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Abstract

This paper considers policies for distributing re-
quests in clustered Web servers, wherein multiple
server machines are configured to function as a single
high(er) performance Web server. We evaluate var-
ious load distribution policies with respect to both
their ability to achieve good load balance (the pri-
mary goal) and also to their impact on the effec-
tiveness of per-machine caching. Trace-driven sim-
ulation is employed, with workload traces from two
heavily-loaded (3-8 million requests per day) com-
mercial Web servers.

Our results show that use of current state informa-
tion is necessary in achieving good load balance only
when the achievable per-request bandwidth is not
strongly network or client limited. Use of current
state information is not found to be necessary with
respect to achieving good cache behaviour. Load
distribution based on a static hashed assignment of
the URL space is found to yield very similar cache
performance to load distribution based on current
cache contents. We also find that it is possible to
achieve both good cache behaviour and good load
balance, but it requires use of policies that take both
objectives into consideration and that make use of
information concerning current server loads.

1 Introduction

Continued growth in Web usage is causing a num-
ber of performance problems, including slow re-
sponse times, network congestion, and denial of ser-
vice. There are a number of approaches to ad-
dressing these problems. One approach is based on
caching copies of Web objects closer to the request-

ing clients. This may be controlled by servers that
“push” popular Web objects out to other cooperat-
ing servers [4, 13], or may be triggered by individ-
ual client requests passing through client and proxy
caches [5, 7, 20, 21, 22]. Another approach is to
use prefetching to reduce response times, by hiding
server and network latency [6, 18].

A complementary approach is to make the Web
server more powerful through the use of a clustered
architecture, in which multiple machines function
cohesively as a single Web server (e.g., [1, 3, 8, 9,
10, 11, 12, 14, 15, 19, 24]). Such an architecture of-
fers multiple benefits: first, more machines means
more capacity to handle requests; second, reliability
and availability are improved since the server can
continue to operate should some machines go down;
third, a consistent external interface can be pre-
served; and fourth, the design should be more easily
scalable. If incoming requests can be distributed
among the server nodes in a reasonable fashion,
then the overall performance (and scalability) is im-
proved. Distribution of requests (i.e., load distribu-
tion), however, has further implications. One impor-
tant consideration is the effect of load distribution
on cache performance within the cluster, since poor
cache performance could reduce benefits of load bal-
ance.

The goal of this work is to investigate fundamental
performance issues within the server cluster; in par-
ticular, the benefits of using current state informa-
tion (both cache contents and server loads) in load
distribution. In this paper, we evaluate the impact
of load distribution policies on both the load bal-
ance that is achieved across the machines in the clus-

RicHARD B. BuNT, DEREK L. EAGER, GREGORY M. OSTER, AND CAREY L. WILLIAMSON 159



ter, and caching performance within the cluster. We
consider configurations in which each server machine
has a main-memory Web object cache, and load dis-
tribution is done by the cluster itself, rather than by
individual clients [17, 23]. Trace-driven simulation,
with traces from two heavily-loaded (3-8 million re-
quests per day) commercial Web sites, is used to
conduct our experiments.

Our main conclusions are as follows:

e Use of current server state information is neces-
sary for good load balance only if the achievable
per-request bandwidth is not strongly network
or client limited.

e Use of current server state information is not
necessary for good cache behaviour. Load dis-
tribution based on a static hashed assignment
of the URL space is nearly as effective as load
distribution based on current cache contents.

e Load distribution based only on load balance
considerations can negatively impact the perfor-
mance achieved with per-machine Web object
caches. Similarly, load distribution based only
on cache affinity can negatively impact load bal-
ance. Achieving both good cache performance
and good load balance is possible, but it re-
quires the use of policies that take both objec-
tives into consideration, and that make use of
information concerning current server loads.

