symptoms in the code that signal the prospect of a security

vulnerability. They identified 28 smells that may lead to

vulnerabilities in Android-powered devices. They concluded

that the identified security smells are a good indicator of

software vulnerabilities [12]. Gadient et al. [35] extended the

work to focus on identifying security smells in Android Inter-

Component Communication (ICC) vulnerabilities which is one

of the Android’s most widespread security issues. Rahman

et al. [36] investigated security smells in the context of

Infrastructure as Code (IaC) scripts. They extracted the smells

using a static analysis tool, then mapped the smells to security

weaknesses using the CWE database.5 They reported that some

smells have a long lifetime and provided some guidelines

to practitioners for secure IaC script writing. The authors

extended their empirical study to include nine security smells

for Ansible and Chef IaC scripts [36]. Rahman et al. [37] also

conducted a similar analysis of the GitHub Gist written in

Python. They extracted 13 smells using static analysis before

performing an empirical study to identify security smells.

Most of these studies are conducted in specific domains

(e.g. IaC Scripting, Python Gists) and their main focus is

security smells. Our study is more general in that we extract

a wider range of smells encountered by the developers. A

5https://https://cwe.mitre.org/index.html

focus on security smells only limits the applicability and may

miss seemingly innocuous smells that occur regularly in source

code but also strongly correlate to vulnerabilities.

IV. METHODOLOGY

A. Research Questions

The goal of this study is to investigate the relationship be-

tween the presence of smells and software vulnerabilities. This

goal will be addressed by the following research questions.

RQ1: What is the relationship between smells and software

vulnerabilities?

We investigate whether classes with smells are more prone

to software vulnerabilities compared to others. This informa-

tion can help indicate potential security flaws and risky areas in

software systems. Software companies striving to secure their

software can use such information as a proactive measure to

identify and prevent potential security breaches which can be

financially detrimental to the company.

If we show that code smells present different distributions

in two groups: vulnerable vs. neutral classes, we can infer that

the presence of smells is related to vulnerabilities. This finding

can lead to further investigation of the type of relationship

among them. We formulate the following hypotheses:

Null Hypothesis (H01): Smells are not associated with soft-

ware vulnerabilities.

Alternative Hypothesis (HA1): Smells are more likely to be

associated with software vulnerabilities.

RQ2: Are there certain smells that have a stronger rela-

tionship to vulnerabilities than others?

We investigate whether classes with specific kinds of smells

contribute more to software vulnerabilities compared to others.

This analysis will help us find the problematic types of smells

in vulnerable and neutral code. For example, if we find that

Large Class has a significantly different percentage of occur-

rences in vulnerable classes compared to the neutral classes,

we can identify Large Class as having a relationship with



vulnerability. In that case, developers will be able to identify

and address Large Class in the code. On the other hand, if

Large Class smell does not show significant differences in their

presence in vulnerable vs. neutral classes, we can conclude

that smell has no relationship or a weak relationship with

vulnerability. Accordingly, we formulated the hypotheses:

Null Hypothesis (H02): A particular type of smell in a class

is not associated with a software vulnerability.

Alternative Hypothesis (HA2): A particular type of smell

in a class is more likely to be associated with a software

vulnerability.

To establish a strong correlation between smells and vulner-

abilities, there should be a significant difference in the number

of smells in vulnerable classes compared to neutral classes.

B. Study Design

The study consists of the smells and software vulnerabilities

captured from three systems: Apache Tomcat, Apache CXF,

and Android.

The rationale behind choosing these systems are as follows:

• The systems have well-documented public vulnerability

repositories.

• The systems are open-source and developed for different

types of web services.

• Our tool detects smells in Java code and the tool is

applicable for these systems as they are fully or mostly

developed in Java.

• The systems are heavily used for building and deploying

real-world applications.

We analyzed 37 versions of Apache Tomcat, 17 versions of

Apache CXF, and 2 versions of Android. The characteristics

of the analyzed systems are presented in Table II. The number

of classes, methods, and lines of code (LOC) are based on the

last version of each major release at the time of the study.

TABLE II
PROJECT STATISTICS

Systems Major
Release

Versions #Classes #Methods #LOC

Apache Tomcat 6 6.0.16, 6.0.18, 6.0.26, 6.0.29,
6.0.30, 6.0.32, 6.0.33, 6.0.35,
6.0.36, 6.0.37, 6.0.39, 6.0.41,
6.0.43

1,763 16,601 366,948

7 7.0.10, 7.0.11, 7.0.16, 7.0.20,
7.0.21, 7.0.22, 7.0.27, 7.0.29,
7.0.32, 7.0.39, 7.0.42, 7.0.47,
7.0.50, 7.0.52, 7.0.53, 7.0.54,
7.0.57

1,631 14,859 325,300

8 8.0.0-RC1, 8.0.0-RC5, 8.0.1,
8.0.3, 8.0.5, 8.0.8, 8.0.15

3,390 26,725 530,604

Apache CXF 2 2.5.1, 2.5.2, 2.6.0, 2.6.2, 2.7.0,
2.7.2, 2.7.8, 2.7.9, 2.7.10, 2.7.11

7,255 44,069 808,377

3 3.0.1, 3.0.2, 3.0.3, 3.0.6, 3.0.7,
3.1.8, 3.1.9

8,870 53,545 964,811

Android 6 6.0.0. r41 16,175 273,515 4,250,931

7 7.0.0. r34 19,129 292,525 5,029,189

Combined 58,213 721,839 12,276,160

Apache Tomcat is a web application server developed by the

Apache Software Foundation.6 The software is implemented in

Java and has about a half-million lines of code in each version.

