Cache Management for Mobile File
Service

KeEvIN W. FROESE! AND RICHARD B. BUNT

Department of Computer Science, University of Saskatchewan, Saskatoon, SK,
Canada, STN 5A9

Email: kfroese@opentext.com, bunt@cs.usask.ca

File service is a fundamental computing requirement, but one that has been
problematic for mobile users. Concerns about the latency associated with
transferring large amounts of data over network connections of unknown
quality have led to rather ad hoc approaches that provide some functionality,
but with uncertain performance. Through a series of trace-driven simulation
experiments, we investigate performance issues relating to providing remote
file system support to mobile users through optimistic caching at the mobile
client. Tradeoffs between resources and performance are explored across a
variety of design choices, specifically issues relating to system configuration,
policies for file system updates (write backs), and choice of caching unit
(whole-file caching or block-based caching). The results of our experiments
show that it is possible to provide quite acceptable remote file service to
weakly connected mobile clients, even when bandwidth is limited. Reads can
be serviced in a timely manner, updates can be committed in an acceptable
period of time, and resource requirements at the client are modest.

INTRODUCTION

Improvements in the capabilities and portability of
notebook computers and hand-held personal digi-
tal assistants (PDAs), coupled with increased user
expectations for “anywhere, anytime” connectivity,
have given rise to increasing demands for mobile
computing. In this new paradigm the computer ac-
companies the user, for use in different locations as
he/she travels about. This presents significant chal-
lenges for operating system and network designers
to meet user expectations of functionality and per-
formance. The goal is to make transparent to the
user (or at least to the application program) any
changes that might occur in the point and type of
network connection, thus allowing the user to work
in the same manner and with the same productivity
from any location.

Prominent among services mobile clients require,
wherever they might be located and however they
might be connected, is file service. Access to data is
a fundamental system requirement and, even when
roaming, users want access to the data that resides
on their (home) file server. In the absence of auto-
matic file system support for location-independent
operation, mobile users must rely on ad hoc meth-

TPresently at Open Text in Waterloo, Ontario, Canada

ods to maintain and update separate copies of files
manually, at both the mobile client and the file
server [1]. More sophisticated “mobility-tolerant”
file systems attempt to remove this burden from the
user by employing automatic file replication man-
agement techniques, central to which is the caching
of file replicas at client machines. To reduce the re-
liance on the network, file system “reads” are read
from the cache and file system “writes” are logged
for later propogation to the file server upon recon-
nection [2]. Although this allows some measure of
operability while mobile, any attempt to access data
not cached (a cache miss) might be problematic
(even fatal if the mobile client is currently discon-
nected). As well, delays in the reintegration of file
changes with the home file server (write backs) can
lead to consistency problems. Support for discon-
nected and weakly connected operation has been
studied by researchers at Carnegie Mellon Univer-
sity [3] and the University of Michigan [4], who
have shown that even a weak connection can permit
enough processing of read misses and write backs to
maintain operability while mobile.

Adapting file system support so that it can be
made available to mobile clients across the full range
of connection possibilities is the overall goal of this

THE COMPUTER JOURNAL,

Vol. 72, No. 72, 2777

2 K. W. FrROESE AND R. B. BUNT

research, and effective cache management is a fun-
damental element of any solution. Although file
caching has been extensively studied, its application
to the mobile environment has not. As Banerji [5]
has noted,

Caching issues are beginning to predom-
inate the open research topics in [mobile
computing]. In between connected and
disconnected states, there are many states
of expensive, intermittent and unreliable
connections. Adapting caching to these
varying situations is a necessity.

Not only is the cache the key to achieving file sys-
tem functionality, it is also the key to achieving ac-
ceptable performance, an issue that has not been
adequately addressed. This paper examines some
of the design issues relating to file caching at mo-
bile clients, and reports results from trace-driven
simulation experiments investigating the perfor-
mance/resource tradeoffs associated with factors
such as cache size, bandwidth, write-back policy,
and caching unit. The results show that quite
acceptable file service can be provided to mobile
clients, even with modest sized client caches and
low bandwidth connections.

The needs of the mobile user will determine the
type and quality of services that “mobility-aware”
operating systems and networks will need to pro-
vide. We envision several key requirements of the
mobile user that will influence the design of support
for mobile operation. First, the mobile user will re-
quire access to a common set of resources and ser-
vices regardless of his or her working location. Sec-
ond, mobility must be seamless; this means that no
special actions should be required of the user when
working in different locations, and the user should
not be aware of actions taken by the operating sys-
tem to accommodate mobility. Finally, users will
be willing to trade some performance for mobility
(but only some). Although it will not be necessary
to satisfy the requests of a mobile user as promptly
as those of a user in a fully connected LAN envi-
ronment for example, performance remains an im-
portant concern.

The rest of this paper is organized as follows. Sec-
tion 2 deals with the different types of connectivity
that a mobile client may experience. Section 3 fo-
cuses on issues relating to cache management. The
elements of the experimental methodology are de-
scribed in Section 4, and the simulation results are
presented in Section 5. Section 6 summarizes the
paper and presents conclusions from the study.

2. NETWORK CONNECTIONS FOR
MOBILE COMPUTING

We envision a style of location-independent com-
puting that derives from LAN-based client-server
distributed systems. Each user is assumed to origi-
nate from such a LAN (called his/her home loca-
tion), where the home file server resides. While
there may be several file servers at the home lo-
cation, such a configuration can be thought of as a
single logical file server. Apart from the home lo-
cation (say, the workplace), a user may work from
several other locations from time to time, such as
a place of residence, a hotel room, or an airport,
where the type and quality of network connection
will vary. At various points in time the mobile client
may be strongly connected (connected to the file
server over a fast and reliable link), disconnected
(no network connection to the file server), or weakly
connected (connected to the file server over a slow
and possibly error-prone or expensive link [3], such
as a modem connection or radio link). For our ex-
periments we assume that only one type of connec-
tion will be experienced during any given working
session, although this is not a requirement of the
approaches we consider. While strongly connected,
the mobile client can operate as it would in a tradi-
tional LAN environment!. The client can also use
periods of strong connection to prepare for future
periods of weak connection or disconnection (this is
discussed in greater detail later). While operating
in a disconnected mode, the mobile client must rely
totally on its file cache to satisfy all its file system
requests (reads and writes). The client can per-
form any operation on cached files that could be
performed while connected, but any attempt to ac-
cess a file not in its cache (i.e. a cache miss) is, of
course, a fatal error. For this approach to be use-
ful, the cache must contain (prior to disconnection)
all the files on which the user will want to work
while disconnected, and thus whole-file caching, as
opposed to file block caching, is used when support-
ing disconnected operation. Various approaches to
“pre-loading” the cache (called hoarding) have been
advocated, including attempting to keep a user-
defined set of files in the cache [7], and applying
long-term predictive caching techniques [8, 9]. For
weakly connected clients some access to the home
file server is available over the network, but the con-
nection bandwidth is a limiting resource to be man-
aged carefully. While weakly connected, the client
uses the network only when absolutely necessary,

1We assume that routing support is provided by lower
level network services (e.g. Mobile IP [6]).

