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Abstract

This document presents a workload characterization study for Web
proxy servers. Three different Web proxies are studied: the Web proxy
cache at the University of Saskatchewan; the primary CANARIE Web
proxy cache; and an NLANR Web proxy cache at the University of
Illinois, Urbana-Champaign. Workload characterization is done us-
ing access log analysis from the three sites, with access log durations
ranging from 1 to 3 months.

Our study identifies several workload characteristics of interest.
For example, HTML and image documents together account for over
95% of the requests and documents seen in the workloads studied;
the document size and transfer size distributions are heavy-tailed; the
reference frequency per document is Zipf-like in its distribution, but
not precisely a Zipf distribution; among all the documents accessed in
the proxy logs, approximately 70% are accessed only once in the log;
the top 30% of the documents account for 80% of the requests; the
“hot set” of active documents changes relatively slowly on a day-to-
day basis during the week, but quite significantly on weekends; and
typical hit rates achieved by proxy caches in a Web caching hierarchy
range from 10-40%. We find these characteristics quite consistent
across the three different levels of caching hierarchies studied in the
traces, though the workload on the CANARIE Web proxy cache is
much lighter than those for the other two sites.



1 Introduction

This document presents a workload characterization study for Web proxy
servers, as part of a larger project on the design and performance evaluation
of a national-scale Web caching hierarchy for CA*net II.

The purpose of the workload characterization study is two-fold. First,
the study provides a snapshot reflecting the operation of the CA*net II Web
caching hierarchy in its current form (e.g., volume of workload, cache hit
rates, document transfer times). Second, the study identifies common char-
acteristics in the workloads presented to Web proxy servers. Understanding
these characteristics is an important step in the process of improving the
caching hierarchy, thereby reducing network traffic and providing documents
to users with reduced latencies.

In this study, we characterise Web proxy workloads at both the institu-
tional level (e.g., regional or institutional Web proxy cache) and at a higher
level (e.g., national and/or international Web proxy cache). The workload
characterization is carried out using Web proxy access log analysis, similar to
the Web server access log analysis carried out by Arlitt and Williamson [4].
Throughout the study, emphasis is placed on identifying workload character-
istics that apply across the levels of a Web caching hierarchy.

The main observations from our workload characterization study are the
following:

e HTML and image documents together account for over 95% of the
requests and documents seen in the Web proxy access logs.

e The document size and transfer size distributions are heavy-tailed (i.e.,
Pareto, with o & 1.30).

e The number of references to each document identified in the access
log follows a Zipf-like distribution, but does not precisely fit a Zipf
distribution.

e Among all the documents accessed in the proxy logs, approximately
70% of the documents are accessed only once in the log.

e The top 30% of the accessed documents account for over 80% of the
requests seen in the access logs.



e The “hot set” of active documents changes relatively slowly on a day-
to-day basis during the week, but changes quite significantly during
evenings and on weekends.

e Typical cache hit rates for Web proxies in a caching hierarchy are 10-
40%.

We find these characteristics quite consistent across the three different
levels of caching hierarchies studied in the traces. Our study also shows
that the CANARIE Web proxy cache is not very well utilized in the current
CA*net II architecture; its workload is much lighter than those for the other
two Web proxies studied.

The remainder of this document is organized as follows. Section 2 de-
scribes the data collection methodology and the sites used for this study.
This is followed by an analysis of the raw data sets in Section 3. Section 4
presents our workload characterization results for Web proxy servers. Finally,
Section 5 summarizes our work and presents conclusions.

2 Data Collection Methodology

Our workload characterization study is conducted using analysis of access
logs from Web proxy servers. Each entry in the access log records the URL of
the document being requested, the date and time of the request, the name (or
IP address) of the requesting client, the type of the document, and additional
information such as whether the document was found in the proxy cache or
not, a response code, and the number of bytes returned to the requesting
client. Processing these log entries can produce summary statistics about
workload volume, document types and sizes, document popularity, and proxy
cache performance.

The access logs for our study were obtained from three World-Wide-Web
Proxy servers:

e University of Saskatchewan
e CANARIE
e NLANR



Each of these sites continuously records access logs, which we obtained on a
daily basis using ftp. The data sets for the three sites currently range from
1 month to 3 months in duration. Further detail on each of these sites' is
provided below.