This work is similar in nature to several previous
studies of clustered Web servers (e.g., [1, 8, 9, 10, 12,
15, 19, 24]), with two important differences. First,
our work focusses on the performance impacts of the
amounts and types of information employed in load
distribution, using a methodical exploration of the
design space. Second, we focus on load balance and
cache performance as primary performance metrics,
rather than server or connection throughput. Fur-
ther discussion of closely related work [12, 19] is de-
ferred until Section 5.

The remainder of the paper is organized as follows.
Section 2 describes the load distribution policies that
we consider, our trace-driven simulation methodol-
ogy, and the empirical workload traces that we em-
ploy. We first focus solely on load balancing per-
formance; these results are presented in Section 3.
In Section 4 we consider the impact of load distri-
bution on caching performance, and give results for
load distribution policies that integrate considera-
tions of both caching and load balancing. Section 5

discusses the relationship of this work to other work
in this area, and Section 6 concludes the paper.

2 Methodology

We consider load distribution policies that differ in
the amounts and types of information employed. In
particular, we consider the use of information con-
cerning load balance, and information concerning
the contents of the per-machine Web object caches.
Three choices are considered with respect to the use
of information concerning load:

e Random distribution (RANDOM): no informa-
tion is utilized; in the absence of cache consider-
ations, and assuming homogeneous server ma-
chines, load distribution is random (specifically,
by Bernoulli trial, with equal probabilities of go-
ing to each server)

e Round-Robin distribution (ROUND-ROBIN):
only information on past routing decisions is
utilized; in the absence of cache considerations,
load distribution is round-robin

e Load-based distribution (LOAD): information
on the current load at each server is utilized; in
the absence of cache considerations, the most
lightly loaded server is selected.

Three choices are also considered with respect to use
of information regarding cache contents:

e no information is utilized; load distribution is
determined solely according to load balance
considerations

e information on the “cache affinities” of the in-
coming requests is utilized, but these cache
affinities are estimated based only on a static
hashed assignment of the URL space among the
servers

e information on the cache affinities of the incom-
ing requests is utilized; these cache affinities are
determined using knowledge of the current con-
tents of each server cache.

In Section 3, policies that attempt only to balance
load, with no consideration of cache affinities, are
considered. Section 4 considers policies that utilize
cache affinity in addition to information on current
loads.
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Trace-driven simulation is used to evaluate the per-
formance that is achieved with each of the load dis-
tribution policies that we consider. We assume that
the servers within the simulated cluster are homo-
geneous. A simple model of server operation is em-
ployed, in which the bandwidth (e.g., in Kilobytes
(KB) per second) achieved in servicing a request, as
determined both by server capabilities and by possi-
ble network and/or client-side limitations, is charac-
terized by two parameters. These parameters are the
maximum bandwidth that can be delivered to an in-
dividual request (Bjndiv), and the maximum aggre-
gate bandwidth (Biote;) that a single server can de-
liver to all the requests that it is attempting to serve
concurrently. As motivated from a formula used in
simple queueing models of computer systems [16],
we model the achieved per-request bandwidth (e.g.
in KB/sec) at a server that is concurrently servicing
N requests as:

1 N—-1
Bindiv Biotal

yielding an achieved aggregate bandwidth over all of
the requests in service at that server of

N
1 N—-1
Bindiv Biotal

Note that with this model, the service time for a
request is a direct function of the request size, and
the current service rate. The service rate, in turn, is
a dynamic function of the number of simultaneously
active connections, as well as the per-server and per-
request bandwidth constraints defined above. These
constraints reflect the impacts of client-side net-
work bandwidth limitations, connection setup costs,
TCP slow-start effects, and the overall contention
for server resources.

The workload for our simulations was drawn from
empirical traces, obtained from access logs at two
busy commercial Internet Web sites. Both sites em-
ployed a clustered Web server architecture. The in-
formation extracted from the access logs for each re-
quest includes a timestamp, an identifier for the host
that generated the request, the object requested, the
type of object requested, and the object size in bytes.