Apache CXF7 is an open-source service framework that helps

6http://tomcat.apache.org/
7https://cxf.apache.org/

to build and develop services using front-end programming

APIs. For our study, we considered all the classes of Apache

Tomcat that were reported as having vulnerabilities in the

security page8 for major release versions 6, 7, and 8. We use

the term vulnerable classes to describe these classes where

vulnerabilities were reported. On the other hand, all classes in

major releases 6, 7, and 8 that do not have any vulnerabilities

reported in the security page are considered as neutral classes.

Similarly, for CXF, we presented all the versions considered

in the study (Table II).

We used the Android Open Source Platform (AOSP) repos-

itory in our analysis because Google (the company that

maintains AOSP) publishes a list of recently-patched software

vulnerabilities in AOSP each month.9 AOSP also contains a

substantial amount of Java code, especially in layers related

to the user interface. We chose the base Android platform

repository (/platform/frameworks/base/) because it is a large,

primarily Java codebase with a high number of security

patches and it is central to AOSP. We analyzed all the

vulnerable and neutral classes of Android versions 6.0.0 r41

and 7.0.0 r34 for this study.

C. Data Extraction

1) Extracting Software Vulnerabilities: For the Apache

projects, we collected vulnerabilities from the Apache

Tomcat8 and Apache CXF10 security pages. The vulnerability

reports provide the information about the vulnerability type,

i.e. its CVE id (Common Vulnerabilities and Exposures),

affected versions, revision number, fixed version, and severity

level. The link with revision number points to the list of

classes that were modified to fix the vulnerability. The security

page also provides the affected code versions from where

we collected the vulnerable classes. We then downloaded

the code for all versions listed in Table II and separated

the vulnerable classes from the non-vulnerable classes. We

also removed duplicated classes that occurred in multiple

versions of a system. The source code for Apache Tomcat

and Apache CXF is located in the Apache Archives of

Tomcat11 and CXF12 respectively. For example, a Denial of

Service (CVE-2014-0075) vulnerability was fixed in revision

1578341 of version 7.0.53. If we follow the link to the

revision number13, we get the list of classes modified to fix

the vulnerability. We considered 7.0.52 as an affected version

and considered an affected Java class in version 7.0.52 as a

vulnerable class. Any class of that version having no reported

vulnerability is considered as a neutral class.

2) Extracting Smells: Next, we extracted the smells using

a custom-built tool called GetSmells.14 First, the projects’

8https://tomcat.apache.org/security.html
9https://source.android.com/security/bulletin/

10http://cxf.apache.org/security-advisories.html
11http://archive.apache.org/dist/tomcat
12http://archive.apache.org/dist/cxf/
13http://svn.apache.org/viewvc?view=revision&revision=1578341
14https://github.com/tdresearchgroup/getsmells

http://cxf.apache.org/security-advisories.html


TABLE III
DISTRIBUTION OF SMELLS ACROSS VULNERABLE AND NEUTRAL CLASSES

Systems Major Release Vulnerable Classes Neutral Classes

Classes with
Smells

Classes with
no Smells

#Vulnerabilities
(in Classes with

Smells)

#Smells
(in Classes with

Smells)

Classes with
Smells

Classes with
no Smells

#Smells
(in Classes with

Smells)

Apache Tomcat 6 54 0 124 1,768 17,921 177 154,618

7 56 0 106 1,951 35,956 676 256,548

8 10 0 21 72 16,209 420 110,694

Total 120 0 251 4,042 70,086 1,273 523,133

Apache CXF 2 22 0 31 380 69,459 2,402 429,467

3 6 0 6 68 49,179 2,002 306,191

Total 28 0 37 448 118,638 4,404 735,658

Android 6 64 0 85 6,895 9,767 118 115,630

7 81 0 116 8,705 11,362 131 139,489

Total 145 0 201 15,600 21,129 249 255,119

source files are parsed by the Scitool Understand Command

Line tool15 to extract information on the different artifacts

(classes, methods, variables, and so on). Then, GetSmells

uses static metrics, based on parameters of source code such

as size, complexity, and inheritance, obtained from SciTool

Understand to generate the smells, at class and method levels,

according to well-established predefined rules-based detection

strategies and algorithms from existing studies in the literature

e.g. [20], [32]. A PDF document (rules.pdf) describing these

rules and algorithms and referring to the source of the rules is

provided in the GetSmells repository16[14]. As an example, the

detection rule for the God Class code smell is provided in the

Background (Section II). GetSmells extracts 16 smells in total

- 8 at the class level, 5 at the method level, 2 at the package

level, and 1 at the file level. Despite extracting the smells

at different levels of granularity, we considered the smells at

the class level only to be able to establish a relationship with

vulnerabilities that are reported at the class level. For example,

if class A has a smelly method B, then we consider class A

as being smelly. Similarly, if a file C is smelly and contains

classes D and E, we consider classes D and E as smelly.

Our choice of smells was influenced by several factors:

• Smells with detection rules that have been defined and

well-documented in the literature and also used in previ-

ous studies [20], [32].

• Smells with a negative impact on software quality [4],

[8], [9], [21].

• Inclusion of package and file-level smells which are

often overlooked in smell studies in addition to class and

method level smells.

We ran GetSmells on Apache Tomcat, Apache CXF, and

Android. We extracted smells for all vulnerable classes of

the affected versions and neutral classes of Apache Tomcat,

Apache CXF, and Android.

D. Data Analysis

From the data extraction step, we have a list of vulnerable

and neutral classes for the different versions of Apache Tom-

cat, Apache CXF, and Android as well as the smells for both

15https://scitools.com/

sets of classes for each system. With all the projects combined,

we analyzed about 216,000 classes.

For RQ1, we test whether smells are associated with vulner-

able and neutral classes. We use Fisher’s exact test [38], which

checks whether a proportion varies between two samples.

