
An Experience Report on Technical Debt in Pull Requests:
Challenges and Lessons Learned

Shubhashis Karmakar

University of Saskatchewan

shk106@usask.ca

Zadia Codabux

University of Saskatchewan

zadiacodabux@ieee.org

Melina Vidoni

Australian National University

melina.vidoni@anu.edu.au

ABSTRACT
GitHub is a collaborative platform for global software development,

where Pull Requests (PRs) are essential to bridge code changes

with version control. However, developers often trade software

quality for faster implementation, incurring Technical Debt (TD).

When developers undertake reviewers’ roles and evaluate PRs,

they can often detect TD instances, leading to either PR rejection

or discussions. We investigated whether Pull Request Comments

(PRCs) indicate TD by assessing three large-scale repositories:

Spark, Kafka, and React. We combined manual classification with

automated detection using machine learning and deep learning

models. We classified two datasets and found that 37.7 and 38.7% of

PRCs indicate TD, respectively. Our best model achieved F1 = 0.85

when classifying TD during the validation phase. However, we

faced several challenges during this process, which may hint that

TD in PRCs is discussed differently from other software artifacts

(e.g., code comments, commits, issues, or discussion forums). Thus,

we present challenges and lessons learned to assist researchers in

pursuing this area of research.

CCS CONCEPTS
• Software and its engineering → Software configuration
management and version control systems; • Computing
methodologies→Machine learning approaches.

KEYWORDS
Technical Debt, Pull Request Comments, Mining Software

Repositories

ACM Reference Format:
Shubhashis Karmakar, Zadia Codabux, and Melina Vidoni. 2022. An

Experience Report on Technical Debt in Pull Requests: Challenges and

Lessons Learned. In ACM / IEEE International Symposium on Empirical
Software Engineering and Measurement (ESEM) (ESEM ’22), September 19–23,
2022, Helsinki, Finland. ACM, New York, NY, USA, 6 pages. https://doi.org/

10.1145/3544902.3546637

1 INTRODUCTION
Collaborative software development through version control

systems such as GitHub leverages Pull Requests (PRs) to support

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

ESEM ’22, September 18–23, 2022, Helsinki, Finland
© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9427-7/22/09. . . $15.00

https://doi.org/10.1145/3544902.3546637

interaction between developers in code repositories [29]. In

distributed software development, pull-based development models

are one of the most popular contribution models [15], offering a low

barrier of entry for potential contributors. PR combines source code

changes with discussions in the form of Pull Request Comments

(PRCs). Through PRCs, developers indicate style or design conflicts

regarding the proposed changes [18, 39].

Quite often, developers incur Technical Debt (TD) – shortcuts,

and workarounds to minimize the effort required to propose a

solution because of a lack of time or knowledge [22]. Prior studies

demonstrated that TD is ‘admitted’ (namely, ‘confessed’ in natural

language); this is known as SATD (Self-Admitted Technical Debt).

SATD has been found in several software artifacts, including (but

not limited to) source code comments, issue trackers, commit

messages, and code reviews [20, 24, 30].

While static code analysis is the most common way of detecting

TD, existing static analyzers, based on different rules to extract

TD, often have different outcomes [2]. The detection of inadvertent

TD [35], accrued unintentionally due to ignorance and oversight,

cannot be detected using traditional software artifacts (e.g., source

code). Given PRs’ relevance to the software development lifecycle

and the rich information based on discussions between developers

through PRCs [29], we investigated the presence of TD in PRCs.

Due to the existence of a large number of PRCs in a code repository,

a manual study would not be feasible to uncover all instances

of TD. Therefore, we also conducted automation using Machine

Learning (ML) and Deep Learning (DL) algorithms, comparing the

state-of-the-art techniques to those used in prior studies [3, 10, 11].

We also assessed whether PRC can be an additional source of TD

in non-code artifacts. To the best of our knowledge, PRCs have not

yet been investigated as a source of TD.

We successfully achieved a binary classification of TD and

non-TD in PRCs, both manual and automated, but we uncovered

several challenges and thus, proposed mitigation strategies to

consider when using PRCs as a TD source. We outlined our process

and findings and discussed challenges and lessons learned regarding

TD discussion in PRCs. We also released a replication package1

with all the datasets.

This paper is organized as follows. Section 2 describes the related

work. Section 3 elaborates on the data collection process. Section 4

reports the TD detection process and results. Section 5 discusses

the challenges and lessons learned. Section 6 outlines the threats

to validity and Section 7 concludes this work.

2 RELATEDWORK
Several studies identified TD through source code inspection

[7, 38]. Gat and Heintz [13] analyzed TD using unit testing,

1
https://doi.org/10.5281/zenodo.6829274

https://doi.org/10.1145/3544902.3546637
https://doi.org/10.1145/3544902.3546637
https://doi.org/10.1145/3544902.3546637
https://doi.org/10.5281/zenodo.6829274

ESEM ’22, September 18–23, 2022, Helsinki, Finland Karmakar et al.

code coverage, rule conformance, code complexity, duplication

of code, documentation, and design characteristics. Das et al. [9]

investigated TD through architectural degradation and code smells,

and examined different source code TD detection tools.