THE COMPUTER JOURNAL,

Vol. 72, No. 72, 2777

CACHE MANAGEMENT FOR MOBILE FILE SERVICE 3

for miss processing or periodic write backs to main-
tain some level of file system consistency.

Issues relating to disconnected and weakly con-
nected operation are discussed in greater detail in
the following subsections.

2.1. Disconnected Operation

Mobile clients are forced to operate in discon-
nected mode when no network connection is avail-
able or when there are problems with the connec-
tion. This mode has been examined in previous
studies [2, 10, 7] and file management techniques
based on optimistic caching of whole-file replicas at
the client have been proposed. Prior to going mo-
bile, the client’s cache gathers files for use while
disconnected. This process is called hoarding in
the Coda file system [2]. While disconnected, all
read operations must be processed in cache (misses
are fatal errors that probably require termination of
the application) and all write operations are logged.
Upon reconnection with the home network, the log
file is replayed, which has the effect of propagating
to the home file server all file system changes that
were made while disconnected. In this way, the final
state of the file system is the same as if the changes
were made while connected, although considerable
time may have elapsed since the changes were actu-
ally made. Log files can be optimised to save disk
space at the client and to decrease the time needed
for reintegration [4, 7]. This optimisation is accom-
plished through recognition of which operations ac-
tually affect the final state of the file system. For
example, if the same part of a file is updated more
than once, only the last update needs to be kept in
the log, since the previous changes are “overwrit-
ten” by later changes. We call these “overlapping
writes”.

For disconnected operation to be practical, the
file system must provide optimistic replication of
files. That is, multiple copies of files are allowed to
exist and be updated independently, but attempts
are made to detect and resolve update conflicts
should any occur [11]. Some studies have shown
that update conflicts occur only rarely [2, 12, 7], and
that optimistic replication is an acceptable strategy
for a disconnected environment.

2.2. Weakly Connected Operation

Weakly connected operation (also called “partially
connected” [13]) is similar to disconnected opera-
tion, but with a few important extensions. A key
advantage is that cache misses are no longer fatal.
If the requested file is not in the cache, then the

read request is sent to the home file server over the
network, and the file is then transfered to the client
(albeit slowly). When a client issues a write, the op-
eration is saved in the log file but the write may later
be sent to a file server over the network to reduce
the likelihood of update conflicts occurring. This
might be of great benefit in environments where
file sharing is common. Techniques for support-
ing weakly connected operation have been studied
by [14, 3, 15]. These are based on the same caching
techniques used to support disconnected operation
— whole-file caching of optimistically replicated files
and logs of changes. As with with disconnected
operation, files are hoarded prior to going mobile,
and any updates made to files while mobile are
logged. The weak connection is used for two pur-
poses: to retrieve any requested files that are not
cached (misses) and to send log entries back to the
file server when appropriate. This is called trickle
reintegration in Coda [2] and background replay in
AFS [10].

3. ISSUES IN CLIENT CACHE MAN-
AGEMENT

File caching in strongly connected environments is
well understood, having been used in distributed
systems for many years [16, 17, 18], but the use of
file caching to permit disconnected or weakly con-
nected operation is a much more recent innovation.
While many file caching issues have been addressed,
current systems still have limitations. Ultimately,
good management strategies for mobile computing
will be those that provide transparent operability
across all connection environments, with acceptable
performance. Effective cache management is the
key to both functionality and performance.

In this paper, our focus is on the re-
source/performance tradeoffs that exist with re-
spect to mobile client file cache management. In
this context we examine configuration parameters,
caching policies, policies for scheduling write backs,
and choice of caching unit.

¢ Configuration Parameters — Two comple-
mentary issues are considered here: the amount
of cache space at the client and the transmis-
sion capacity of the network connection. These
are complementary in the sense that one can
be traded off for the other: the ability to hold
more items in the cache reduces the need to
fetch them over the network, and reduces de-
lay in the application to process misses; on
the other hand, a faster connection means that
items can be fetched more quickly, and so there

THE COMPUTER JOURNAL,

Vol. 72, No. 72, 2777

K. W. FrROESE AND R. B. BUNT

is less need to cache as many of them.

The amount of cache space at the client is an
important consideration when disk space is lim-
ited, as it may be in a laptop, notebook, or
palmtop computer. What is allocated to cache
is, of course, unavailable for general use.

The capacity of the network connection is de-
termined by a variety of factors, most of which
are beyond the user’s control. For this study
we specify capacity in terms of bandwidth, but
we mean more by “bandwidth” than simply
the rated capacity of the immediate link to the
network. “Low bandwidth” may arise from a
low-technology connection, from congestion on
the network, from distance from the home net-
work, or from a combination of all three. We
do not differentiate among the causes in this
first-order investigation.

Caching Policies — There are two basic is-
sues of interest here: the fetch policy that de-
termines which items are loaded into the cache
(and when), and the replacement policy that
determines which items they will replace, both
in regular operation and in the hoarding pe-
riod. Items can be fetched on demand or
prefetched (with or without explicit user ad-
vice) in anticipation of use, and can replace
previously cached items according to their ex-
pectation of future need. Different approaches
to all of these come with their own attendant
benefits and drawbacks.

Write-Back Scheduling — An important is-
sue is how (and when) file modifications that
have been stored in the client’s log file can and
should be propagated back to the file server.
Two conflicting goals complicate write-back
scheduling. First, it is desirable to write back
the contents of the log file as soon as possi-
ble in order to reduce the likelihood of update
conflicts occurring due to sharing of files un-
der an optimistic replication scheme [13, 3]. As
well, performing write backs promptly helps re-
duce the size of the log file, freeing local client
resources (disk space), and the reintegration
time. Timely write backs also help protect file
modifications from loss due to failure, damage,
or theft of the mobile client [3].

Conflicting with the benefits of eagerly per-
forming write backs is the need for reads to
have priority for network usage. Any time a file
must be transfered from a server (in response
to a read miss), it is likely that both the appli-
cation which requested the file and the user will
be stalled until the read has been completed.

4.