Fisher’s exact test is very similar to the Chi-Square test but

Fisher’s exact test is used in cases when one of the four cells

of a 2 x 2 contingency table has less than five observations,

as is the case with the vulnerable classes with no smells. As

our data is not normally distributed, we chose Fisher’s exact

test which is a non-parametric test [39]. p − values (which

can take any value between zero and one - 0 suggesting that

the observed difference being due to chance, and 1 suggesting

that there is no difference between the groups other than due

to chance) are not interpreted with Fisher’s exact test. Instead,

the odds ratio with 95% confidence interval is used. Therefore,

in Table IV, we also compute the odds ratio (OR) [38] that

indicates the likelihood for an event to occur. An OR of 1

indicates that the event is equally likely in both samples. An

OR higher than 1 indicates that the event is more likely in the

first sample (with smells), while an OR lower than 1 indicates

that it is more likely in the second sample (without smells).

For RQ2, we performed a Chi-Square Test of Independence

to compare the difference in the distribution of smells across

the vulnerable and neutral classes. We performed separate Chi-

Square Tests of Independence for the different types of smells.

For degrees of freedom of 1 and at 5% level of significance,

the appropriate critical value is 3.84 and the decision rule is as

follows: Reject H0 if χ̃2 ≥ 3.84. In Table V, we also reported

Yates correction along with the chi-square values. The Yates

correction is a correction that is used for both Pearson’s chi-

square test and McNemar’s chi-square test to reduce their bias

towards upwards for a 2 x 2 contingency table [40].

We can reject our null hypothesis if χ̃2 ≥ 3.84 for any

smell, meaning the smells are more likely to be related to

software vulnerability. In other words, that particular smell

has a relationship with the vulnerability as the frequency

distribution of that smell in the vulnerable vs. neutral classes

shows a statistically significant difference (p − value is less

than .05). On the other hand, if χ̃2 < 3.84 for any smell,

we cannot reject the null hypothesis, which means there is



no statistical evidence that the smell is more likely to make

the class vulnerable. In other words, that particular smell may

or may not have any relationship with vulnerability as the

distribution of that smell in the vulnerable vs. neutral classes

does not show a statistically significant difference (p− value

is greater than or equal to .05).

E. Replication Package

All the data used in our study are publicly available.17

Specifically, we provide the Python scripts and the working

data sets used to run the statistical analysis reported in this

paper. We also provide the GetSmells tool and scripts that

we used to extract the smells and perform data analysis and

processing18[14].

V. RESULTS

In this section, we report the results of our study to address

the research questions.

A. RQ1: What is the relationship between smells and software

vulnerabilities?

In Table IV, we combined the data from different versions

of a particular system. For each system, we report the number

of (i) vulnerable classes with smells (ii) vulnerable classes

with no smells (iii) non-vulnerable classes with smells (iv)

non-vulnerable classes with no smells as well as the results of

Fisher’s exact test when testing the null hypothesis.

For the individual versions of all three systems, the p−value

is greater than .05. Therefore, the results are not statistically

significant and indicate strong evidence for the null hypothesis.

However, when the systems are not differentiated and the data

is combined, the p − value is less than .05 indicating that

the proportions are significantly different, thus allowing to

reject H01. Regarding the ORs, for Apache Tomcat 6, the

odds are even when comparing whether a class with smell

has a vulnerability or not. Except for Apache Tomcat 8 and

Apache CXF 3, the odds of a class that has a vulnerability are

more favorable that it also contains a smell. When the systems

are not differentiated, the OR is greater than 1 confirming the

above — that there are more favorable odds for a class that

has a vulnerability to also have a smell. So, we conclude that

the odds for a class to be vulnerable are higher for classes

with smells.

RQ1 Summary: We found that classes with smells

are more likely to be vulnerable.

B. RQ2: Are there certain smells that have a stronger rela-

tionship to vulnerabilities than others?

1) Apache Tomcat:

To summarize, there are 3,791 smell instances in 120 vul-

nerable classes vs. 521,860 smell instances in 70,068 neutral

classes. A vulnerable class has on average 32 smells while a

neutral class has on average 7 smells.

17https://bit.ly/2yNytx5

The top two prominent smells in both vulnerable and neutral

classes are Long Parameter List and Long Method. There is

a significant difference in the distribution of these smells in

the vulnerable and neutral classes. According to Table V, for

Apache Tomcat, the following smells have chi-square values

greater than 3.84 after Yates correction: God Class, Complex

Class, Large Class, Refused Bequest, Data Class, Feature

Envy, Brain Class, Unhealthy Inheritance Hierarchy, Long

Method, Long Parameter List, and Brain Method. For these

smells, the chi-square test shows a statistically significant

difference in vulnerable and neutral classes, and therefore,

for those smells, we can reject the null hypothesis. Five

smells have chi-square values less than 3.84 after Yates

correction: Hub-Like Dependency, Class Cyclic Dependency,

Shotgun Surgery, Unstable Dependency, and Package Cyclic

Dependency. For these smells, the chi-square test does not

show a statistically significant difference in vulnerable and

neutral classes and therefore, for those smells, we cannot reject

the null hypothesis. In other words, we cannot claim that a

class containing those types of smells is more likely to have

a software vulnerability. We could not conduct the chi-square

test for Lazy Class smell as it does not occur in the dataset.