The Web proxy server at the University of Saskatchewan represents an
institutional-level Web proxy, functioning as a secondary-level (i.e., lower
level) proxy cache in the CA*net II caching hierarchy. It serves several hun-
dred users on the University of Saskatchewan campus who have configured
their browsers to use the proxy cache. This proxy server is operated by the
Department of Computing Services at the University of Saskatchewan. The
proxy uses a Digital AlphaServer 1200 5/400 with two 400 MHz processors
running Squid version 1.xx [16]. The proxy is configured to use the CA-
NARIE cache as a parent, using the Squid Inter-Cache Protocol (ICP). That
is, cache misses at the University of Saskatchewan cache result in requests
to the CANARIE cache for the missing document. Requests for dynamic
content are configured to bypass the proxy cache entirely.

The CANARIE proxy cache is the primary-level core of the CA*net II
caching hierarchy. This machine (called roadrunner) is a SPARC Ultra 180
MHz machine, running Squid version 1.2.beta22 [7]. It has 512 MB RAM and
a 30 GB hard disk. The CANARIE proxy server is physically located at Bell
Canada in Toronto, though it is administratively controlled by the CANARIE
ARDNOC (Advanced Research and Development Network Operations Cen-
ter). This cache currently functions as a parent for several secondary-level
proxies, including University of Saskatchewan, University of Alberta, Dal-
housie University, and McMaster University. There are also a small number
of users who configure their browsers to directly use the CANARIE proxy
cache. The CANARIE proxy has parent links to two nodes in the NLANR
(National Laboratory for Applied Networking Research) caching hierarchy,
namely the Pittsburgh NLANR node, and the NLANR node at the Univer-
sity of Illinois, Urbana-Champaign (UIUC).

The NLANR traces in our study come from the NCSA (National Cen-
ter for Supercomputing Applications) proxy server at the University of Illi-
nois, Urbana-Champaign (UIUC). This site represents one of several top-level
nodes in the NLANR Web caching hierarchy; it receives requests from sib-

'We are always looking for access logs from other proxy servers, to obtain an even better
understanding of Web proxy servers and their performance. If you know of additional sites
with access logs available, please let us know.



ling caches at the top level, as well as from lower-level caches that use it as
a parent. The NCSA proxy server is a Digital AlphaServer 1000 266 MHz
machine [23] running Squid version 1.2.betal7 [17].

The access logs from the six root caches in the US can be obtained by F'TP
from ftp://ircache.nlanr.net/Traces/. We regularly downloaded the ac-
cess logs for the Urbana-Champaign cache since the access logs are updated
on a weekly basis (note, however, that the sanitized client IP address map-
pings are changed on a daily basis). The access logs from the CA*net II cache
were obtained by ftp from http://ardnoc41.canet2.net/cache/squid/rawlogs/.
The CA*net IT logs were first made available in December 1998, and are up-
dated on a regular basis. The access logs for the Saskatchewan cache were
available directly from the operators of the cache.

The three data sets described above will be referred to as USask, CA-
NARIE, and NLANR in the rest of the document. We present the logs
in this relative order to reflect the progression from institutional-level Web
proxy cache to top-level Web proxy cache.

3 Access Log Analysis

3.1 Raw Data Analysis

The first step towards analysing the access logs was to concatenate the log
files of individual days together to obtain longer data sets for each site. We
created a trace spanning the months of October through December, 1998 for
the University of Saskatchewan proxy server, which is referred to as the USask
access log. The three-month USask access log recorded a total of 27,259,778
requests in 82 days of activity.? Similarly, a one-month-long trace for the
CANARIE proxy and the NLANR proxy were created. The CANARIE ac-
cess log recorded a total of 27,627,843 requests in 26 days of activity. * The
NLANR access logs recorded 28,522,256 requests in the 31 days of activity
in the month of December, 1998. Table 1 provides a summary of the access
logs for all three proxy servers.

The access logs provide information on proxy servers with different work-
loads. The USask proxy serves users at the University of Saskatchewan,

2The access logs for 10 days were not available, due to downtime for server upgrades
and network outages.
3The access logs for 5 days in December, 1998 were not available.



Table 1: Summary of Web Proxy Access Log Characteristics (Raw Data)

| Ttem |  USask | CANARIE | NLANR
Access Log Duration 82 days 26 days 31 days
Start Date Oct 2, 1998 | Dec 1, 1998 | Dec 15, 1998
End Date Dec 31, 1998 | Dec 31, 1998 | Jan 14, 1999
Total Requests 27,259,778 27,627,843 28,522,256
Avg Requests/Day 332,436 1,062,609 920,072
Total Bytes Transferred (GB) 164 36 301
Avg Bytes/Day (MB) 2003 1406 9695

and therefore its clients are mostly individual users. The CANARIE cache
was configured as a parent for the USask cache. Its clients are mostly
institutional-level proxies (University of Saskatchewan, University of Alberta,
CA*net IT Networks Operations Center, Communications Research Cen-
ter) [7]. The CANARIE proxy is also a child to two NLANR proxies, namely
the PSC (Pittsburgh Supercomputing Center) cache at Pittsburgh, Pennsyl-
vania and the NCSA cache at Urbana-Champaign, Illinois. The NCSA cache
at Urbana-Champaign mostly serves requests from within the US and mostly
consists of clients from North America. Most of the clients for the NCSA
cache are institutional caches or other proxy caches like the CANARIE cache.