Additionally, other sources based on natural language have been

used. For example, source code comments were the original domain

for SATD investigation [30]. Afterward, several studies have been

performed both fully manually [24] and automatically using several

techniques (including NLP, and sentiment analysis, among others)

[11, 25] for classification in many domains. Code reviews with

SATD were found to be less likely accepted [20], and SATD was

also present when developers depend on updated functionalities

to complete their work [23]. Other sources of SATD were issue

trackers [4] and commit messages [31].

Although PRs have not yet been approached for TD detection,

they have been used for other purposes, e.g., to generate

descriptions of proposed changes [10], detect bots’ participation

in PRs [14], and predict whether some changes will be merged or

discarded [18]. A complementary study investigated regex-related

bugs in PRs to classify their nature [37]. Given the presence of

bugs, other authors analyzed the reliability of tests in updating

dependency and suggested the use of adequate tests for all usages

of library dependencies so that unintended functionalities are

not introduced over time [16]. Finally, considering large-scale

ecosystems, Businge et al. [8] analyzed divergent forks of Android,

.NET, and JavaScript to uncover maintenance and reuse practices.

Despite TD being widely approached, its investigation in PRs

remains a gap in the literature and a potential complementary

source of TD. Based on the structure and usage of PRs [29], there

is a possibility of missing inadvertent TD, i.e., TD unknowingly

introduced or admitted [28].

3 DATA COLLECTION AND PROCESSING
Since this was an exploratory study, we selected active,

multipurpose software repositories based on the recommendations

of Kalliamvakou et al. [19] to ensure that our data was up-to-date.

We also constrained projects with a large number of PRs (open

or closed) to have enough data to enable useful insights to be

drawn from this study. Based on prior studies [3], we selected

three repositories: Apache Spark, Apache Kafka, and React. Table 1

summarizes PRs statistics for each project.

We used multiple queries to extract the PRCs and leveraged

GraphQL
2
(an alternative REST-based application to GitHub’s API)

to minimize them. This did not threaten the validity of our study

[6]. Using the GraphQL API
3
provided by GitHub, we extracted

PRCs details, including number, comment type, HTML structure,

comment timestamp, author, and each comment’s author details

(including the handle).

In addition, we removed bot PRCs from both open and closed

PRs as depicted in Figure 1. As per Golzadeh et al. [14], bots are

often identified by their handles (i.e., GitHub username), e.g., for

Apache Spark, the bots were AmplabJenkins, SparkQA, asfgit,
and asfbot. Table 1 summarizes the statistics before (‘PRCs’) and

after (‘Filtered Comments’) filtering the bot PRCs.

2
https://graphql.org/

3
https://docs.github.com/en/graphql

Figure 1: Schematic Diagram of the Study

Table 1: Statistics for the Selected Projects

Apache Spark Apache Kafka React

Total PRs 34,401 11,445 11,542

Open PRs 223 951 235

Closed PRs 34,178 10,494 11,307

PRCs 685,206 160,974 68,185

Filtered Comments 480,750 143,986 58,869

4 TECHNICAL DEBT DETECTION
4.1 Manual Classification
To conduct automated TD detection through supervised approaches,

we required a dataset of manually classified PRCs as training data.

Thus, we randomly sampled PRCs of Apache Spark, Apache Kafka,

and React, using a confidence level of 95% and a margin of error of

5%. This resulted in 384 PRCs each for Spark and Kafka, and 383

for React, resulting in a combined manual sample of 1151 PRCs.
Henceforth, this is referred to as D1 across the three systems. We

followed the classification of TD types from the ontology provided

by Alves et al. [1] and classified our PRCs as TD (those pertaining

to a TD type) and non-TD.

All authors classified the PRCs of D1 independently. Next, the
individual classifications were merged, and disagreements were

discussed to obtain the final classification for use as training data. A

PRC was removed from D1 when the discussion could not resolve a

disagreement. We obtained a high agreement rate, measured using

Cohen’s Kappa coefficient [26] (see Table 2).

Table 2: Manual Identification Summary of D1

Repository Kafka React Spark Total

Total Sampled PRCs 349 359 357 1065

TD PRCs 137 126 139 402

Non-TD PRCs 212 233 218 663

TD (%) 39.2 35.1 39.0 37.7

Inter-Rater Agreement 0.87 0.91 0.90

An Experience Report on Technical Debt in Pull Requests: Challenges and Lessons Learned ESEM ’22, September 18–23, 2022, Helsinki, Finland

We noticed that the TD PRCs could further be classified on

how developers are discussing the source of the TD. Developers

explicitly indicate an underlying issue using pre-existing context

(e.g., the use of ‘hack’ or ‘crash’ in the PRCs), or implicitly indicate

subtle issues without any former definitions (e.g., as a result of an

unintentional design decision) [36]. One PRC could have multiple

instances of TD and non-TD. Therefore, we further split 811 TD

PRCs (combined from dataset D1 and D2) into 1286 based on

the context. One author split the PRCs, and another verified it;

adjustments were made whenever needed, following discussions.

Two authors then independently classified the split comments into

the categories: implicit, explicit, and non-TD and later disagreements

were discussed. Cohen’s Kappa coefficient was 0.43, which is

considered moderate.