The general characteristics of our traces are given in
Table 1. Trace 1 and Trace 2 were both obtained
from the same site. Although there are some signifi-
cant differences between them, the traces were found
to conform surprisingly well to the workload charac-
teristics described in [2]. Thus many of the observa-
tions about caching performance reported in [2] are

likely to apply with these data sets as well, although
the request rates of 3-8 million requests per day are
significantly higher. In the interests of space, we fo-
cus on Trace 1, the most recent trace, in the remain-
der of the paper. Results for Trace 2 and Trace 3
are qualitatively similar. Except for some statistics
that we present for the entire 7 days of the trace, our
simulations use the first 24 hours of trace data for a
“warmup period”, before measurements are taken.

Figure 1 shows the overall traffic profile for the trace.
The workload shows distinct daily and weekly pat-
terns: busiest during the daytime hours, less busy
during the evening and nighttime hours, and least
busy on weekends. The peak request rate observed
in this trace, over one minute observation intervals,
was 21,351 requests per minute; the average was
7,912 requests per minute (131.9 req/sec). The peak
byte request rate observed, over one minute obser-
vation intervals, was 1,496 KB/sec, with an average
of 530 KB/sec.

Trace Profile for Web Server Workload Trace 1 (Requests per 1 minute interval, for 7 days)
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Figure 1: Traffic Profile for the Web Server Workload
in Trace 1 (Requests per minute, full trace)

3 Load Balancing

In this section we consider only the objective of bal-
ancing the load across servers (with no consideration
of the resulting caching performance). Section 3.1
describes the metrics employed. These metrics are
used in comparisons of alternative load distribution
policies in Section 3.2. Section 3.3 evaluates the im-
pact of varying numbers of servers on our principal
results. The impact on cache performance is consid-
ered in Section 4.

3.1 Metrics

Our comparisons of the load balancing performance
that is achieved with various load distribution poli-
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Item Trace 1 Trace 2 Trace 3
Duration 7 days 14 days 7 days
Start Date June 14, 1998 | August 10, 1997 | October 17, 1996
Total Requests 56,458,479 42,742 552 38,467,771
Average Requests/Day 8,065,497 3,053,039 5,495,396
Average Object Size Requested (bytes) 5,716 9,350 8,831
Total MBytes Transferred 307,785 381,123 323,963
Average MBytes/Day 43,969 27,223 46,280

Table 1: Summary of Trace Characteristics (Raw Data)

cies are based on a new measure that we call the
“Load Balance Metric” (LBM). We also give some
results for average “inflation factors”, for the pur-
pose of establishing the correlation between the
LBM and end-user performance. The inflation fac-
tor for a request is defined as the factor by which
the total service time of the request is increased be-
yond what it would be were there no contention for
server resources; i.e., if the request was serviced at
the maximum per-request bandwidth.

In our definition of the LBM, we consider two vari-
ants: “LBM Requests” and “LBM Bandwidth”.
The former is concerned with server load imbalances
(as measured by differences in the numbers of re-
quests being served concurrently), while the latter
is concerned with differences in the achieved per-
request bandwidth (as caused by differing numbers
of requests contending for server resources). With
either variant, a peak-to-mean ratio of server loads
is calculated periodically in the simulation (with the
results presented here, after every 10 seconds of sim-
ulated time), based on the current server states as
observed at that sampling point. The LBM is then
formed by taking the weighted average of these peak-
to-mean ratios.

Defining load as the number of requests being served
concurrently, for LBM Requests, and as the inverse
of the current per-request bandwidth (equal to the
maximum per-request bandwidth if the server is
idle), for LBM Bandwidth, the LBM is defined more
formally as follows:

e load; j — load of server i (of n servers) at the j*"
sampling point (of m such points)

e peak_load; highest load on any server at the
th

7" sampling point

e peak-to-mean ratio:

peak_load;

(Xoiz, load; j)/n

e LBM (weighted average of the instantaneous
peak-to-mean ratios):

m peak_load; Z:;l load;,;
Zj:l( oo, zzmdi,;)/n X n )