2) Apache CXF:

To summarize, there are 448 smell instances in 28 vulnerable

classes versus 735,658 smell instances in 118,638 neutral

classes. A vulnerable class has on average 15 smells while

1 in 15 neutral classes have a smell. Again, the top two

prominent smells in both vulnerable and neutral classes are

Long Parameter List and Long Method. There is a significant

difference in the distribution of smells in the vulnerable and

neutral classes. According to Table V, for Apache CXF, the

following smells have chi-square values greater than 3.84 after

Yates correction: God Class, Complex Class, Large Class,

Refused Bequest, Data Class, Feature Envy, Brain Class and

Long Parameter List. For these metrics, the chi-square test

shows a statistically significant difference in vulnerable and

neutral classes, therefore, we can reject the null hypothesis. Six

smells have chi-square values less than 3.84 after Yates correc-

tion: Hub-Like Dependency, Unhealthy Inheritance Hierarchy,

Shotgun Surgery, Brain Method, Unstable Dependency, and

Package Cyclic Dependency. For these smells, the chi-square

test does not show a statistically significant difference in

vulnerable and neutral classes, therefore, we cannot reject

the null hypothesis. In other words, we cannot claim that

a class containing those types of smells is more likely to

have a software vulnerability. We could not conduct the chi-

square test for Lazy Class, Class Cyclic Dependency, and Long

Method smells as they do not occur in the dataset.

3) Android:

To summarize, there are 15,600 smell instances in 145 vulner-

able classes versus 255,119 smell instances in 21,129 neutral

classes. A vulnerable class has on average 94 smells while 1

in 13 neutral classes have a smell.

As with the other two projects, the top two smells in both

vulnerable and neutral classes are Long Parameter List and

Long Method. There is a significant difference in the distribu-



TABLE IV
CONTINGENCY TABLE AND FISHER’S EXACT TEST RESULTS

Systems Release Smells & Vulnerability No Smells & Vulnerability Smells & No Vulnerability No Smells & No Vulnerability p− value OR

Apache Tomcat 6 54 0 17,921 177 1 1.08
7 56 0 35,956 676 0.63 2.13
8 10 0 16,209 420 1 0.54

Total 120 0 70,086 1,273 0.28 4.38

Apache CXF 2 22 0 69,459 2,402 1 1.56
3 6 0 49,179 2,002 1 0.53

Total 28 0 118,638 4,404 0.63 2.12

Android 6 64 0 9,767 118 1 1.57
7 81 0 11,362 131 1 1.89

Total 145 0 21,129 249 0.42 3.44

Combined 293 0 209,853 5,926 0.0005 (< .05) 16.58

TABLE V
CHI-SQUARE STATISTICS - SMELLS

Systems Apache Tomcat Apache CXF Android

God Class 334.63 (325.97) 52.26 (45.09) 628.06 (604.05)
Lazy Class - - 202.46 (198.87)
Complex Class 337.67 (332.73) 126.19 (117.51) 308.73 (303.83)
Large Class 225.16 (221.99) 11.41 (9.99) 63.28 (61.79)
Refused Bequest 20.14 (18.46) 11.11 (7.82) 32.32 (29.93)
Data Class 49.15 (47.88) 8.66 (7.58) 22.23 (21.44)
Feature Envy 196.19 (192.91) 8.66 (7.1) 252.29 (248.95)
Brain Class 319.64 (280.01) 149.64 (36.91) 10.19 (5.10)
Hub-Like Dependency 3.85 (3.04) 3.45 (1.88) 9.56(8.49)
Class Cyclic Dependency 0.003 (.009) - 53.26 (51.39)
Unhealthy Inheritance Hierarchy 13.87 (12.36) 3.83 (2.58) 121.82 (117.63)
Long Method 62.93 (61.44) - 25.83 (24.84)
Long Parameter List 42.04 (40.81) 19.53 (17.89) 19.84 (18.91)
Shotgun Surgery 4.43 (3.73) 2.02 (1.12) 185.99 (181.83)
Brain Method 280.58 (268.09) 6.28 (1.16) 159.39 (148.05)
Unstable Dependency 0.48 (0.30) 0.66 (0.23) 0.21 (0.13)
Package Cyclic Dependency 0.33 (0.19) 0.39 (0.07) 0.84 (0.51)

Note: The chi-square values mentioned within the parentheses are the values
after Yates correction. For the value in black, the p-value is less than .05
(the metric shows a statistically significant difference between vulnerable and
neutral classes). For the value in red, the p-value is greater than .05 (the
metric does not show a statistically significant difference between vulnerable
and neutral classes).

tion of smells in the vulnerable and neutral classes. According

to Table V, for Android, the following smells have chi-square

values greater than 3.84 after Yates correction: God Class,

Lazy Class, Complex Class, Large Class, Refused Bequest,

Data Class, Feature Envy, Brain Class, Hub-Like Dependency,

Class Cyclic Dependency, Unhealthy Inheritance Hierarchy,

Long Method, Long Parameter List, Shotgun Surgery and

Brain Method. For these smells, the chi-square test shows

a statistically significant difference in vulnerable and neutral

classes, and therefore, for those smells, we can reject the null

hypothesis. Two smells Unstable Dependency and Package

Cyclic Dependency have chi-square values less than 3.84. For

other smells, the chi-square test shows a statistically significant

difference in vulnerable and neutral classes, therefore, for

those smells, we can reject the null hypothesis. In other words,

we can claim that a class containing those smells (having a

statistically significant difference in the vulnerable vs. neutral

classes) is more likely to contain a software vulnerability.

RQ2 Summary: For the systems studied, the smells

which show a statistically significant relationship

with software vulnerabilities are: God Class, Complex

Class, Large Class, Data Class, Refused Bequest,

Feature Envy, Long Parameter List and Brain Class.

VI. DISCUSSION

In this section, we discuss our results and present the

reasoning behind each finding in our empirical analysis.

A. Smells Having Significant Relation with Vulnerability

As in Table V, some code smells (God Class, Complex

Class, Large Class, Data Class, Refused Bequest, Feature

Envy, Long Parameter List, and Brain Class) have a statisti-

cally significant relationship with vulnerability in each of the

systems under study. These results show that the presence of

these smells in classes potentially indicates that the class is

vulnerable.