Therefore it is important that reads start (and
complete) as soon as possible. Performing
write backs can interfere with this goal, par-
ticularly if “whole-file” caching is being used.
An advantage of delaying (and thus a disadvan-
tage of eagerly performing) write backs is the
fact that it is common for several modifications
to be made to a file over a short period of time
(overlapping writes), and the number of actual
I/0 operations which need to be performed can
be reduced substantially by delaying the write
back. Huston and Honeyman [13] found that as
many as 70% of operations stored in a log file
could be eliminated by delaying write backs.
We investigate the performance implications
and resource requirements of several write-back
scheduling policies, including both conservative
and aggressive approaches.

Choice of Caching Unit - When a mobile
client operates in disconnected mode, whole-file
caching is the only practical approach — having
only part of a file cached is likely of little value
if the rest of the file cannot be accessed. This
is not necessarily true when weakly connected,
however. In this respect, a weakly connected
environment is similar to a strongly connected
environment. With even a low-bandwidth net-
work connection, block caching is an option.
Two features of block caching make it an at-
tractive option for weakly connected opera-
tion. First, block transfers can complete more
quickly than file transfers. The less time a
transfer needs to complete, the sooner the user
can resume working. This could be particu-
larly advantageous at low bandwidths where
file transfers are very time consuming. Addi-
tionally, the use of blocks as the caching unit
means that it is not necessary to transfer the
entire contents of a file to the client if the whole
file is not referenced. Again this could be very
useful in a low-bandwidth situation, since it al-
lows more bandwidth to remain free for other
read or write-back activity.

We compare the performance of block and
whole-file caching, for a range of bandwidths.

EXPERIMENTAL METHODOLOGY

If mobility is to be truely seamless then the style
and type of work performed must be unaffected by
location and by type of connection. Consequently,
the approach taken in this study was to gather de-
tailed traces of read and write activity from real
users performing “everyday” work in a strongly con-

THE COMPUTER JOURNAL,

Vol. 72,

No. 77, 7777

CACHE MANAGEMENT FOR MOBILE FILE SERVICE 5

nected LAN environment, and then to use these
traces to drive simulations of a mobile client’s file
cache, with the goal of measuring the performance
impact of mobility on normal file system activity.
This section begins with a description of the type
of mobile environment envisioned. The techniques
used to collect the traces are described next, fol-
lowed by a discussion of the simulation model.

4.1. The Mobile Environment

The type of work done at the mobile client is as-
sumed to be that found in a typical academic/re-
search environment: such things as text editing,
compiling programs from source code, document
preparation and viewing, and information brows-
ing (such as using a World Wide Web client). De-
spite arguments [1] that this is not the type of work
that mobile users will do, we focus on this type
of workload for two reasons, one conceptual and
one practical. First, we contend that it is impos-
sible to predict accurately what future workloads
from mobile environments will look like. We believe
that stronger results are obtained using a workload
model based on current data rather than one based
on some speculative model of future user behaviour.
Second, this is the type of environment in which we
work, and so this is the type of workload to which
we have ready access.

Figure 1 shows the system model. The mobile
client connects to the home file server over the In-
ternet. Prior to leaving home, the client file cache
manager prepares for going mobile by hoarding in-
formation (either whole files or file blocks) while
the client is strongly connected. While mobile, the
cache is the key to file system functionality and per-
formance. Whenever the client attempts to read
from a file, the cache is searched for the information
requested. If the information requested is present in
the cache no network access is needed; if not, then
the read request is placed in the read queue where
it waits for access to the network. When the net-
work becomes available, the request is sent to the
file server over the weak connection, and the infor-
mation requested is then transfered to the client.
When a client issues a write, the operation is saved
in the log file, and is placed in the write queue. The
write may later be sent to the file server over the
weak connection for file system reintegration. We
consider only weakly connected operation? in this

2 Although a weakly connected client may become discon-
nected temporarily because of a network problem, it is still
considered to be operating in a weakly connected environ-
ment if network access is available at least part of the time.

investigation. Issues relating to disconnected and
weakly connected operation are discussed in greater
detail in the following subsections.

4.2. Collection of Workload Traces

Traces of real file system activity from real users
were collected in the Distributed Systems Perfor-
mance Laboratory in the Computer Science De-
partment at the University of Saskatchewan over
a period of one week. To obtain the traces, modifi-
cations were made to the HP-UX 9.05 operating
system kernel to record all read() and write()
system calls. Information such as the device and
inode numbers of files, user ID’s, and file sizes
was recorded. A complete list of the parameters
recorded is given in Table 1. Unlink () system calls
(for file deletion) are not included in these particu-
lar traces. Since inodes are reused by the file sys-
tem, it is possible for a file to be deleted and a new
file created with the same device and inode number
as the deleted file. Our simulator does not recog-
nise the new file as being distinct from the original
file, but the error introduced should be small since
traces we gathered with unlink() calls showed that
fewer than 1% of events were unlink () events.
Tracing was done simultaneously on a set of four
HP Series 700 workstations over a seven-day pe-
riod. To accommodate storage limitations, the
traces were captured as seven day-long segments,
each of which was moved to off-line storage at the
end of the day. After all traces were collected, the
day-long trace segments were combined into a set
of four week-long, continuous traces, each from a
single workstation. From these traces, the activ-
ity of single users was isolated and stored in sepa-
rate trace files. These individual-user traces from
each workstation were then combined (maintaining
the time stamps on each event), resulting in traces
which recorded the file system activity of a single
user (on all four workstations) over a period of one
week. This paper presents results for two of these
week-long single-user traces, some characteristics of
which are summarised in Table 2. (Note that “ac-
tive time” is the total length of the trace minus
any periods of inactivity greater than 15 minutes in
length.) These particular traces were selected for
this paper for the following reasons. Trace 1 is typ-
ical of work common in our environment and dis-
plays characteristics similar to traces used in other
studies (for example, the amount of file system ac-
tivity and the ratio of reads to writes). Trace 2
has much more write activity and thus serves as a
“stress test” for the cache update techniques. Re-

THE COMPUTER JOURNAL,

Vol. 72, No. 72, 2777

6 K. W. FrROESE AND R. B. BUNT

Mobile Client
Write
Read
) Cache
Log File
[Applicaionj
Cache Hit
Cache Miss
Read Read
Queue Reply
[Network Interface j (LERRER =

-------- Weak Connection
s Strong Connection

File Server

FIGURE 1. System Model

TABLE 1. System Calls and Parameters Recorded

System Calls Recorded

Parameters Recorded

read()
write()
file name

time, process ID, user ID, error status, vnode pointer,
file type, device, inode, file size, file offset, transfer size,

sults from the complete set of traces are available
in [19].