Doty 2iey load; j/n

which is simply:

> e, peak load;
(Xoje1 iy load; ;) /n

Note that the value of the LBM can range from 1
to at most n, the number of servers. Small values
of the LBM indicate better load balancing perfor-
mance (smaller peak-to-mean load ratios) than large
values'. LBM Bandwidth is generally a preferable
metric to LBM Requests, since it reflects variations
in end-user performance more directly (i.e., it fo-
cusses on service rate received by a request, rather
than on number of requests in service). Note that
when load is measured simply by the number of re-
quests, for example, there (incorrectly) appears to be
a load imbalance when one request is being served at
one server, and the other server is idle. With either
variant of the LBM, however, the use of a weighted
average ensures that emphasis is given to those sam-
pling points at which server loads are the heaviest,
and thus where load balance is the most important.

3.2 Performance Comparison

Figure 2 presents results that illustrate the impact
of the use or non-use of current state information
in making load balancing decisions, and the depen-
dence of this impact on the extent to which the

LA direct physical interpretation of the LBM Requests
metric is as follows: On a two-server system, an LBM of 1.0
indicates perfect load balance. A load imbalance where one
server queue holds 60% of active requests and the other server
has 40% yields an LBM of 1.2 (60/((60 +40)/2) = 1.2). Sim-
ilarly, a 70%/30% division of the requests among the servers
yields an LBM of 1.4 (70/((70 + 30)/2) = 1.4).
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per-request bandwidth is constrained, for a 2-server
system. The x-axis of each plot is the maximum
per-server bandwidth in KB/sec, and the y-axis is
the maximum per-request bandwidth expressed as
a percentage of the per-server bandwidth. The z-
axis shows the performance surface obtained from
our simulations, as a function of these two server
parameters. Figure 2(a), for example, shows the
relative improvement in the load balancing perfor-
mance of the Load distribution policy as compared
to the Random distribution policy, while Figure 2(b)
compares the Load distribution policy to the Round-
Robin distribution policy.

A number of observations are evident from these
plots. First, relative LBM values are well correlated
with relative end-user performance as measured by
average service time inflation factors (Figures 2(c)
and 2(d)). Second, the Load distribution policy
never does worse (on average) than the Random or
Round-Robin distribution policies. The relative im-
provement in the LBM value can be as high as 30%,
depending on the server configuration. Third, for an
under-resourced server (i.e., low values of the per-
server bandwidth), all server nodes have large back-
logs, and there is little improvement over a random
dispatch policy. Fourth, for an over-resourced server
(i.e., high values of the per-server bandwidth), all
server nodes have short request queues, and there
is little improvement over a random dispatch policy.
Fifth, when the per-request bandwidth constraint is
small (e.g., slow modem users), there is still little
advantage over a random dispatch policy, since all
servers will have large backlogs, even when the per-
server bandwidths are high. Finally, there is a region
in the middle of Figures 2(a) and 2(b) where a load-
based request distribution policy can provide signif-
icant (15-25%) improvement in the LBM. Similar
observations apply for inflation factors (Figures 2(c)

and 2(d)).

3.3 Scalability

We study the scalability of our load balancing re-
sults by varying the number of nodes in the clustered
server architecture. On each configuration, we eval-
uate two request-based distribution policies, Load
and Round-Robin, using the LBM Bandwidth and
LBM Requests measures of load balancing perfor-
mance.

Results for both the Load policy and the Round-
Robin policy are shown in Tables 2 and 3. Table 2
shows results for a fixed per-server bandwidth (700
KB/sec); the aggregate server bandwidth thus in-
creases with the number of server nodes. Table 3

shows results for a fixed aggregate server bandwidth
(1,400 KB/sec). As expected, the values of the
LBM Request metric increase with the number of
server nodes, since it is more difficult to achieve per-
fect load balancing in larger systems. This observa-
tion applies to both the fixed per-server and fixed
aggregate bandwidth scenarios. The LLBM Band-
width metric, however, decreases for large numbers
of server nodes when the per-server bandwidth is
fixed. This is explained by the fact that queue sizes
are very small in this case and thus all requests re-
ceive service at roughly the same rate, even though
some server nodes may be idle while others have one
or two requests.