4.2 Automated Classification
We pre-processed the PRCs of D1 following standard processing

steps for Natural Language Processing (NLP) [3], including

lowercasing, removing punctuation, mentions, numbers, emails,

URLs, and stopwords. Before training the ML/DL models to classify

text-based data, the words must be converted into tokens. As

our baseline, we convert words to a matrix of token counts, and

TF-IDF counts for ML models. Additionally, we used WordPiece

[34] and Byte-Pair Encoding (BPE) [12] with the state-of-the-art

transformer models (DistilBERT [33], AlBERT [21], RoBERTa [40]).

As a baseline, we selected Multinomial Naive Bayes (MNB), Support

Vector Machine (SVM), and Maximum Entropy (ME). These ML

techniques have been successfully used in text-based classification

[17]. Since DL techniques have shown better results for NLP-based

tasks [27], we selected Convolutional Neural Network (CNN), Long

Short Term Memory (LSTM), and pre-trained Transformer models

(DistilBERT, AlBERT, RoBERTa). Because TD identification is a

sentence classification task, we used metrics of precision, recall,

and F1 to evaluate the model performance.

Table 3: Model Performance on D1

Model Feature Extractor Precision Recall F1

DistilBERT Tokenizer 0.76 0.80 0.78

AlBERT Tokenizer 0.70 0.88 0.78

RoBERTa Tokenizer 0.81 0.79 0.80

CNN Tokenizer 0.65 0.73 0.69

LSTM Tokenizer 0.64 0.74 0.69

MNB Count Vectorizer 0.67 0.74 0.70

MNB TF-IDF Vectorizer 0.75 0.32 0.45

SVM (RBF) Count Vectorizer 0.65 0.73 0.69

SVM (RBF) TF-IDF Vectorizer 0.73 0.30 0.43

MaxEnt Count Vectorizer 0.77 0.53 0.62

MaxEnt TF-IDF Vectorizer 0.75 0.43 0.55

All models were trained using D1. We combined layers, learning

rates for CNN and LSTM, and hyperparameters for ML models

(e.g., alpha for MNB, regularization parameter for SVM and ME).

Because the pre-trained Transformer Models (PTMs) are already

trained, we fine-tuned these models with different learning weights

for TD/non-TD PRCs. D1 was imbalanced, with more non-TD than

TD. As PTMs are better at sentence classification, we handled the

imbalance by penalizing an incorrect TD classification. This was

achieved using Loss Function TDweiдht = 4 ∗ non −TDweiдht ;

namely, the sample weight was four times the weight of non-TD

samples. Using the same weight for TD and non-TD PRCs

would have caused a misclassification of TD. Thus, we tried

different weight values (e.g., 2–5). When the TD weight is four

times, it provides a balanced score for the PTM. We found that

CountVectorizer (converting PRCs to a matrix of token counts) is

more effective than matrices of TF-IDF features. For TD detection,

baseline DLs provided a comparable score to MLs. However, aligned

with prior findings related to transformer models [27], the PTMs

showed comparatively better performance in sentence classification.

Table 3 summarizes the results per model.

To verify the effectiveness of our top-performing models

(RoBERTa, AlBERT, and DistilBERT) in TD detection, we randomly

sampled another dataset from the PRCs of Apache Spark, Apache

Kafka, and React using 95% of confidence and 5% margin of error;

this resulted in 384 PRCs each for Spark and Kafka and 382 for React,

adding up to 1150, henceforth, referred to as D2). After further
cleaning up the PRCs (e.g., remove empty PRCs), we had 1132

PRCs left. All authors manually classified these PRCs independently

and without knowing the algorithms’ prediction. After the manual

classification, the authors discussed the differences and calculated a

new inter-rater agreement (summarized in Table 4) using Cohen’s

Kappa coefficient.

Table 4: Manual Identification Summary of D2

Repository Kafka Spark React Total

Total Sampled PRCs 355 354 348 1057

TD PRC 140 117 152 409

Non-TD PRC 215 237 196 648

TD (%) 39.4 33.0 43.6 38.7

Inter-Rater Agreement 0.89 0.90 0.91

Table 5: Model Performance on D2

Model Feature Extractor Precision Recall F1

DistilBERT Tokenizer 0.76 0.91 0.82

AlBERT Tokenizer 0.70 0.95 0.80

RoBERTa Tokenizer 0.82 0.87 0.85

Then, we evaluated the performance of RoBERTa, AlBERT, and

DistilBERT with D2. We summarized the precision, recall and

F1-score for these models in Table 5. We obtained similar scores

for the PTMs as depicted in Tables 3 and 5, confirming PTMs

generalization capability. The inter-rater agreement of our manual

classification is comparable, indicating a high agreement (Tables 2,

4).

Although our results seem promising (high precision, recall, and

F1) and we successfully identified TD instances on PRCs, we faced

several issues. Section 5 elaborates on the challenges encountered,

presenting some mitigation strategies.

ESEM ’22, September 18–23, 2022, Helsinki, Finland Karmakar et al.