4.3. Simulation Model

A trace-driven simulator was written to examine
performance issues related to managing a mobile
client’s file cache. The simulator is based on the
system model in Figure 1. The client is consid-
ered to be strongly connected to the file server at
first (with a 10 Mb/sec network link), and prepares
for weak connection operating in hoarding mode
for some specified period of simulation time (24
hours in the experiments reported here). The client
cache (which is of a fixed size) begins empty, but
stores copies of all files® referenced while in hoard-
ing mode. If there is insufficient space in the cache
to store a file, files are removed (according to the re-
placement policy in use) until there is enough space
in the cache for the new file. Once the client be-
comes weakly connected the hoarding activity is
halted. The client remains weakly connected for
the remainder of the simulation.

Read/write events in the input trace file are read
and processed sequentially. When a read event oc-
curs, the client cache is searched for the requested

3Whole-file caching is assumed for this discussion. Block
caching is considered later.

file. If the file is present in the cache (a hit), no
action is required. Otherwise, a read miss has oc-
curred and the file is transfered from the file server
to the client over the network, and the file is placed
in the cache (potentially replacing other files if the
cache is full). Since reads are assumed to be block-
ing events, no other activity occurs at the client.

When a write event occurs, the log file is up-
dated. For the purposes of simulation the log file
stores only the content of write operations and a
time stamp. After each write the log file is searched
for an entry that overlaps the current write. An en-
try is said to overlap if it is from the same file and
any portion of the data in the entry is from the same
segment of the file as the new entry. All overlap-
ping log file entries are deleted, and the new entry
is added to the log file. No simulation time is con-
sumed processing a write. All writes are assumed
to be non-blocking.

A write back to the file server can be performed
at any time, as determined by the write-back policy
in use. Regardless of policy, the oldest entry in the
log file is always written back first to ensure timely
reintegration.

The simulation runs until all events in the trace
have been processed. It is possible (and common)
for there to be entries remaining in the log file when
the simulation completes.

THE COMPUTER JOURNAL,

Vol. 72, No. 72, 2777

CACHE MANAGEMENT FOR MOBILE FILE SERVICE 7

TABLE 1. Trace Characteristics

Active Total Unique | Unique Read Write Write
Trace Time | Requests | Files Bytes | Transfers | Transfers Requests

(Hours) (MB) (MB) (MB) (% of total)
Trace 1 12.9 21013 383 17 4596 4 37.8
Trace 2 7.0 53860 1000 18 4718 35 67.9

4.4. Performance Metrics

As noted in [20], we need new metrics to evalu-
ate caching strategies for mobile environments since
the constraints imposed by mobility alter the tradi-
tional resource/performance tradeoffs pertaining to
caching. For example, “miss rate” fails to capture
the profoundly different implications of a miss to an
8 kilobyte block of data and a miss to a 1 megabyte
file — in the time needed to transfer the data, in the
impact of loading it into the mobile client’s cache,
and in the subsequent write backs that this may in-
duce. The metrics used in this study aim to charac-
terise important relationships between resource con-
sumption and performance when managing a mo-
bile client’s file cache.

For this study, we focus primarily on the amount
of time required to service all I/O requests in a
reference trace. This is determined by several fac-
tors, some of them related to configuration param-
eters, some of them related to management strate-
gies. Our primary performance metric is time ez-
pansion, which is computed by dividing the total
(simulation) time required to process all I/O events
in a trace in the mobile environment by the time
required to process the same trace while strongly
connected. The resulting ratio provides an indica-
tion of the “slowdown” resulting from the nature
of the mobile connection, and thus the performance
impact of mobility. Time expansion is affected by
several factors: the number of cache misses, the
amount of time spent transferring files requested
by applications that resulted in cache misses (read
service time), and the amount of time read service
is suspended waiting for write backs to complete
(write interference time). Write interference time is
of particular interest since it directly measures the
extent to which the decisions of a given write-back
policy extend the total time required to service all
requests in a trace.

The size of the mobile client’s log file is also mea-
sured. The maximum size of the log file indicates
a minimum level of available disk capacity needed
at the client (in addition to that required for the
file cache and other local files) to operate in weakly

connected mode for the duration of the trace.

The period of time from when a file is modified
until it is written back is also of interest since it is
during this period that update conflicts can occur or
changes can be lost because of some sort of failure.
The less time an update spends in the log file, the
less chance there is of such problems arising.

4.5. Caching Policies

Although they are not variables in these experi-
ments, policy decisions in several areas impact our
performance results. Throughout the experiments,
all items are fetched on demand, and the Least Re-
cently Used (LRU) policy is the basis for all cache
replacement decisions?. LRU is widely accepted
and well-understood, and preliminary experiments
showed it to perform well in this application [19]. A
decision was also made to fix both the hoarding pol-
icy and the hoarding period. It is clear that with-
out successful hoarding, disconnected operation is
impossible and weakly connected operation is likely
to be very frustrating. A range of hoarding policies
were examined in our preliminary experiments [19];
LRU was found to work well in general, and a hoard-
ing period of 24 hours was found to provide an ad-
equate basis for the week-long traces considered.

4.6. Write-Back Policies

Since the demand placed on a mobile client’s net-
work connection by file system requests may exceed
the bandwidth available, it is necessary to imple-
ment policies which control access to the network.
In this study, there are two competing sources of
network traffic: the read queue and the write queue
(see Section 4.1 and Figure 1). Requests in the read
queue are given access to the network immediately
upon the network becoming idle because applica-
tion stall time must be minimized. While weakly

40ther replacement policies, including Least Frequently
Used (LFU), Random, and several size-based policies were
examined (see [19] for details). LFU performed well in some
cases, and may work even better with longer hoarding pe-
riods, but LRU was the most consistent at reducing cache
misses.

THE COMPUTER JOURNAL,

Vol. 72, No. 72, 2777

8 K. W. FrROESE AND R. B. BUNT

connected, requests in the write queue (i.e. write
backs) are given access according to the write-back
policy in effect.

There are many possible policies for scheduling
write backs — some of them more aggressive in seek-
ing reintegration, some more conservative. In our
terminology aggressive policies focus on performing
more frequent write backs, with secondary consid-
eration given to the possibility of degrading read
performance, while conservative policies attempt
to avoid interfering with reads, and perform fewer
write backs as a result. We consider the following
representative policies in this study:

e Aggressive Policies:

— Idle Write Back (Idle WB): write back the
oldest log file entry when the network has
been idle for some fixed period I.

— Lottery (Lotto): hold a lottery (with the
write queue receiving W tickets and the
read queue receiving R tickets) after each
transfer (read or write) has completed, or
if the network has been idle for some fixed
period [; write back the oldest log file en-
try whenever the write queue wins a lot-
tery.

e Conservative Policies:

— Delayed Write Back (Delayed WB): write
back the oldest log file entry if it has been
in the log file for at least some fixed aging
period A, and if the network has been idle
for some fixed period I.