The results in Table 2 for the Round-Robin policy
indicate that it does almost as well as the more
complex Load policy on larger systems, when the
bandwidth per server is fixed. This observation is
somewhat uninteresting, however, since it represents
a very lightly loaded system in which queue sizes
are very small and load balancing is not an issue.
When the aggregate server bandwidth is fixed, how-
ever, Round-Robin does not do as well as Load on
larger systems (Table 3). The reason for this be-
haviour is the diminishing average request queue size
per server; using load information can exploit small
differences in queue sizes amongst servers, whereas
Round-Robin cannot. The relative importance of
using information on current server loads for load
balancing purposes increases with the number of
servers.

4 Cache Performance Considerations

We assume that each server in the cluster has a lo-
cal in-memory cache into which referenced Web ob-
jects are copied. The cache is managed according to
a frequency-based replacement policy, as suggested
in [2]. Dynamic files (e.g., as produced as output
from CGI scripts) are not cached. Since different
requests for the same object may go to different
servers, the same object may be present simultane-
ously in more than one cache. Cache misses may
occur because of first-time references, references to
dynamic content, limited cache capacity, and inval-
idation due to object modification.

If cache contents are ignored in load distribution,
copies of popular Web objects will find their way
into many caches, perhaps forcing out other popu-
lar objects. Arguably, the total cache space is used
more effectively when fewer replicas exist at once
(and they exist in the right place). Further, each
replica must initially be created through a separate
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Figure 2: Load Balancing Performance of Load vs. Random vs. Round-Robin (2 servers): (a) LBM Bandwidth
(Load vs. Random), (b) LBM Bandwidth (Load vs. Round-Robin), (c) Average Inflation Factor (Load vs. Random),
(d) Average Inflation Factor (Load vs. Round-Robin)

cache miss. These considerations motivate load dis-
tribution by cache affinity. A key issue, however,
is whether cache performance and load balance are
fundamentally at odds with each other.

In this section we first study the impact on cache
performance of ignoring cache affinity in load dis-
tribution. We then consider the performance (with
respect to both cache hit ratios and load balance)
of load distribution policies that take cache affinity
into account.

4.1 Impact of Load Distribution
on Cache Hit Ratios

Ignoring cache contents in the load distribution pol-
icy can have a considerable impact on cache perfor-
mance. This can be seen in a comparison of cache
hit ratios with varying numbers of servers (Figure 3),
with each server allocated an equal share of the ag-

gregate cache space, with the Load distribution pol-
icy.

Each of the curves in Figure 3 shows the effect on the
hit ratio (for objects in (a), and for bytes in (b)) of
increasing the aggregate and per-server cache sizes
for a particular number of servers (1, 2, 4, or 8) in the
cluster. Configurations with a fixed aggregate cache
size (but varying numbers of servers and thus vary-
ing per-server cache sizes) can be compared by exam-
ining points with the same x-coordinate, but on dif-
ferent curves. Configurations with a fixed per-server
cache size (but varying numbers of servers and thus
varying aggregate cache sizes) can be compared by
matching points on the curve for one server to those
with twice the aggregate cache space on the curve
for two servers, four times the aggregate cache space
on the curve for four servers, and eight times the
aggregate cache space on the curve for eight servers.
(Note that the x-axis is on a log scale.)
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Load LBM Round-Robin LBM
Number of Servers || Bandwidth | Requests | Bandwidth | Requests
2 1.059 1.142 1.248 1.406
4 1.090 2.048 1.176 2.302
8 1.064 3.856 1.085 3.980
16 1.030 7.247 1.033 7.287
32 1.013 14.007 1.013 14.020