We see that God Class, Complex Class, Large Class are

the prominent smells in vulnerable classes (e.g. 36% of total

vulnerable classes in Apache Tomcat are God Class). A God

Class is a class that does more than it should, and there

is a high probability that this class is a complex class too.

Researchers previously found how complex code is related

to vulnerabilities and how different complexity metrics can

be used to predict them [17], [41]. According to the study

by Cairo et al. [42], God Class is a significant contributor

and is positively associated with error proneness. Olbrich

et al. showed that instances of God Class and Brain Class

suffer more frequent changes and contain more defects than

classes not affected by those smells when the class size is not

considered [21]. As God Class, Complex Class, and Large

Class are structurally similar to each other, they have the

potential to introduce defects and vulnerabilities.

Gradisnik et al. [43] showed that Feature Envy is expected to

be correlated with low quality code. Feature envy occurs when

one object depends on another object for some computations

and exposes its data fields to another object instead of doing

the computation itself. For example, consider a class Rectangle

that exposes its width and height fields to the other classes for

computing its area. Feature Envy hampers encapsulation and

can be responsible for leaking information. In Apache Tomcat,

we found this smell in 68.3% of the total vulnerable classes.

Shotgun Surgery has been found as a significant contributor

in Eclipse 2.1 and positively associated with change proneness

and error proneness at all severity levels [42]. Shotgun Surgery

occurs when a single responsibility has been split up among

a large number of classes. It makes the code extremely non-

cohesive and localization of similar changes becomes harder

which makes the code vulnerable. In our study, Shotgun



Surgery exhibited a significant relationship with vulnerabilities

in both Apache Tomcat and Android.

We also found a significant relationship between Long

Method and Brain Method smells with vulnerability as shown

in Table V. Long Method represents a single method and

characterizes situations in which the method is excessively

long, making it difficult to understand or (re)use [42]. The

presence of Long Method might make maintenance tasks

difficult in terms of effort and time which will increase

the possibility of defects [44]. A Brain Method centralizes

the intelligence of a class and manifests itself as a long

and complex method that is difficult to be understood and

maintained by the developers [45].

There was no relevant relationship between Data Class

and Refused Bequest and the occurrence of bugs in a prior

study by Cairo et al. [42]. Our study, however, did find a

statistically significant relationship between Data Class and

Refused Bequest with software vulnerabilities. This result

should be investigated further as the study by Cairo et al.

could not correlate the two smells with more general bugs.

In summary, we found that the smells God Class,

Complex Class, Large Class, Feature Envy, Long Param-

eter List and Brain Class are correlated with software

vulnerabilities across all systems studied. Existing studies

support our findings by identifying these smells as potential

indicators of other issues (e.g., defects). Besides, we also

found a statistically significant relationship between Data

Class and Refused Bequest and software vulnerabilities in

contrast to the study by Cairo et al. [42] which could not

establish any relationship between these smells and defects.

B. Smells Having No Significant Relation with Vulnerability

We see in Table V that architecture smells including Hub-

Like Dependency, Class Cyclic Dependency, Unstable Depen-

dency, Package Cyclic Dependency do not exhibit a statis-

tically significant difference between vulnerable and neutral

classes. These smells indicate a tendency for code to contain

dependencies (cyclic and otherwise) at the architectural level.

According to Fontana et al., the architectural subsystems in-

volved in a dependency cycle are hard to release, maintain, and

reuse. The authors encouraged further study on the potential

correlations between architectural smells and bugs to improve

the accuracy of bug prediction [27]. Hence, earlier study by

Fontana et al. [27] partially motivates this study, although we

did not find a relationship between architectural smells and

the vulnerabilities in the systems analyzed.

Mo et al. [33] showed that the files involved in architec-

tural patterns have significantly higher bugs and change rates

compared to the average files in a project. It is not surprising

that historical and structural dependencies among these files

may incur architectural flaws which might lead to software

vulnerabilities [46]. Earlier works [33], [46] focused mostly

on design decisions that result in architectural flaws called

hotspot patterns. Hotspot patterns are the direct violation of

design rules whereas the architecture smells considered here

are non-volitional design weaknesses which may relate to

deeper architectural problems.

In summary, we found no significant relationship be-

tween architectural smells and software vulnerabilities.

Despite the significant relationship between certain code

smells and software vulnerability, there was no correspond-

ing relationship with architecture smells.

C. How Our Findings Differ From Others?

As elaborated in Section V, we found that smells have a

relationship with software vulnerabilities. This is supported

by Eklkhail et al. [11], Mumtaz et al. [13], Ghafari et al. [12],

Rahman et al. [36], [37].

However, Eklkhail et al. [11] found that ”Field Declaration

Not Start At Class” code smell is the most correlated code

smell in vulnerable classes whereas our study identifies God

Class, Complex Class, Large Class, Data Class, Feature

Envy, Brain Class as being the most correlated with software

vulnerabilities. We know that God Class is a class that does

more than it is supposed to do. Although it is highly likely

that God Class, Large Class and Complex Class have similar

characteristics, they are still distinct smells. For example, a

class with thousands lines of code can be a large class, while

it might not be a complex class if it has a small number of

decision statements or a small number of independent paths.

Therefore, there is a need to study them separately.