5 CHALLENGES AND LESSONS LEARNED
This section discusses the challenges we faced while identifying TD

in PRCs, including examples and possible mitigation strategies. The

replication package
1
includes more examples for each challenge.

Challenge 1. PRs are not self-contained; information from

other artifacts will affect whether a PRC implies TD or not.

Lesson Learned 1. PRs information is insufficient and

should be triangulated with other sources (e.g., interviews,

observations) and analyzed alongside other artifacts (e.g.,

associated source code).

Description. Pull requests are inherently variable, as they are

directly tied into a software system’s domain and constraints which

may not be publicly available (e.g., people’s skills, restricted budgets,

and time-frames). Prior works demonstrated that elements such as

styling could affect a PR’s merge [41] and the sentiment conveyed

through wording can also impact the PR’s process [29]. We found

that it is typical for a PR’s discussion to continue face to face,

limiting the available information: We talked more offline
about this and discovered that [...]. This adds further
challenges to the identification because that information can only

be accessed through interviews/observations; it may be possible

that the aforementioned ‘offline’ talk refers to other tools (e.g.,

Slack), but accessing those are sometimes not possible and may

violate organizational policies.

Also, there are ‘unspoken rules’ regarding handling specific

changes that may lead to postponing an item (as per Challenge 2).

These rules may not be publicly specified (e.g., We don’t normally
merge things that are subjective, because it would
lead to a lot of PRs.), or ongoing managerial discussions

may affect the entire infrastructure (e.g., There are some plans
to run the Kafka system tests with other clients,
and that would hopefully show issues like this). Such
comments demonstrate that PRCs may not provide enough context

to understand whether a statement should be considered TD, posing

a threat to the study’s validity.

Mitigation. Because PRCs are not enough on their own,

triangulating with additional data sources will help provide more

context and better understand the ‘conversation’ around the

changes; this includes source code analyses, including parsing of

source code comments, but can be extended to process-related data

such as interviews or observations.

Challenge 2. A PRC may have the potential to become a TD

instance, but whether it becomes TD depends on decisions that

have not yet been taken or are not explicitly mentioned in the

PRC.

Lesson Learned 2. The developers’ processes, including their
management of PRs, will affect Potential TD.

Discussion. Li et al. [22] defined TD as "technical compromises

that can yield short-term benefits but may hurt the long-term

health of a system", while Martin Fowler conceptualized the four

quadrants of awareness for TD introduction
4
, determining that

TD may be unwillingly introduced. TD has been explored mostly

4
https://martinfowler.com/bliki/TechnicalDebtQuadrant.html

in source code comments [24, 25, 30] and commit messages [31],

where the situations leading to the introduction, repayment, or

prevention of TD already occurred. However, PRs are meant to

provide code-review capabilities and may or may not result in the

acceptance of a code change into the main code because of several

factors (e.g., code style or inconsistencies with other PRs)[41].

Thus, a PRCmay indicate potential TD–i.e., it is not an immediate

issue but has the potential to become an issue [32] if the developers

make certain decisions and their subsequent actions result in TD.

In some cases, it may be possible to triangulate the PRCs with

other data sources (e.g., code changes) to understand the context

better. However, this may not always be possible as it could still

be an ongoing discussion. For example, ...we can now consider
implementing a much more targeted pooling strategies
for events is a case of potential TD because implementing a

specific solution is possible and reasonable, but not doing so will

incur TD; however, adding such a feature can be relegated to another

PR as per the development process.

The above example leads to Lesson 3. Although there are

guidelines on how PRs are used, each project has its nuances [41],

which limits how closely related changes must be to be part of

the same PR. Therefore, it is possible that a seemingly postponed

change is only ‘redirected’ into another PR for the sake of the

process. For example, a contributor commented: For line 376
above, which is out of scope of this PR: [...], and the

decision to move and address it in another PR, creates potential TD.
Mitigation. The concept of potential TD has been discussed but

not formally defined; to our knowledge, it has not been explicitly

investigated either. Understanding potential TD, the transition

between states (from potential to real or avoided), and when to

consider it will allow a thorough analysis of TD in PRCs.

Challenge 3. Unlike other sources of TD, PRCs can be

ambiguous. This results in TD taking different shapes and

showcasing different degrees of explicitness.

Lesson Learned 3. TD in PRCs is not enough to determine the

debt instances of software due to the explicitness of comments,

developers’ attitudes, and nature of the discussions.

Discussion. Because PRCs are meant to discuss ongoing

changes, some TD instances are explicit and highlight an existent,

specific issue using words not subject to interpretation. This

is the ‘traditional’ wording of TD-admission seen in source

code comments [24, 25, 30], which can be linked to specific TD

management activities [22]. For example FWIW this does seem to
have fixed the error I saw on Facebook. (Just repro’ed
and no longer breaks.) explicitly indicates repayment, while I
still see the following issue locally: [...] indicates an
existent case of Defect Debt.