Table 1 provides insight into the activity of each of these proxy servers.
The CANARIE and NLANR caches receive three times more requests per
day than the USask cache. Although the CANARIE cache has the highest
activity in terms of the number of requests received per day, the average
volume of bytes transferred by it was the lowest among the three workloads
considered. On further analysis of the CANARIE access log, it was found that
approximately 85% of the requests were Squid Inter-Cache Protocol (ICP)
queries to the ICP port, which do not result in any transfer of documents
(i.e., the access log records a transfer of zero bytes for them). Thus the
actual workload (e.g., document transfers) for the CANARIE proxy is much
less than that suggested in Table 1. For the USask proxy, 9% of the recorded
requests were ICP queries, while for the NLANR proxy, none of the requests
were ICP queries, since the NLANR access log was not configured to record
activity at the ICP port. These results are summarised in Table 2.



Table 2: Breakdown of Request Methods

| Method | USask | CANARIE | NLANR |
GET 90.58 15.38 99.94
ICPQUERY || 8.68 84.61 0.00
Others 0.74 0.01 0.06
Total 100.0 100.0 100.0

In this study, we are interested in the activity at the HT'TP port (i.e.,
requests for and transfers of Web documents). For this purpose, we study the
response codes in the access logs for all TCP requests seen (i.e., activity at
the HTTP port). The breakdown of the HTTP reply codes as a percentage
of the total number of TCP requests seen is provided in Table 3.

Table 3: Breakdown of HI'TP Response Codes

‘ Response Code H USask ‘ CANARIE ‘ NLANR ‘
200 (OK) 83.65 81.00 64.81
206 (Partial Contents) || 0.36 0.09 0.27
302 (Found) 5.83 4.36 4.58
304 (Not Modified) 7.35 10.94 26.28
Others 2.80 3.61 4.06
Total 100.00 100.00 100.00

There are many possible responses that a Web proxy can provide to a
client request [28]. A reply code of 200 (OK) means that a valid docu-
ment was made available to the client, either directly from the proxy cache
(TCP_HIT), or by retrieving the document from another proxy cache or from
the originating server (TCP_MISS). A reply code of 304 (Not Modified) im-
plies that the client had issued a GET If-Modified-Since request to determine
whether the client’s cached copy of a document was up-to-date or not, and
the server (or some intermediate proxy) replied indicating that the client
has a valid copy of the document. An HTTP response code of 206 (Partial
Contents) implies a partial transfer of the document to the client, while an
HTTP response of 302 (Found) means that the requested document is known
to reside in a different location than that specified by the URL.



3.2 Data Reduction and Analysis

The access logs record the number of bytes transferred to the clients, regard-
less of where the requested document was found (e.g., at the proxy cache, at
some other cache in the hierarchy, or at the originating server). While char-
acterizing the workload of the proxy servers, we are interested in all requests
which would result in the document being accessed from the origin server,
had there been no intermediate proxy. In other words, the objective is to
understand the effectiveness of proxy caching. For example, suppose that a
client issues a GET If-Modified-Since request to the proxy, meaning that the
client wants to verify whether or not its cached copy of a document is still
valid. In response, the proxy might indicate that the client does not have a
valid copy of the document, but the proxy can provide a valid copy of the
document from its cache [29]. These requests are logged as an HTTP 304
Not Modified response (TCP_REFRESH _HIT) in the access logs. Since this
behaviour is purely due to caching at the proxy server, these requests are
considered along with all HTTP 200 (OK) responses and HTTP 206 (Partial
Contents) responses in the remaining analyses in this paper. We reduce our
raw access logs to consider only these cases, which reflect successful transfers
of documents to the requesting clients.

Table 4 summarizes the reduced access logs for our three Web proxy sites.
Based on the average number of requests seen per day at each proxy server,
the NLANR proxy server has the highest activity, while the CANARIE proxy
server has the least activity. This is not surprising since very few institutional
caches currently use the CANARIE proxy cache.