Mumtaz et al. [13] reported Feature Envy and Data Class

code smells to be the most prominent code smells in vulnerable

classes. In our study, we found Long Parameter List and

Long Method code smells to be the most popular smells

in vulnerable classes. Ghafari et al. [12] and Gadient [35]

identified security code smells that lead to vulnerabilities in

Android apps based on a literature survey. In [35], the authors

used a static analysis tool to extract the security smells and

considered Inter-Component Communication (ICC) vulnera-

bilities in Android. In our study, we focused on publicly

available vulnerability reports for realistic vulnerability data,

making our data more reliable and our study more robust

(i.e., we used vulnerabilities that were reported as CVEs or

confirmed by the project owners).

Rahman et al. [36] conducted an empirical study focused

on security smells in IaC scripts. They found that security

smells existed across all datasets they investigated but the

hard-coded secret was the most prominent security smell out

of the smells they investigated. In another study, Rahman et

al. [37] conducted a similar study on GitHub Python Gists

and found command injection to be the most prevalent security

smell. The smells considered in this study are different than the

smells in [37]. They focused on security smells which may di-

rectly relate to vulnerabilities by design. On the other hand, we

investigate traditional code and architectural smells and show

how they can be related to the vulnerable code. Revealing the

relationship between traditional code smells and vulnerabilities

will guide developers during the development process as those

smells more frequently occur while developing the code. The

goal is eventually tool integration to enable more secure coding



practice and thus mitigating certain vulnerabilities that may

exist in smelly code.

The study on the relationship between architectural smells

and vulnerabilities is also significant in software security

research. Although we did not find any statistically significant

relationship between them, with a strong relationship between

certain code smells and vulnerability, we posit that a more

thorough investigation of architectural smells is warranted.

Some of the studies above target specific domains e.g

Android apps, IaC scripts, or GitHub Python Gists for

their experiments. Several studies also focus on security

smells while our study focuses on predominant smells

that are the logical consequences of writing code and

enable complex features and robust user interactions.

While we cannot perform a direct comparison with some

of the existing works as to which smells are the most

prominent, the prior research does corroborate our finding

that certain smells are related to software vulnerabilities.

D. Relevance to Practitioners

We envision the tools and methodology described as plugins

attached to developer IDEs and continuous integration (CI)

workflows. The results show that certain smells are more prone

to vulnerability than others. Whether it be testers ensuring the

exhibited smells are covered with targeted tests, code reviews

conducted where the module owner must recheck code with

certain smells, or a rejection of certain smelly code that falls

within a metric threshold by the CI server, these results provide

a means to further improve code security and can be easily

integrated into existing tools and workflows.

VII. THREATS TO VALIDITY

Below, we identify threats to the validity of the research.

Construct Validity We extracted smells using the custom-

built tool GetSmells. We chose the set of smells based on

the factors mentioned in Section IV-C2. Not considering other

code and architecture smells and the efficiency of the tool used

may limit the validity of our work. In our study, we collected

only the reported vulnerabilities. We considered all the classes

in the projects’ major releases that do not have any reported

vulnerabilities as neutral classes in this study. We understand

that there could be hidden or unreported vulnerabilities in

those classes that were not taken into consideration.

External Validity The experiments were conducted for soft-

ware implemented in the Java programming language. There-

fore, our results cannot be generalized to other systems writ-

ten in different, non object-oriented programming languages.

Moreover, we only considered the reported vulnerabilities. The

vulnerabilities which have not been released or reported for the

systems studied have not been considered. Besides, despite

two of the analyzed projects being from the Apache family,

we ensured that the teams consist of different people.1920

Internal Validity Some confounding factors (e.g. size of the

classes, number of instances of code smells per class) which

19http://tomcat.apache.org/whoweare.html
20https://cxf.apache.org/people.html

have not been considered in our study might have an impact

on our results. We are not claiming causation, just associating

software vulnerabilities with the presence of smells. In Sec-

tion VI, we discussed the possible reasons why some smells

are proportionally related to software vulnerabilities.

VIII. CONCLUSION

In this paper, we present a study evaluating three major

releases of Apache Tomcat, two versions of Apache CXF,

and two versions of Android to determine the relationship

between smells and software vulnerabilities. Compared to

previous studies which used static analysis tools to identify

vulnerabilities, incurring risks of a large number of false

positives which might impact their results or studies that

focused on a particular type of code smell (e.g. duplicated

code), our study considered only reported vulnerabilities which

eliminates the occurrence of false positives. We empirically

found that certain smells exhibit a statistically significant

difference in vulnerable vs. neutral classes whereas others

do not show significant differences. This result indicates that

there is a relationship between smells (that show significant

differences in two groups: vulnerable and neutral classes)

and software vulnerabilities. We know that a code smell is

a surface indication of a deeper problem in code. Identifying

the relationship between smells and vulnerabilities can help

developers identify deeper problems in their code and address

them before deployment. The objective is to mitigate the risks

of releasing vulnerable code.

This study provides a basis for future work to determine

the underlying reason behind the different distributions of the

smells in vulnerable and neutral classes. In this study, we did

not make any distinction between different types of smells

or the complexity of the different classes or the quantity

of the distinct smells. We also did not consider the types

of vulnerabilities relevant to smells. These can be explored

further in the future studies. We also plan to extend the study

to other systems as well as use these findings to create software

vulnerability prediction models.

IX. ACKNOWLEDGEMENT

The authors would like to acknowledge Yuhan Hu (now

at Calian SED Systems, Canada) and Charles Boyd (now

at Google, USA) who helped build GetSmells and extract

vulnerabilities. Hu implemented additional tools to facilitate

the data analysis and processing as well.

REFERENCES

[1] D. Distefano, M. Fähndrich, F. Logozzo, and P. W. O’Hearn, “Scaling
static analyses at facebook,” Communications of the ACM, vol. 62, no. 8,
pp. 62–70, 2019.

[2] C. Sadowski, E. Aftandilian, A. Eagle, L. Miller-Cushon, and C. Jaspan,
“Lessons from building static analysis tools at google,” Communications
of the ACM, vol. 61, no. 4, pp. 58–66, 2018.