However, based on the versatility of natural language and the

discussion-orientation of PRs, other TD instances are implicit–they
do not use keywords (e.g., TODO) and cannot/should not be

analyzed word by word. For example, Edit: If I disable the
"minify" preset when compiling, the original Line is
not null (but it is also incorrect). indicates Defect

Debt without using common keywords. Question-style wording

is also used in implicit cases, possibly indicating developers are

https://martinfowler.com/bliki/TechnicalDebtQuadrant.html

An Experience Report on Technical Debt in Pull Requests: Challenges and Lessons Learned ESEM ’22, September 18–23, 2022, Helsinki, Finland

not confident; e.g., Since stop closes and sets consumer to
null, perhaps we dont need this here?

Developers participate differently in PRs. For instance, some

are insecure, new to a project, or simply making a voluntary

contribution [29] and this, in turn, affects whether a PR is merged

or not. As a result, the developers’ ‘affective’ state or attitudes will

affect the wording used, thus causing automated TD detection to

be more challenging.

Mitigation. For PRCs, it may not be enough to classify

comments (or sentences, as per Challenge 4) into the common TD

vs. non-TD, given that the manifestation of TD is more nuanced,

and disregarding the subjective wording can make automatic

detection harder. As part of our replication package
1
, we provide a

small dataset of TD PRCs classified into explicit or implicit (ETD

or ITD, respectively). This is also related to Challenge 3.

Challenge 4. A single TD instance can be scattered across

multiple PRCs. Likewise, each PRC could disclose multiple

instances and TD types.

Lesson Learned 4. Sentence splitting is not straightforward,

and guiding it by punctuation, sentences, or paragraphs may

threaten the study’s validity.

Discussion. A recurrent issue of PRCs is their variability. Some

PRCs are concise and composed of a single sentence clearly

outlining TD, but this is not always the case. Many PRCs have

multiple paragraphs and sentences, discussing many TD types at

different degrees of explicitness. This poses an issue for automatic

detection, as words and sentences that are non-TD will be ‘grouped’

with TD instances as training data. As a solution, we tried splits

by paragraph, sentences, or semantic splitting through existing

libraries
5
. However, the paragraphs were still too large and

contained multiple TD types. Sentences can be incorrectly split (e.g.,

punctuation is not always ideal), opposite to the paragraph-split, as

a sentence containing TD may only be understood when associated

with another sentence; e.g., But the list-test is a superset
of the map test? Seems to be redundant to me.. The first
rhetorical question could be interpreted as ‘discussion’ or ‘thought

exposition’ if read independently, but it indicates TD alongside the

following sentence. The existent libraries we tested did not provide

a good enough result for splitting.

Mitigation. TD classification is done in a binary, exclusionary

form; namely, each PRC or sentence can be TD or non-TD.

Although manually generated gold data can provide an acceptable

degree of sentence separation (as per the dataset of Challenge

3), an automated separation may require specific training. A

less resource-demanding approach for automated classification

could provide a ‘category belonging’ akin to what LDA (Latent

Dirichlet Association) does with topic modeling [5]. For example,

the classification result for a paragraph could be provided as

proportions, in the shape of [NTD=0.1, ETD=0.4, ITD=0.5],
which would be read as having 50% possibility of containing implicit

TD, 40% explicit TD, and 10% non-TD.

5
https://github.com/bminixhofer/nnsplit

6 THREATS TO VALIDITY
The authors performed independent coding and discussed

disagreements to reduce bias for the TD vs. non-TD identification

and threats associated with the unfamiliarity of the domain

knowledge for the selected systems. This also helped alleviate the

threats related to the PRCs lacking context for classification. To find

the best model for detecting TD from PRCs, we compared previously

used algorithms [27]. We re-sampled the data and manually verified

it to generalize the models’ performance. The selected systems

used different programming languages from diverse domains that

were used in previous studies [20] and followed existing guidelines

to minimize threats and ensure diversity [19]. Therefore, the

challenges and the reported lessons learned are solely based on the

PRs we analyzed and might not apply to other projects or domains.

7 CONCLUSION
We investigated TD in PRCs for three open-source projects (Apache

Spark, Apache Kafka, and React). We mined and classified PRCs

into TD/non-TD. First, we sampled the dataset, manually classified

the PRCs, and then automated the process through ML, DL, and

PTMs. The PTMs had higher performance overall compared to the

ML and DL models. Lastly, we classified the TD PRCs as explicit or

implicit TD.

Although we successfully classified PRCs as TD/non-TD and

the TD PRCs as explicit/implicit, the classification process was

challenging. We uncovered that PRCs often lack the context to

understand and correctly classify it, and some were potential TD,

but we could not determine whether they will eventually become a

TD instance using only information in the PRC. PRCs were often

ambiguous and hard to understand due to the natural language in

which they were written, and the terminologies and vocabulary

used differed among the developers. Lastly, more than one PRC

could be related to the same debt instance, or multiple debt instances

may be discussed in a PRC. We discussed some mitigation strategies

for these challenges.

PRC as a source of TD opens up further research avenues.

Analyzing the other software artifacts (e.g., source code, issues, and

commit messages) impacted by the PR and conducting ethnographic

studies with developers will provide more context and a better

understanding of the PRCs. More investigation is also needed to

understand how to automatically split the PRCs to be self-contained

and contain distinct instances of debt. Using topic modeling

to identify the areas of discussion in the PRCs will also help

classify the PRCs according to TD types (e.g., code, test, and

documentation debt). Identifying the most common TD types

in PRCs and determining the characteristics of TD from PRCs

concerning the size of TD will also help provide more insights

into TD in PR.