Table 2: Scalability of Load Balancing Performance for Load and Round-Robin Policies
(per-server bandwidth of 700 KB/sec, per-request bandwidth constraint 50% (350 KB/sec))

Load LBM Round-Robin LBM
Number of Servers || Bandwidth | Requests | Bandwidth | Requests
2 1.059 1.142 1.248 1.406
4 1.177 1.688 1.706 2.217
8 1.294 2.200 2.236 3.087
16 1.406 2.608 2.738 3.897
32 1.508 2.881 3.116 4.705

Table 3: Scalability of Load Balancing Performance for Load and Round-Robin Policies (fized aggregate server
bandwidth of 1400 KB/sec, per-request bandwidth constraint of 50% of the per-server bandwidth for
the 2 server case, and 100% of the per-server bandwidth for the remaining cases)

As can be seen, distributing a fixed total amount
of cache space over an increasing number of servers
has an adverse impact on cache performance. This
is not surprising, however, owing to the replication
of objects that occurs with multiple caches, and load
distribution using the Load policy. What is perhaps
more surprising, is that cache performance degrades
slightly with an increase in number of servers, even
when the per-server cache size is held constant. This
degradation is particularly evident for the byte hit
ratio, and, to a lesser extent, for the object hit ra-
tio with larger aggregate cache sizes. An explana-
tion for this phenomenon lies in the splitting of the
reference stream when multiple servers are present.
With just one server (and one cache), for example,
an object that is referenced several times within a
reasonably short time interval following its initial
reference will likely still be in the cache for the ref-
erences subsequent to the first. With eight servers
(and eight caches), however, these subsequent refer-
ences may be directed to different servers owing to
load balancing considerations, resulting in misses at
the respective caches. More generally, the locality
properties of cache reference stream(s) are adversely
affected by splitting.

4.2 Use of Cache Affinity Information in
Load Distribution

The effects of employing cache affinity information
in distribution decisions are investigated first in the

context of the Load policy. The degree to which
affinity information is considered is controlled by
a policy parameter ¢, which reflects the amount of
load imbalance a load distribution policy is willing to
trade for cache affinity. If a requested object is not
cached, the request is simply sent to the server with
the lightest load. If, however, the object is cached
(in one or more local caches), the most lightly-loaded
server that has the object cached is selected, pro-
vided that its load is within e percent of the most
lightly loaded of all the servers. Thus, an € value of
“infinity” leads to load distribution on the basis of
cache affinity alone (note that there is no replication
of objects in multiple caches in this case), whenever
the object requested is present in some cache, while
an € value of 0 leads to load distribution on the basis
of only server load.

Sample caching performance results for the affinity-
based policy are shown in Figure 4. There are four
pairs of lines, and each pair of lines represents a fixed
aggregate cache size, in both 2-server and 4-server
configurations. The values plotted are the cache hit
ratios for objects as functions of the e values used
for the affinity policy (the results for byte hit ratio
are qualitatively similar).

Even small values of €, such as 1%, result in a signif-
icant increase in the cache hit ratio for the affinity
policy, suggesting that the loads on the individual
server nodes are close to equal much of the time.
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Cache Hit Ratios (LFU-Aging, no affinity)
100 T T

95 |-

90 [

85

75

1Server -—
2 Servers ===
4 Servers -8
8 Servers -

70

Cache Hit Ratio for Objects (%)
8
T

65

60

55 L L L L

16 64 256 1024
Aggregate Cache Size in Megabytes (MB)

(a)

Cache Hit Ratios (LFU-Aging, no affinity)
100 T T

90

80 [

60 [

1Server -—
2 Servers =#==-
4 Servers -@--
8 Servers -

Cache Hit Ratio for Bytes (%)

50

40

30 . . . .
16 64 256 1024
Aggregate Cache Size in Megabytes (MB)

(b)

Figure 3: Caching Performance as a Function of Aggregate Cache Size and Number of Servers
in the Cluster (Load): (a) Object Hit Ratio; (b) Byte Hit Ratio

The cache hit ratio tends to increase with €, but not
always monotonically, since small changes in € can
affect the dispatch decision for a given request, and
thus the placement (and replacement) of documents
in server caches. The cache hit ratio is highest for
€ = 00, since the “pure affinity” policy does not al-
low document replication in the caches.