[3] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts, Refactoring:

Improving the Design of Existing Code, 1st ed. Addison-Wesley
Professional, Jul. 1999.

[4] F. Khomh, M. Di Penta, and Y.-G. Gueheneuc, “An exploratory study
of the impact of code smells on software change-proneness,” in the 16th

Working Conference on Reverse Engineering, ser. WCRE ’09, 2009, pp.
75–84.



[5] W. Li and R. Shatnawi, “An empirical study of the bad smells and class
error probability in the post-release object-oriented system evolution,”
Journal of Systems Architecture, vol. 80, no. 7, pp. 1120–1128, Jul.
2007.

[6] A. Yamashita, “Assessing the capability of code smells to explain
maintenance problems: An empirical study combining quantitative and
qualitative data,” Empirical Softw. Engg., vol. 19, no. 4, pp. 1111–1143,
Aug. 2014.

[7] M. Tufano, F. Palomba, G. Bavota, R. Oliveto, M. Di Penta, A. De Lucia,
and D. Poshyvanyk, “When and why your code starts to smell bad,” in
the 37th IEEE International Conference on Software Engineering, vol. 1,
May 2015, pp. 403–414.

[8] Z. Codabux, K. Z. Sultana, and B. J. Williams, “The relationship be-
tween code smells and traceable patterns - are they measuring the same
thing?” International Journal of Software Engineering and Knowledge

Engineering, vol. 27, no. 09n10, pp. 1529–1547, 2017.
[9] Z. Codabux, K. Z. Sultana, and B. J. Williams, “The relationship be-

tween traceable code patterns and code smells.” in the 29th International

Conference on Software Engineering and Knowledge Engineering, 2017,
pp. 444–449.

[10] M. R. Islam, M. F. Zibran, and A. Nagpal, “Security vulnerabilities in
categories of clones and non-cloned code: An empirical study,” in the

ACM/IEEE International Symposium on Empirical Software Engineering
and Measurement (ESEM), Nov 2017, pp. 20–29.

[11] A. A. Elkhail and T. Cerny, “On relating code smells to security
vulnerabilities,” in the 5th Intl Conference on Big Data Security on

Cloud (BigDataSecurity), IEEE Intl Conference on High Performance
and Smart Computing, (HPSC) and IEEE Intl Conference on Intelligent

Data and Security (IDS), May 2019, pp. 7–12.
[12] M. Ghafari, P. Gadient, and O. Nierstrasz, “Security smells in android,”

in the 17th International Working Conference on Source Code Analysis
and Manipulation (SCAM), Sep. 2017, pp. 121–130.

[13] H. Mumtaz, M. Alshayeb, S. Mahmood, and M. Niazi, “An empirical
study to improve software security through the application of code
refactoring,” Information and Software Technology, vol. 96, pp. 112 –
125, 2018.

[14] W. A. Conklin and G. Dietrich, “Secure software engineering: A new
paradigm,” in the 40th Annual Hawaii International Conference on
System Sciences (HICSS’07), Jan 2007, pp. 272–272.

[15] I. Chowdhury and M. Zulkernine, “Using complexity, coupling, and
cohesion metrics as early indicators of vulnerabilities,” Journal of
Systems Architecture, vol. 57, no. 3, pp. 294–313, mar 2011.

[16] T. Zimmermann, N. Nagappan, and L. Williams, “Searching for a needle
in a haystack: Predicting security vulnerabilities for windows vista,” in
the 3rd International Conference on Software Testing, Verification and
Validation, ser. ICST ’10, 2010, pp. 421–428.

[17] Y. Shin, A. Meneely, L. Williams, and J. A. Osborne, “Evaluating
complexity, code churn, and developer activity metrics as indicators of
software vulnerabilities,” IEEE Trans. Softw. Eng., vol. 37, no. 6, pp.
772–787, nov 2011.

[18] A. Jaquith, Security Metrics: Replacing Fear, Uncertainty, and Doubt.
Addison-Wesley Professional, 2007.

[19] M. J. Munro, “Product metrics for automatic identification of ”bad
smell” design problems in java source-code,” in the 11th IEEE Interna-

tional Software Metrics Symposium (METRICS’05), Sep. 2005, p. 9.
[20] M. Lanza and R. Marinescu, Object-oriented metrics in practice: using

software metrics to characterize, evaluate, and improve the design of

object-oriented systems. Springer Science & Business Media, 2007.
[21] S. M. Olbrich, D. S. Cruzes, and D. I. K. Sjøberg, “Are all code smells

harmful? a study of god classes and brain classes in the evolution of
three open source systems,” in the 26th International Conference on

Software Maintenance, 2010, pp. 1–10.
[22] F. Palma and N. Mohay, “A study on the taxonomy of service antipat-

terns,” in the 2nd International Workshop on Patterns Promotion and

Anti-patterns Prevention (PPAP), 2015, pp. 5–8.
[23] K. Alkharabsheh, Y. Crespo, E. Manso, and J. A. Taboada, “Software

design smell detection: a systematic mapping study,” Software Quality

Journal, vol. 27, no. 3, pp. 1069–1148, 2019.
[24] G. Suryanarayana, G. Samarthyam, and T. Sharma, Refactoring for

software design smells: managing technical debt. Morgan Kaufmann,
2014.

[25] N. Moha and Y.-G. Guéhéneuc, “Decor: a tool for the detection of design
defects,” in the 22nd IEEE/ACM international conference on Automated
software engineering, 2007, pp. 527–528.

[26] J. Garcia, D. Popescu, G. Edwards, and N. Medvidovic, “Toward a
catalogue of architectural bad smells,” in International Conference on
the Quality of Software Architectures. Springer, 2009, pp. 146–162.