ACKNOWLEDGMENTS
This study is partly supported by the Natural Sciences and

Engineering Research Council of Canada, RGPIN-2021-04232 and

DGECR-2021-00283 at the University of Saskatchewan.

https://github.com/bminixhofer/nnsplit

ESEM ’22, September 18–23, 2022, Helsinki, Finland Karmakar et al.

REFERENCES
[1] Nicolli S.R. Alves, Leilane F. Ribeiro, Vivyane Caires, Thiago S. Mendes, and

Rodrigo O. Spínola. 2014. Towards an Ontology of Terms on Technical Debt.

In Int. Workshop on Managing Technical Debt. IEEE, Victoria, BC, Canada, 1–7.
https://doi.org/10.1109/MTD.2014.9

[2] Paris C. Avgeriou, Davide Taibi, Apostolos Ampatzoglou, Francesca Ar-

celli Fontana, Terese Besker, Alexander Chatzigeorgiou, Valentina Lenarduzzi,

Antonio Martini, Athanasia Moschou, Ilaria Pigazzini, Nyyti Saarimaki,

Darius Daniel Sas, Saulo Soares de Toledo, and Angeliki Agathi Tsintzira. 2021.

An Overview and Comparison of Technical Debt Measurement Tools. IEEE 38, 3

(2021), 61–71. https://doi.org/10.1109/MS.2020.3024958

[3] Gabriele Bavota and Barbara Russo. 2016. A Large-Scale Empirical Study on

Self-Admitted Technical Debt. In Conf. on Mining Software Repositories. IEEE,
Austin, TX, USA, 315–326.

[4] Stephany Bellomo, Robert L. Nord, Ipek Ozkaya, and Mary Popeck. 2016. Got

Technical Debt? Surfacing Elusive Technical Debt in Issue Trackers. In Conf. on
Mining Software Repositories. IEEE, Austin, TX, USA, 327–338.

[5] David M Blei and Michael I Jordan. 2003. Modeling Annotated Data. In Conf. on
Research and Development in Information Retrieval. Association for Computing

Machinery, New York, NY, USA, 127–134.

[6] Gleison Brito and Marco Tulio Valente. 2020. REST vs GraphQL: A Controlled

Experiment. In Int. Conf. on Software Architecture. IEEE, Salvador, Brazil, 81–91.
https://doi.org/10.1109/ICSA47634.2020.00016

[7] Nanette Brown, Yuanfang Cai, Yuepu Guo, Rick Kazman, Miryung Kim, Philippe

Kruchten, Erin Lim, Alan MacCormack, Robert Nord, Ipek Ozkaya, Raghvinder

Sangwan, Carolyn Seaman, Kevin Sullivan, and Nico Zazworka. 2010. Managing

Technical Debt in Software-Reliant Systems. InWorkshop on Future of SE Research
(FoSER ’10). Association for Computing Machinery, New York, NY, USA, 47–52.

https://doi.org/10.1145/1882362.1882373

[8] John Businge, Moses Openja, Sarah Nadi, and Thorsten Berger. 2022. Reuse and

Maintenance Practices Among Divergent Forks in Three Software Ecosystems.

Empirical SE 27, 2 (2022), 1–47.

[9] Dipta Das, Abdullah Al Maruf, Rofiqul Islam, Noah Lambaria, Samuel Kim, Amr S

Abdelfattah, Tomas Cerny, Karel Frajtak, Miroslav Bures, and Pavel Tisnovsky.

2022. Technical Debt Resulting from Architectural Degradation and Code Smells:

A Systematic Mapping Study. Applied Computing Review 21, 4 (2022), 20–36.

[10] Sen Fang, Tao Zhang, You-Shuai Tan, Zhou Xu, Zhi-Xin Yuan, and Ling-Ze Meng.

2022. PRHAN: Automated Pull Request Description Generation Based on Hybrid

Attention Network. Journal of Systems and Software 185 (2022), 111160.
[11] Gianmarco Fucci, Nathan Cassee, Fiorella Zampetti, Nicole Novielli, Alexander

Serebrenik, and Massimiliano Di Penta. 2021. Waiting Around or Job Half-Done?

Sentiment in Self-Admitted Technical Debt. In Int. Conf. on Mining Software
Repositories. Springer, Madrid, Spain, 403–414. https://doi.org/10.1109/MSR52588.

2021.00052

[12] Philip Gage. 1994. A New Algorithm for Data Compression. C Users J. 12, 2
(1994), 23–38.

[13] Israel Gat and John D. Heintz. 2011. From Assessment to Reduction: How Cutter

Consortium Helps Rein in Millions of Dollars in Technical Debt. In Int. Workshop
on Managing Technical Debt. Association for Computing Machinery, New York,

NY, USA, 24–26. https://doi.org/10.1145/1985362.1985368

[14] Mehdi Golzadeh, Alexandre Decan, Damien Legay, and Tom Mens. 2021. A

Ground-Truth Dataset and Classification Model for Detecting Bots in GitHub

Issue and PR Comments. Journal of Systems and Software 175 (2021), 110911.

https://doi.org/10.1016/j.jss.2021.110911

[15] Georgios Gousios, Andy Zaidman, Margaret-Anne Storey, and Arie Van Deursen.