— Preemptive Write Back (Preemptive
WB): begin writing back the oldest log
file entry if it has been in the log file for
at least some fixed aging period A, and if
the network has been idle for some fixed
period I, halt the write back if a read
request occurs.

e Baseline Policy:
— No Write Back (No WB): perform no
write backs at all while weakly connected.

Each of these policies® attempts to perform writes
whenever possible while giving priority to read traf-

5We include the No WB policy, in which no updates are
done while mobile, simply to provide a basis for compari-
son. It provides an upper bound on resources needed at the
mobile client and a lower bound on contention for the net-
work. At the opposite extreme is the Write Through policy,
in which updates are performed immediately, with the ap-
plication blocking until the update has been completed. We
do not examine Write Through, since its appropriateness is
questionable even in a strongly connected environment, and
it is even more poorly suited for a mobile client.

fic. Idle WB gives priority to reads by performing
writes only when the network is otherwise idle®. De-
layed WB attempts to reap the benefits of delaying
write backs by explicitly forcing a delay, while Pre-
emptive WB functions like Delayed WB, but gives
even greater preference to reads by halting a write
back in progress whenever a read request is received,
resuming it from the same point at a later time.
Lotto is based on the policy described in [22] (and
used in AFS [13]), with modifications to work on a
whole-file basis where required.

For this study, we classify the Lotto and Idle WB
policies as aggressive polices, and the Delayed WB
and Preemptive WB policies as conservative. These
classifications arise from the fact that Lotto and Idle
WB have fewer restrictions on when a write back
can be initiated, and therefore more write backs are
performed. Delayed WB and Preemptive WB are
by comparison conservative, since they require that
more conditions be met before a write back is per-
formed.

Several parameters govern the behaviour of our
write-back policies, and preliminary experiments
were done to determine reasonable values. Results
presented here are for idle time /=0.1 seconds and
aging time A=15 minutes. For the Lotto policy,
ticket ratios were set to match those used in [13]:
the number of read tickets (R) was 11, and the num-
ber of write tickets (W) was 1. The “aggressiveness”
of Lotto is easily modified by changing the ratio of
read and write tickets.

4.7. Caching Unit

When operating in a disconnected environment,
whole-file caching is the only practical approach;
having only part of a file cached is likely of lit-
tle value if the rest of the file cannot be accessed.
This is not necessarily true in a weakly connected
environment, however. In this respect, a weakly
connected environment is similar to a strongly con-
nected one. We assume whole-file caching (initially)
since it has been successfully employed in systems
such as Coda [2, 3, 7].

Two features of block caching make it an at-
tractive prospect in weakly connected environ-
ments. First, since block transfers can complete
more quickly than file transfers, the time to pro-
cess misses is reduced. This is appealing in low-
bandwidth environments. Second, blocks are more
easily accommodated within the client caches than
are whole files; the fact that blocks are identically

61dleness is detected in all policies using fixed timer-based
prediction [21].

THE COMPUTER JOURNAL,

Vol. 72, No. 72, 2777

CACHE MANAGEMENT FOR MOBILE FILE SERVICE 9

sized makes for easier placement, and the fact that
they are much smaller eases the demand for cache
space at the client”. On the other hand, the fre-
quency of misses is almost certain to increase, since
repeated accesses to the same file may well refer to
different blocks, some of which will not be cached.
In a low-bandwidth environment any added use of
the connection must be considered very carefully.

A set of experiments was performed to investi-
gate the feasibility of block caching in a weakly con-
nected environment. The experiments use the same
format as is employed for file caching: a 24-hour
hoarding period followed by 6 days of weakly con-
nected operation. In preparing for going mobile,
hoarding is done on a whole-file basis, as in the
other experiments, but block caching is used once
the client becomes weakly connected.

5. SIMULATION RESULTS

We present our results under categories identified
in Section 3: in Section 5.1 we examine the re-
source/performance tradeoffs associated with fun-
damental configuration parameters, in Section 5.2
we consider the performance impact of policies for
write-back scheduling, and in Section 5.3 we exam-
ine the feasibility of block caching with weakly con-
nected mobile clients.

5.1. Configuration Parameters

The first two factors considered are the basic con-
figuration parameters: the size of the client’s file
cache and the bandwidth of the client’s network
connection. Increasing either of these resources will
(up to a point) improve file system performance for
the client. A larger cache reduces the number of
read misses, and more bandwidth means that those
misses that do occur can be serviced more quickly.
Figure 2 shows exactly this: the time expansion sur-
face® is affected by both cache size and bandwidth.
The size of the client’s cache is particularly impor-
tant. When the client’s cache is small and band-
width is low there are many read misses, stall time
is high, and time expansion is very high. Clearly a
1 MB cache yields quite unacceptable performance
across all bandwidths considered for the traces used
in this study. There is a clear tradeoff between
cache size and bandwidth — increasing either will
reduce time expansion, but if either resource is in
short supply, acceptable performance (as measured

7This is precisely the reason block caching is preferred
over whole-file caching for strongly connected clients.

8The No WB update policy was used for these runs since
it creates no write interference.

by time expansion) can be still be achieved by in-
creasing the other.

The combinations of cache size and bandwidth
which are needed to achieve specific time expan-
sion values are shown in the contour lines in Fig-
ure 3. The numbers beside each line are time ex-
pansion values for that contour. When the cache is
small (less than 10 MB in our simulations), many
misses occur, and very high bandwidth is necessary
to maintain acceptable expansion times. When the
cache is larger (10 MB or more for these traces),
fewer misses occur and less bandwidth is needed
to achieve the same level of performance. While
the actual cache sizes and bandwidths which are
needed to keep time expansion low will obviously
be workload dependent, the qualitative relationship
between cache size and bandwidth seen here should
change little.

5.2. Write-Back Policy

The management of file updates also impacts file
system performance at a weakly connected mobile
client. Again, tradeoffs arise when managing this
aspect of a client’s file operations. As more (un-
committed) writes are performed, the log file will
grow accordingly. As well, the longer the updates
remain at the client, the greater is the chance that
update conflicts or data loss can occur before rein-
tegration. By writing back the contents of the log
file to the server in a timely fashion, the chance of
such problems is reduced, and the log file should
remain small. At the same time, however, it is im-
portant that write backs not steal too much band-
width from the servicing of read requests (write in-
terference), which would result in further stalling
the user’s work. The write-back policy employed
by the mobile client must attempt to balance these
tradeoffs.

The main advantage of an aggressive write-back
policy is that the time until updates are reintegrated
with the home file server should be relatively small.
Figures 4 and 5 show that this is indeed the case.
For our traces, the Idle WB policy (the most aggres-
sive policy we examine) can reintegrate file updates
in 20 minutes or less (often much less) across a range
of cache sizes and bandwidths. The more conserva-
tive policies (Delayed WB, Preemptive WB) often
take more than five times longer to reintegrate up-
dates (but then provide increased opportunities for
overlapping writes).