[27] F. A. Fontana], V. Lenarduzzi, R. Roveda, and D. Taibi, “Are architec-
tural smells independent from code smells? an empirical study,” Journal

of Systems and Software, vol. 154, pp. 139 – 156, 2019.
[28] S. Vaucher, F. Khomh, N. Moha, and Y.-G. Guéhéneuc, “Tracking design

smells: Lessons from a study of god classes,” in the 16th Working

Conference on Reverse Engineering, 2009, pp. 145–154.
[29] U. Azadi, F. Arcelli Fontana, and D. Taibi, “Architectural smells

detected by tools: a catalogue proposal,” in the IEEE/ACM International

Conference on Technical Debt (TechDebt), 2019, pp. 88–97.
[30] M. V. Mantyla, J. Vanhanen, and C. Lassenius, “Bad smells-humans as

code critics,” in the 20th IEEE International Conference on Software

Maintenance, 2004, pp. 399–408.
[31] G. Bavota, A. De Lucia, M. Di Penta, R. Oliveto, and F. Palomba, “An

experimental investigation on the innate relationship between quality and
refactoring,” Journal of Systems and Software, vol. 107, pp. 1–14, 2015.

[32] F. A. Fontana, I. Pigazzini, R. Roveda, D. Tamburri, M. Zanoni, and
E. Di Nitto, “Arcan: A tool for architectural smells detection,” in the
IEEE International Conference on Software Architecture Workshops

(ICSAW), 2017, pp. 282–285.
[33] R. Mo, Y. Cai, R. Kazman, and L. Xiao, “Hotspot patterns: The formal

definition and automatic detection of architecture smells,” in the 12th

Working IEEE/IFIP Conference on Software Architecture, 2015, pp. 51–
60.

[34] M. R. Islam and M. F. Zibran, “A comparative study on vulnerabilities
in categories of clones and non-cloned code,” in the 23rd IEEE Interna-

tional Conference on Software Analysis, Evolution, and Reengineering

(SANER), vol. 3, March 2016, pp. 8–14.
[35] P. Gadient, M. Ghafari, P. Frischknecht, and O. Nierstrasz, “Security

code smells in android icc,” Empirical software engineering, vol. 24,
no. 5, pp. 3046–3076, 2019.

[36] A. Rahman, C. Parnin, and L. Williams, “The seven sins: Security smells
in infrastructure as code scripts,” in the 41st IEEE/ACM International

Conference on Software Engineering (ICSE). IEEE, 2019, pp. 164–175.
[37] M. R. Rahman, A. Rahman, and L. Williams, “Share, but be aware:

Security smells in python gists,” in the IEEE International Conference
on Software Maintenance and Evolution (ICSME), 2019, pp. 536–540.

[38] R. A. Fisher, “Statistical methods for research workers,” in Break-

throughs in statistics. Springer, 1992, pp. 66–70.
[39] R. Winters, A. Winters, and R. G. Amedee, “Statistics: a brief overview,”

Ochsner Journal, vol. 10, no. 3, pp. 213–216, 2010.
[40] F. Yates, “Contingency tables involving small numbers and the

chi-square test,” Supplement to the Journal of the Royal Statistical
Society, vol. 1, no. 2, pp. 217–235, 1934. [Online]. Available:
https://rss.onlinelibrary.wiley.com/doi/abs/10.2307/2983604

[41] Y. Shin and L. Williams, “An empirical model to predict security
vulnerabilities using code complexity metrics,” in the 2nd ACM-IEEE

International Symposium on Empirical Software Engineering and Mea-

surement, ser. ESEM ’08, 2008, pp. 315–317.
[42] A. S. Cairo, G. de Figueiredo Carneiro, and M. P. Monteiro, “The

impact of code smells on software bugs: A systematic literature review,”
Information, vol. 9, p. 273, 2018.

[43] M. Gradisnik and M. Hericko, “Impact of code smells on the rate of
defects in software: A literature review,” in SQAMIA, 2018.

[44] A. Chatzigeorgiou and A. Manakos, “Investigating the evolution of bad
smells in object-oriented code,” in the 7th International Conference on

the Quality of Information and Communications Technology, 2010, pp.
106–115.

[45] S. Vidal, I. n. berra, S. Zulliani, C. Marcos, and J. A. D. Pace, “Assessing
the refactoring of brain methods,” ACM Trans. Softw. Eng. Methodol.,
vol. 27, no. 1, Apr. 2018.

[46] Q. Feng, R. Kazman, Y. Cai, R. Mo, and L. Xiao, “Towards an
architecture-centric approach to security analysis,” in the 13th Working

IEEE/IFIP Conference on Software Architecture (WICSA), 2016, pp.
221–230.

https://rss.onlinelibrary.wiley.com/doi/abs/10.2307/2983604

	I Introduction
	II Background
	III Related Work
	IV Methodology
	IV-A Research Questions
	IV-B Study Design
	IV-C Data Extraction
	IV-C1 Extracting Software Vulnerabilities
	IV-C2 Extracting Smells

	IV-D Data Analysis
	IV-E Replication Package

	V Results
	V-A RQ1: What is the relationship between smells and software vulnerabilities?
	V-B RQ2: Are there certain smells that have a stronger relationship to vulnerabilities than others?
	V-B1 Apache Tomcat
	V-B2 Apache CXF
	V-B3 Android


	VI Discussion
	VI-A Smells Having Significant Relation with Vulnerability
	VI-B Smells Having No Significant Relation with Vulnerability
	VI-C How Our Findings Differ From Others?
	VI-D Relevance to Practitioners

	VII Threats to validity
	VIII Conclusion
	IX Acknowledgement
	References