Intermediate values of e affect the caching perfor-
mance in subtle ways. When e is small (say, less
than 30%), the 2-server configuration invariably out-
performs the 4-server configuration with the same
aggregate cache size. The reason for this, as noted
earlier, is the higher cache hit ratio achievable with a
larger per-server cache size. This effect is most pro-
nounced on small aggregate cache sizes, and less pro-
nounced as the aggregate cache size increases. When
€ is large (say, greater than 60%), the cache hit ra-
tio of the 4-server configuration approaches that of
the 2-server configuration, and even outperforms it
in some instances. The latter effect is most evident
on the larger aggregate cache sizes. In other words,
the use of affinity information can (at the very least)
recoup the caching performance that is typically lost
when additional server nodes (with a fixed aggregate
cache size) are added to a server configuration.

With respect to load balancing performance, the ef-
fect of € on the LBM is small for € in the range of
0 to 100% (Table 4). Thus, it is possible to achieve
both good cache performance and good load bal-
ance with a distribution policy that considers both
load information and cache affinity information. It is
worthwhile to send a request to a server that has the
object cached, even if this violates load balance in

100

Cache Hit Ratios (LFU-Aging, cache affinity, 50% of 700K)
T T T T T T T T
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Figure 4: Effect on Cache Performance (Objects) of
Using Cache Affinity Information in Load Distribution
(Load/Affinity), per-request bandwidth
at 50% of 700 KB/sec

the immediate term, because there is a good chance
that the load imbalance can be improved by sending
the next request to a different server.

Furthermore, an omniscient cache manager with
knowledge of all current cache contents is not nec-
essarily required. Similar cache performance can be
achieved with a static mapping of Web objects to
server caches, using hashing on URL names (com-
pare Figure 5 and Figure 4). Load balancing perfor-
mance suffers only modestly in this case (Table 5).
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LBM
Bandwidth | Requests
0 1.059 1.142
20 1.062 1.150
40 1.064 1.152
60 1.067 1.158
80 1.068 1.160
100 1.071 1.165
o] 1.160 1.293

Table 4: Effect of Epsilon Value on Load Balancing
(Load/Affinity, 2 servers, 32 MB aggregate cache size,
per-server bandwidth of 700 KB/sec, per-request
bandwidth constraint 50% (350 KB/sec))

Cache Hit Ratios (LFU-Aging, Hashing, 50% of 700K)
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Figure 5: Effect on Cache Performance (Objects) of
Using Static Hashing of URL Names in Load
Distribution (Load/Affinity, static hashing, per-server
bandwidth of 700 KB/sec, per-request bandwidth
constraint 50% (350 KB/sec))

LBM

€ Bandwidth | Requests
0 1.059 1.142
20 1.076 1.168
40 1.098 1.202
60 1.122 1.241
80 1.139 1.266
100 1.161 1.299
00 1.310 1.484

Table 5: Effect of Epsilon Value on Load Balancing
(Load/Affinity, static hashing, 2 servers, 32 MB
aggregate cache size, per-server bandwidth of
700 KB/sec, per-request bandwidth constraint
50% (350 KB/sec))

4.3 Impact of Using Cache Affinity on
Load vs. Round Robin

Table 6 compares the relative improvement in load
balancing performance of Load vs. Round-Robin to
that of Load/Affinity vs. Round-Robin/Affinity, for
varying per-request bandwidth constraints. With
Load/Affinity and Round-Robin/Affinity an “infi-
nite” value of € is selected, implying that when the
requested object is present in some cache, both load
distribution policies will allocate the request to the
respective server. If no server has the object cached,
the Load/Affinity policy will send the request to
a server with the lightest load, while the Round-
Robin/Affinity policy is defined to send the request
to a server to which it has sent the fewest requests.