Another reason to perform write backs aggres-
sively is to keep the log file small. This is partic-
ularly important when disk space at the client is

THE COMPUTER JOURNAL,

Vol. 72, No. 72, 2777

10 K. W. FrROESE AND R. B. BUNT

Trace 1

15

10

Time Expansion

cache Size (vB) 10

57.6
20 55144 28.8

Bandwidth (kb/sec)

Trace 2

15

10

Time Expansion

Cache size (vB) 10

57.6
20 55144 28.8

Bandwidth (kb/sec)

FIGURE 2. The effect of cache size and bandwidth on time expansion (no write backs)

Trace 1

57.6
2 1.1
— 4
O
Q
7]
]
=
c
ke
% 28.8 N
c 6
©
[21]
8
144 + .
9.6 L
1 10 20

Cache Size (MB)

Trace 2
57.6
2 1.1 1.01
o
[}
2]
S
=
=
5
_g 28.8 <
c
]
0
4
14.4 .
1.05
9.6
10 20

Cache Size (MB)

FIGURE 3. Time expansion contours for bandwidth and cache size (no write backs)

limited. Figures 6 and 7 show the maximum size
attained by the log file in our simulations. Inter-
estingly, the log file sizes are very similar for both
traces presented, even though much more write ac-
tivity is present in Trace 2. This indicates that the
writes overlap much more in Trace 2, keeping the
number of log entries small. The ability of aggres-
sive write-back policies to reduce the size of the log
file is clear. While the 25% to 50% reduction in log
size observed for our traces is not dramatic given
that the log never exceeds 2 MB, such a reduction
could indeed be valuable under other workloads, es-
pecially considering that this saving is consistent
across cache sizes and bandwidths.

It is not surprising that write-back policies can

be designed that keep both the time until reinte-
gration and the size of the log file small. However,
it is less clear whether or not the use of such poli-
cies will still allow cache misses to be serviced in
a timely manner. Figures 8 and 9 show the frac-
tion of total time attributable to write interference
for the various write-back policies. While conserva-
tive policies often experience considerably less write
interference than aggressive policies, write interfer-
ence time never exceeded two percent of total time
for our traces, even for aggressive write-back poli-
cies. Not surprisingly, write interference increases
as more writes are performed at the client, as seen
by the higher levels of interference for Trace 2 com-
pared to Trace 1. Considering that writes account

THE COMPUTER JOURNAL, Vol. ??, No. 7?7, 777?

CACHE MANAGEMENT FOR MOBILE FILE SERVICE 11

Trace 2
300 T
Preemptive WB -
Delayed WB -03--
250 Lotto <—
Idle WB -+~
=
3 200 R
[=2]
o
-
= 150 —
[0}
£
'_
1) 100 | R
>
<
1 20

10
Cache Size (MB)

FIGURE 4. The effect of cache size on average time until reintegration (b/w = 28.8 kb/sec)

Trace 1
300 T
Preemptive WB -
Delayed WB -G3--
250 Lotto <—
Idle WB -+~
5
3 200 T
[}
o
-
= 150 7
[0}
£
'_
S 100 T
>
<
50 T
0
1 10 20
Cache Size (MB)
Trace 1
40 T T
Preemptive WB -
35 L Delayed WB -B-- A
& Lotto —<—
R 0 | Idle WB -+ |
£
£ :
[}
o
-
k=
[0}
£
'_
<)
>
<
5 7
R
e]
I 1
9.6 14.4 57.6

FIGURE 5. The effect of bandwidth on

for over two-thirds of the requests in Trace 2, it
seems unlikely that most workloads would ever ex-
perience any significant amount of write interfer-
ence, even in low bandwidth environments.
Finally, the effect of write-back policy on time ex-
pansion is shown in Figure 10. Without much write
activity (Trace 1), there is little difference between
policies, but with more activity (Trace 2), the ag-
gressive policies have slightly more impact than the
conservative ones. Even with quite limited band-
width (of 14.4 kb/sec) and these very simple poli-
cies, however, time expansion never exceeds 8%.

5.3. Block Caching Performance

Since block caching appears to offer some poten-
tial performance benefits for weakly connected op-

Trace 2
40 T I
Preemptive WB -
Ll Delayed WB -0-- -
Lotto —o—
— 30| dle WB -+ |
<
£ o
=) Br _
5
E .
= 20 | _
= ‘ﬁ,:; aes
: i
= 15 N
=)
>
< 10 | |
i i

0 b
9.6 14.4 28.8 57.6
Bandwidth (kb/sec)

average time until reintegration (10 MB cache)

eration (see Section 4.7), a preliminary comparison
of block caching and whole-file caching was carried
out. A client cache of 10 MB was used, with net-
work connections ranging in speed from 9.6 to 57.6
kb/sec. A block size of 4 kB is used, and various rep-
resentative write-back policies are considered, mod-
ified to operate on either a block or a whole-file ba-
sis.

Figure 11 shows the time expansion values expe-
rienced by block and whole-file caches for various
policies. The use of block caching has a significant
impact on time expansion; in fact, the effect of block
caching is greater than the effect of choice of write-
back policy. For both traces, block caching results
in less time expansion than whole-file caching, re-
gardless of the write-back policy in use. The differ-

THE COMPUTER JOURNAL,

Vol. 72, No. 72, 2777

12 K. W. FrROESE AND R. B. BUNT

Trace 2
2000 T
& 1500 | ’ g
=3
[0}
N :
n B &
[=2]
S 1000 | -
£
>
£
3
= 500 |- No WB -2 -
Preemptive WB -
Delayed WB -B--
Lotto <—
Idle WB -+---
0 1

10 20
Cache Size (MB)

FIGURE 6. The effect of cache size on maximum log file size (b/w = 28.8 kb/sec)

Trace 1
2000 T
& 1500 | .
X)
[0}
N
7]
=i w
9 1000 R
€ D
2 L
£ ‘
3
= 500 |- No WB -&-- -
Preemptive WB -
Delayed WB -B--
Lotto -—
Idle WB -+--
0 1
1 10 20
Cache Size (MB)
Trace 1
2000 T T
& 1500 | .
=3 R 8 &
[0}
N
n
j=2}
S 1000 - R
£ | —
E e
3
= 500 |- No WB -&---
Preemptive WB -
Delayed WB -B--
Lotto -—
Idle WB -+--
0 1 1
9.6 14.4 57.6

28.8
Bandwidth (kb/sec)

Trace 2
2000 T T
& 1500 | ;
=3
[0}
N
»
[=2]
S 1000
£
=}
£
3
= 500 |- No WB -&--
Preemptive WB -
Delayed WB -B--
Lotto -—
Idle WB -+--
0 1 1
9.6 14.4 28.8 57.6

Bandwidth (kb/sec)

FIGURE 7. The effect of bandwidth on maximum log file size (10 MB cache)

ence becomes less as the connection bandwidth in-
creases, suggesting that block caching may be even
more desirable when bandwidth is low, contrary to
expectations.