2015. Work practices and challenges in pull-based development: The integrator’s

perspective. In ACM 37th IEEE International Conference on Software Engineering,
Vol. 1. IEEE, Florence, Italy, 358–368.

[16] Joseph Hejderup and Georgios Gousios. 2022. Can We Trust Tests to Automate

Dependency Updates? A Case Study of Java Projects. Journal of Systems and
Software 183 (2022), 111097.

[17] M Ikonomakis, Sotiris Kotsiantis, and V Tampakas. 2005. Text Classification

Using Machine Learning Techniques. Trans. on Computers 4, 8 (2005), 966–974.
[18] Khairul Islam, Toufique Ahmed, Rifat Shahriyar, Anindya Iqbal, and Gias Uddin.

2022. Early Prediction for Merged vs Abandoned Code Changes in Modern

Code Reviews. Information and Software Technology 142 (2022), 106756. https:

//doi.org/10.1016/j.infsof.2021.106756

[19] Eirini Kalliamvakou, Georgios Gousios, Kelly Blincoe, Leif Singer, Daniel M.

German, and Daniela Damian. 2014. The Promises and Perils of Mining GitHub.

In Conf. on Mining Software Repositories. Association for Computing Machinery,

New York, NY, USA, 92–101. https://doi.org/10.1145/2597073.2597074

[20] Yutaro Kashiwa, Ryoma Nishikawa, Yasutaka Kamei, Masanari Kondo, Emad

Shihab, Ryosuke Sato, and Naoyasu Ubayashi. 2022. An Empirical Study on

Self-Admitted Technical Debt in Modern Code Review. Information and Software

Technology 146 (2022), 106855. https://doi.org/10.1016/j.infsof.2022.106855

[21] Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush

Sharma, and Radu Soricut. 2020. ALBERT: A Lite BERT for Self-supervised

Learning of Language Representations.. In ICLR. OpenReview.net, Addis Ababa,
Ethiopia.

[22] Zengyang Li, Paris Avgeriou, and Peng Liang. 2015. A Systematic Mapping Study

on Technical Debt and its Management. Journal of Systems and Software 101
(2015), 193–220. https://doi.org/10.1016/j.jss.2014.12.027

[23] Rungroj Maipradit, Christoph Treude, Hideaki Hata, and Kenichi Matsumoto.

2020. Wait for It: Identifying “On-Hold” Self-Admitted Technical Debt. Empirical
SE 25, 5 (2020), 3770–3798. https://doi.org/10.1007/s10664-020-09854-3

[24] Everton da S. Maldonado and Emad Shihab. 2015. Detecting and Quantifying

Different Types of Self-Admitted Technical Debt. In Int. Workshop on Managing
Technical Debt. IEEE, Bremen, Germany, 9–15. https://doi.org/10.1109/MTD.

2015.7332619

[25] Everton da Silva Maldonado, Emad Shihab, and Nikolaos Tsantalis. 2017. Using

Natural Language Processing to Automatically Detect Self-Admitted Technical

Debt. Transactions on SE 43, 11 (2017), 1044–1062. https://doi.org/10.1109/TSE.

2017.2654244

[26] Mary McHugh. 2012. Interrater Reliability: the Kappa Statistic. Biochemia medica
22 (10 2012), 276–82. https://doi.org/10.11613/BM.2012.031

[27] Shervin Minaee, Nal Kalchbrenner, Erik Cambria, Narjes Nikzad, Meysam

Chenaghlu, and Jianfeng Gao. 2021. Deep Learning–Based Text Classification:

A Comprehensive Review. ACM Comput. Surv. 54, 3, Article 62 (2021), 40 pages.
https://doi.org/10.1145/3439726

[28] Arthur-Jozsef Molnar and Simona Motogna. 2020. Long-Term Evaluation of

Technical Debt in Open-Source Software. In Int. Symp. on Empirical SE and
Measurement. Association for Computing Machinery, New York, NY, USA, Article

13, 9 pages. https://doi.org/10.1145/3382494.3410673

[29] Marco Ortu, Giuseppe Destefanis, Daniel Graziotin, Michele Marchesi, and

Roberto Tonelli. 2020. How do you Propose Your Code Changes? Empirical

Analysis of Affect Metrics of Pull Requests on GitHub. Access 8 (2020),

110897–110907. https://doi.org/10.1109/ACCESS.2020.3002663

[30] Aniket Potdar and Emad Shihab. 2014. An Exploratory Study on Self-Admitted

Technical Debt. In Int. Conf. on SoftwareMaintenance and Evolution. IEEE, Victoria,
BC, Canada, 91–100. https://doi.org/10.1109/ICSME.2014.31

[31] Leevi Rantala and Mika Mäntylä. 2020. Predicting Technical Debt from Commit

Contents: Reproduction and Extension with Automated Feature Selection. Soft.
Quality Journal 28, 4 (2020), 1551–1579. https://doi.org/10.1007/s11219-020-

09520-3

[32] Gabriela Robiolo, Ezequiel Scott, Santiago Matalonga, and Michael Felderer. 2019.