The results in Table 6 show that Round-Robin/
Affinity is largely ineffective. Similar behaviour (al-
though less dramatic) is observed when decisions are
based on intermediate combinations of load balance
and affinity considerations, rather than pure affinity.
It thus appears that current server load information
must be employed for load balancing purposes, when
cache affinity information is used as well. This is
because when load distribution employs cache affin-
ity information, decisions are based less frequently
on load balancing considerations. It therefore be-
comes necessary to check current conditions explic-
itly, rather than relying solely on the history of past
load distribution decisions.

Maximum Per-Request || Without With
Bandwidth (%) Affinity | Affinity

10 9.8 43.1
20 124 44.7
40 15.1 48.7
60 16.4 49.3
80 17.1 48.7
100 17.6 49.0

Table 6: Relative Performance Improvements of Load
as Compared to Round-Robin: % difference in LBM
Bandwidth (2 servers, 128 MB aggregate cache,
per-server bandwidth of 700 KB/sec)

5 Relation to Other Work

There is a vast and growing literature on scalable,
high performance Web servers. For brevity, we com-
ment here on only two recent works that we consider
most relevant to our own, and discuss how this work
differs from ours.
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Goldszmidt et al. [12] have done significant work
on the design, implementation, and deployment of
large-scale Web servers, most notably for the 1996
and 1998 Olympics. A major focus in their work has
been the design and implementation of a high per-
formance TCP connection router, for which the pri-
mary metric is connection throughput (i.e., the max-
imum number of TCP connections per second that
can be supported by the server). A secondary focus
has been on resource utilization (e.g., TCP connec-
tion state and memory buffer consumption by slow
modem users), load balancing performance, and end
user response time. To the best of our knowledge,
their work did not consider affinity-based caching
and its related tradeoffs with caching system perfor-
mance.

One paper that has proposed a cache affinity ap-
proach is [19]. In particular, the Locality-Aware
Request Distribution (LARD) policy is proposed as
an example of a content-aware request, distribution
policy. The approach is evaluated using simula-
tion, with a prototype implementation for valida-
tion. They find that their approach offers significant
improvements in server throughput, and significant
reductions in server idle time (i.e., load imbalance).
The notions of affinity and controlled replication of
documents in the LARD work are similar to ours,
but the simulation models (and the traces used) are
different, in several ways. For example, our simula-
tion model presents the workload to the server based
on the timestamps in the trace; we do not adjust
the request arrival rate so as to necessarily ensure
a steady flow of requests. This is important in the
evaluation of load balance, which depends greatly
on the timing of arrivals. Furthermore, we do not
assume infinite network bandwidth; rather, we make
the per-request bandwidth a parameter to our sim-
ulation, orthogonal to the server bandwidth. This
allows us to explore a broader spectrum of the server
design parameter space. The TCP connection hand-
off procedure described in [19] is complementary to
our work, and would be a valuable component in
a prototype implementation of our own clustered
server.

6 Conclusions

Trace-driven simulation was used to compare vari-
ous policies for load distribution in clustered Web
servers. Our results suggest that very simple poli-
cies such as round-robin may yield good load balance
if the achievable per-request bandwidth is strongly
network or client limited, otherwise policies that
take into account current server loads are required.

As well, the relative importance of using information
on current server loads for load balancing purposes
increases with the number of servers.

Achieving both good cache performance and good
load balance is possible, but it requires use of poli-
cies that take both objectives into consideration
and that make use of information concerning server
loads and the cache affinities of incoming requests.
Cache affinities may be effectively estimated through
hashed assignment of the URL space.

This paper considers only the case of multiple ma-
chines cooperating to provide the Web server func-
tion at a single physical location. Work in progress
concerns the load distribution problem in systems
with geographically distributed caching/replication,
in which a number of new considerations arise.
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