Figure 12 shows the impact of block caching on
write interference. With an aggressive write-back
policy such as Idle WB, block caching may result
in much less interference, particularly at low band-
widths. For conservative policies such as Delayed
WB, the difference is much less, and may (as with
Trace 2) even be in the other direction.

Some other results (not shown) point to addi-
tional benefits of block caching in this situation.
As expected, fewer bytes are written back (more
than 50% fewer in many cases) and the size of the
log file is reduced significantly (35-60% on average).

We also saw reductions in the time to reintegration.
Details of these results can be found in [19].

In summary, the presence of a weak connection
presents an opportunity for block caching that is
not feasible when disconnected. Our simulations
found this to be beneficial. Time expansion, log
size, and time in log are all reduced when block
caching replaces whole-file caching. Write interfer-
ence is reduced with aggressive write-back policies
(especially in low bandwidth situations), but may
increase slightly with conservative ones. Further ad-
vantages could come from “tuning” write-back poli-
cies for better performance when block-caching is
used — something that was not done in this study.
Block caching is definitely a direction that should
be explored further.

THE COMPUTER JOURNAL,

Vol. 72, No. 72, 2777

CACHE MANAGEMENT FOR MOBILE FILE SERVICE 13

Trace 1
I 0.02 T
E Lotto —&—
= Idle WB —+-
3 Delayed WB -8--
[l
% 0.015 | s
c
S
S
g
L
S 001} g
£
'_
[
o
g
& 0.005 b
o
£
2
= O =

10 20
Cache Size (MB)

FIGURE 8. The effect of cache size on write interference time (b/w = 28.8 kb/sec)

Trace 1
0.02 T T

Lotto ~—
Idle WB -+--
Delayed WB -5--

0.015 Preemptive WB > |

0.005

Write Interference Time (Fraction of Total Time)
o
o
=
T
1

0
9.6 144 28.8
Bandwidth (kb/sec)

Trace 2
n 0.02 ;
E Lotto <—
s Idle WB -+--
E Delayed WB -&3--
s 0.015 | |
c
k]
3]
<
5>
o 001f i
£
Z
[
Q
5]
g 0005 [4
€ g
§ [0 e :
1 10 20
Cache Size (MB)
Trace 2
T 002 ; .
E Lotto <—
s Idle WB -+--
8 Delayed WB -&3--
% 0.015 Preemptive WB - |
c
k]
3] \
< \
5>
o 001\
£
Z
[
Q
5]
g 0005 [
3]
=
Q
= 0 B
9.6 14.4 28.8 576

Bandwidth (kb/sec)

FIGURE 9. The effect of bandwidth on write interference time (10 MB cache)

6. SUMMARY AND CONCLUSIONS

The purpose of this study was to investigate the
extent to which effective management of a mobile
client’s file cache can provide remote file system sup-
port with acceptable performance. It is clear that
tradeoffs exist between resources available and per-
formance. This study explores the dimensions of
these tradeoffs.

Our simulation results show that it is possible
to provide quite acceptable file system support in
a weakly connected environment, servicing read re-
quests in a timely manner while at the same time
providing good update service. Even when band-
width is low, there is enough unused network ca-
pacity that even a conservative write-back policy,
such as Delayed Write Back, results in writes being

reintegrated with the home file system in an accept-
able period of time — less than 30 minutes in most
cases. This is accomplished with very little inter-
ference with read traffic, increasing the total time
required to perform all read operations by less than
2% for the workloads we examined. This level of
performance can be achieved even at a modestly
resourced client. For the traces used in this study,
a 10 MB file cache was found to be large enough
to support this type of activity. While there are
definitely performance benefits to be gained from
higher-bandwidth connections, even a 14.4 kb/sec
network link proved to be enough to provide ac-
ceptable levels of performance. Simple policies work
quite well.

The performance benefits of delaying write backs

THE COMPUTER JOURNAL,

Vol. 72, No. 72, 2777

14 K. W. FrROESE AND R. B. BUNT

Trace 2
1.12 T T

Lotto <—

Idle WB -+---
11 | Delayed WB -83--- 4

Preemptive WB -

No WB -&---
1.08 —
1.06 —

Time Expansion

1.04 |

1.02

28.8
Bandwidth (kb/sec)

FIGURE 10. The effect of write-back policy on time expansion (10 MB cache)

Trace 1
1.12 T T
_ Lotto ——
Idle WB —+-
1.1 R Delayed WB -8-- 1
Preemptive WB -
No WB -&--
j
K]
0
c
@
o
>
i
[}
=
[
Trace 1
1.12 T T
Lotto (File) <—
1 PWB (File) —~—
11 No WB (File) -— -
Lotto (Block) -o--
PWB (Block) -x---
S 1.08 |- No WB (Block) -2--- |
‘D
c
@
o
>
i
[}
=
[

28.8
Bandwidth (kb/sec)

Trace 2
1.12 T T

Lotto (File) <—
PWB (File) ~<—
11 No WB (File) -—
Lotto (Block) -¢---
PWB (Block) -x---
1.08 | No WB (Block) -2--- |

1.06 —

Time Expansion

1.04

1.02 |

1
9.6 14.4 28.8 57.6
Bandwidth (kb/sec)

FIGURE 11. The effect of caching unit on time expansion

were found to be quite substantial. By ensuring
that log file entries remain in the log file for even
15 minutes, the number of entries in the log file
can be dramatically reduced by overlapping writes,
in turn significantly reducing the number of write
backs which need to be performed. In terms of man-
aging write backs, our results show that it is not
necessary for write-back policies to be complex in
order to achieve acceptable levels of performance.

Several advantages to block caching are apparent
from this study. Time expansion, write interfer-
ence time (for aggressive write-back policies), log
file size, and time entries remain in the log file are
all reduced when block caching is used. The re-
sults of this study indicate that there are definite
advantages to performing block caching in a weakly

connected environment. Whole-file caching is re-
quired to support disconnected operation, but de-
signing a cache manager to adapt to a weak con-
nection by switching to block caching when possi-
ble could prove beneficial. It could also be possible
to allow the cache manager to change block size
as bandwidth changes. Further investigation is re-
quired to examine issues such as how to cope with
returning to a disconnected, whole-file mode of op-
eration after performing block caching while weakly
connected.