Technical Debt and Waste in Non-functional Requirements Documentation: An

Exploratory Study. In Product-Focused Software Process Improvement, Xavier
Franch, Tomi Männistö, and Silverio Martínez-Fernández (Eds.). Springer Int.

Publishing, Cham, 220–235.

[33] Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. 2019.

DistilBERT, A Distilled Version of BERT: Smaller, Faster, Cheaper and Lighter.

CoRR abs/1910.01108 (2019).

[34] Mike Schuster and Kaisuke Nakajima. 2012. Japanese and Korean voice search. In

Int. Conf. on Acoustics, Speech and Signal Processing. IEEE, Kyoto, Japan, 5149–5152.
https://doi.org/10.1109/ICASSP.2012.6289079

[35] Edith Tom, Aybüke Aurum, and Richard Vidgen. 2013. An exploration of technical

debt. Journal of Systems and Software 86, 6 (2013), 1498–1516. https://doi.org/10.

1016/j.jss.2012.12.052

[36] Johannes Holvitie Tomi‘bgt’Suovuo, Jouni Smed, and Ville Leppänen. 2015.

Mining Knowledge on Technical Debt Propagation. 14th Symposium on
Programming Languages and Software Tools 1525 (2015), 281–295.

[37] Peipei Wang, Chris Brown, Jamie A Jennings, and Kathryn T Stolee. 2022.

Demystifying Regular Expression Bugs. Empirical SE 27, 1 (2022), 1–35.

[38] Nico Zazworka, Antonio Vetro’, Clemente Izurieta, Sunny Wong, Yuanfang Cai,

Carolyn Seaman, and Forrest Shull. 2014. Comparing Four Approaches for

Technical Debt Identification. Software Quality Journal 22, 3 (sep 2014), 403–426.

[39] Xin Zhang, Yang Chen, Yongfeng Gu, Weiqin Zou, Xiaoyuan Xie, Xiangyang Jia,

and Jifeng Xuan. 2018. How do Multiple Pull Requests Change the Same Code:

A Study of Competing Pull Requests in GitHub. In IEEE Int. Conf. on Software
Maintenance and Evolution. IEEE, Madrid, Spain, 228–239. https://doi.org/10.

1109/ICSME.2018.00032

[40] Liu Zhuang, Lin Wayne, Shi Ya, and Zhao Jun. 2021. A Robustly Optimized

BERT Pre-training Approach with Post-training. In Chinese National Conference
on Computational Linguistics. Chinese Information Processing Society of China,

Huhhot, China, 1218–1227.

[41] Weiqin Zou, Jifeng Xuan, Xiaoyuan Xie, Zhenyu Chen, and Baowen Xu. 2019.

How Does Code Style Inconsistency Affect Pull Request Integration? An

Exploratory Study on 117 GitHub Projects. Empirical Software Engineering 24

(12 2019). https://doi.org/10.1007/s10664-019-09720-x

https://doi.org/10.1109/MTD.2014.9
https://doi.org/10.1109/MS.2020.3024958
https://doi.org/10.1109/ICSA47634.2020.00016
https://doi.org/10.1145/1882362.1882373
https://doi.org/10.1109/MSR52588.2021.00052
https://doi.org/10.1109/MSR52588.2021.00052
https://doi.org/10.1145/1985362.1985368
https://doi.org/10.1016/j.jss.2021.110911
https://doi.org/10.1016/j.infsof.2021.106756
https://doi.org/10.1016/j.infsof.2021.106756
https://doi.org/10.1145/2597073.2597074
https://doi.org/10.1016/j.infsof.2022.106855
https://doi.org/10.1016/j.jss.2014.12.027
https://doi.org/10.1007/s10664-020-09854-3
https://doi.org/10.1109/MTD.2015.7332619
https://doi.org/10.1109/MTD.2015.7332619
https://doi.org/10.1109/TSE.2017.2654244
https://doi.org/10.1109/TSE.2017.2654244
https://doi.org/10.11613/BM.2012.031
https://doi.org/10.1145/3439726
https://doi.org/10.1145/3382494.3410673
https://doi.org/10.1109/ACCESS.2020.3002663
https://doi.org/10.1109/ICSME.2014.31
https://doi.org/10.1007/s11219-020-09520-3
https://doi.org/10.1007/s11219-020-09520-3
https://doi.org/10.1109/ICASSP.2012.6289079
https://doi.org/10.1016/j.jss.2012.12.052
https://doi.org/10.1016/j.jss.2012.12.052
https://doi.org/10.1109/ICSME.2018.00032
https://doi.org/10.1109/ICSME.2018.00032
https://doi.org/10.1007/s10664-019-09720-x

	Abstract
	1 Introduction
	2 Related Work
	3 Data Collection and Processing
	4 Technical Debt Detection
	4.1 Manual Classification
	4.2 Automated Classification

	5 Challenges and Lessons Learned
	6 Threats to Validity
	7 Conclusion
	Acknowledgments
	References