Mobile computing is here now, and although sup-
port is still somewhat limited, what is in place is suf-
ficient to provide file system functionality to mobile
clients with acceptable performance through well-
managed caches. Functionality and performance

THE COMPUTER JOURNAL,

Vol. 72, No. 72, 2777

CACHE MANAGEMENT FOR MOBILE FILE SERVICE 15

Trace 1
0.014 T T
Idle WB (File) —+—
0.012 Idle WB (Block) -+~ |
’ Delayed WB (File) &—
Delayed WB (Block) -&---
0.01

0.008
0.006
0.004

0.002 k

Write Interference Time (Fraction of Total Time)

Write Interference Time (Fraction of Total Time)

Trace 2
0.014 T T
N Idle WB (File) —+—
0.012 Idle WB (Block) —+- |
: Delayed WB (Block) -&---
Delayed WB (File) &—
0.01 |

0.008

0.006

0.004

0.002 4

FIGURE 12. The effect of caching unit on write interference time

are equally important to widespread user accep-
tance, and efforts must proceed in both directions.

Systems and Applications, Santa Cruz, CA, Dec.
1994.

[6] A. Banerji. Answers to frequently asked ques-
ACKNOWLEDGEMENTS tions for comp.os.research: Part 1. Available at
http://www.maths.tcd.ie/scrg/os-faq/FAQ-1.html,
Financial support for this research came from the 1995.
Natural Sciences and Engineering Research Coun- [6] D. Johnson. Scalable and robust internetwork
cil of Canada (NSERC) through Research Grant routing for mobile hosts. In Proc. Fourteenth In-
OGP0003707 and a Postgraduate Scholarship, and ternational Conference on Distributed Computing
from Telecommunications Research Laboratories Systems, pages 2-11, Poznan, Poland, June 1994.
(TR Labs) in Saskatoon. Some of the equipment we [7] M. Satyanarayanan, J.J. Kistler, L.B. Mummert,
used was donated by Hewlett Packard. We were M.R. Ebling, P. Kumar, and Q. Lu. Experience
fortunate to have the support of our colleagues in with disconnected operation in a mobile comput-
the DISCUS research group at the University of ir}g enVironm?nt- In P roc. First USENIX Sympo-
Saskatchewan during our experiments, and we par- sium on Mobile and Location-Independent Comput-
ticularly thank Greg Oster for his ongoing technical g pa.ges 11-28, Cambridge, MA, April 1993.
assistance. Finally, we gratefully acknowledge the [8] M. Ebling, L. Mummert, and D. Steere. Overcom-
helpful comments of the anonymous referees who ing the network bottleneck‘m mobile .computmg.
reviewed our paper. In Proc. .Wm.'kshop on Mobile Computing Systems
and Applications, Santa Cruz, CA, Dec. 1994.
[9] G. Kuenning. The design of the Seer predictive
REFERENCES caching system. In Proc. Workshop on Mobile
[1] J. Landay and T. Kaufmann. User interface issues Computing Systems and Applications, Santa Cruz,
in mobile computing. In Proc. Fourth Workshop on CA, Dec. 1994.
Workstation Operating Systems, Napa, CA, Oct. [10] L. Huston and P. Honeyman. Disconnected op-
1993. eration for AFS. In Proc. First USENIX Sympo-
[2] J.J. Kistler and M. Satyanarayanan. Disconnected stum on Mobile and Location-Independent Comput-
operation in the Coda file system. ACM Transac- ing, pages 1-10, Cambridge, MA, April 1993.
tions on Computer Systems, 10(1):3-23, Jan. 1992. [11] M. Baker, J. Hartman, M. Kupfer, K. Shirriff, and
[3] L. Mummert, M. Ebling, and M. Satyanarayanan. J. Ousterhout. Measurements of a distributed file
Exploiting weak connectivity for mobile file access. system. In Proc. Thirteenth ACM Symposium on
In Proc. Fifteenth ACM Symposium on Operating Operating System Principles, pages 198-212, Pa-
Sytems Principles, pages 143-155, Copper Moun- cific Grove, CA, Oct. 1991.
tain Resort, CO, Dec. 1995. [12] G. Kuenning, G. Popek, and P. Reiher. An anal-
[4] L. Huston and P. Honeyman. Peephole log opti- ysis of trace data for predictive file caching in mo-
mization. In Proc. Workshop on Mobile Computing bile computing. In Proc. 1994 Summer USENIX
THE COMPUTER JOURNAL, Vol. ??, No. 7?7, 777?

16

K. W. FrROESE AND R. B. BUNT

[13]

[14]

[15]

[16]

[17]

18]

[19]

20]

21]

[22]

Conference, pages 291-303, Los Angeles, CA, June
1994.

L. Huston and P. Honeyman. Partially connected
operation. In Proc. Second USENIX Symposium
on Mobile and Location-Independent Computing,
pages 91-97, Ann Arbor, MI, April 1995.

D. Terry, M Theimer, K. Petersen, A. Demers,
M. Spreitzer, and C. Hauser. Managing update
conflicts in Bayou, a weakly connected replicated
storage system. In Proc. 15th ACM Symposium on
Operating Sytems Principles, Dec. 1995.

D. Dwyer and V. Bharghavan. A mobility-aware
file system for partially connected operation. ACM
Operating Systems Review, 31(1):24-30, Jan. 1997.
E. Levy and A. Silberschatz. Distributed file sys-
tems: Concepts and examples. ACM Computing
Surveys, 22(4):321-374, Dec. 1990.

J. Howard, L. Kazar, S. Nichos, M. Satya-
narayanan, R. Sidebotham, and M. West. Scale
and performance in a distributed file system. ACM
Transactions on Computer Systems, 6(1):51-81,
1988.

D. Willick, D. Eager, and R. Bunt. Disk cache re-
placement policies for network file servers. In Proc.
Thirteenth International Conference on Distributed
Computing Systems, pages 2-11, Pittsburgh, PA,
May 1993.

K. Froese. File cache management for mobile com-
puting. M.Sc. thesis, Dept. of Computer Science,
University of Saskatchewan, Saskatoon, Canada,
1997.

M. Satyanarayanan. Fundamental challenges of
mobile computing. Technical report, School of
Computer Science, Carnegie Mellon University,
Pittsburgh, PA, 1996.

R. Golding, P. Bosch, C. Staelin, T. Sullivan, and
J. Wilkes. Idleness is not sloth. In Proc. USENIX
Conf., pages 201-212, New Orleans, LA, Jan. 1995.
C. Waldspurger and W. Weihl. Lottery scheduling:
Flexible proportional-share resource management.
In Proc. First Symposium on Operating System De-
sign and Implementation, pages 1-11, Monterey,
CA, November 1994.

THE COMPUTER JOURNAL,

Vol. 72,

No. 77,

7?