Table 4 also indicates the number of distinct documents, servers, and
clients recorded in the access logs. Each proxy handles requests for millions
of distinct documents from thousands of different Web servers. The number
of clients (i.e., distinct client IP addresses seen) varies quite significantly in
the three traces. This number is not known precisely for the NLANR log,
since the client IP addresses in the NLANR access logs are randomized every
day (due to privacy concerns). However, on any particular day, about 700
clients generate requests to the NLANR cache.

Overall, the mean and median document transfer sizes are quite small, as
has been reported in previous studies of Web servers [3, 4, 8] and Web proxy
servers [1]. In our data sets, the mean size of the documents transferred
ranges from 7-15 kilobytes, while the median is in the range of 2-3 kilobytes.
The mean transfer size is larger than the median transfer size because there



are several large documents that skew the mean of the transfer size distribu-
tion. There is also high variability in the sizes of documents transferred, as

indicated by the coefficient of variation (COV) reported in Table 4.

Table 4: Summary of Web Proxy Access Log Characteristics (Reduced Data)

| Ttem USask | CANARIE | NLANR |
Total Requests 20,754,720 | 351,296 | 20,018,680
Avg Requests/Day 253,106 135,103 645,763
Total Bytes Transferred (GB) 160 33 295
Avg Bytes/Day (MB) 1,964 1,284 9,562
Distinct Documents 5,027,667 | 1,423,081 | 7,681,214
Distinct Servers 110,685 19,214 211,555
Distinct Clients 777 11 1,200
Mean Transfer Size (Bytes) 7,761 9,505 14,808
Median Transfer Size (Bytes) 2543 2819 3112
Coeflicient of Variation 11.85 15.90 14.27

These reduced data sets will form the basis for the Web proxy workload
characterization study undertaken in the next section.

4 Proxy Workload Characterisation

In the following sub-sections, we present a more detailed analysis of Web
proxy workload characteristics, including document types and sizes, an anal-
ysis of transfer size distributions and their heavy-tails, and an analysis of file
referencing behaviour, including document popularity, Zipf-like referencing
behaviour, temporal locality, concentration, and “hot set” drift analysis.

4.1 Document Types and Sizes

The next step in our workload characterization study was to classify docu-
ment requests according to the following generic categories:

e HTML (e.g., .html, .shtml, .htm)

e Image (e.g., .gif, .jpeg, .gif89, .xbm)



Audio (e.g., .au, .ram, .wav)

Video (e.g., .mpeg, .avi, .mov)

Text (e.g., -tex, .readme, .c, .java)

Compressed (e.g., .zip, .gz )

Application (e.g., .ps, .pdf, .dvi)
e Dynamic (e.g., .cgi, .perl )

Any document that could not be classified under one of the above categories
was placed in the Others category.

The results of this analysis for the USask, CANARIE, and NLANR data
sets are summarized in Tables 5, 6, and 7,respectively. These tables show
that HTML and Image files account for close to 95% of the total requests.
Similar results were reported for client traces by Cunha et al. [13] and for
server traces by Arlitt and Williamson [3, 4].

The results reported in Tables 5 through 7 are consistent with those
reported by Braun and Claffy [8] in their study of the NCSA Web server.
That is, most requests are for small(er) files. Arlitt and Williamson [4] also
report this as a common Web server workload characteristic.

Unlike Web server workloads, however, Tables 5, 6, and 7 show that Image
files are consistently the most requested document type (65-80%), followed by
HTML files (17-28%). Similar observations were made by Abdulla et al. [1]
in their characterization of Web proxy traffic. We also observe that Image
files are responsible for the highest percentage of bytes transferred (37-58%),
followed by HTML files (16-22%).

A substantial portion of the byte transfer volume is accounted for by
Video, Compressed, and Application file types, which despite their relative
infrequent access (typically less than 1% of the requests) are large enough to
generate 2-10% of the bytes transferred. This observation is substantiated by
the large mean and median transfer sizes indicated for these document types,
compared to other document types. The COV values within each document
type category are much lower than the COV of transfer sizes for the aggregate
data set (see Table 4). The large variation in mean transfer sizes across
the diverse document types helps to explain the high COV reported in the
aggregate data sets.

10



Table 5: Breakdown of Document Types and Sizes (USask)

[ Ttem | HTML | Image | Audio | Video | Text [ Compressed | Application [ Dynamic [ Others |
% of Requests 18.97 77.45 0.17 0.03 0.75 0.06 0.59 0.08 1.88
% of Bytes 22.15 57.58 1.48 3.89 1.16 3.12 6.47 0.60 3.53
Mean Transfer Size 9,062 | 5,770 | 66,005 | 875,865 | 11,0567 | 373,053 84,618 56,613 | 14,682
Median Transfer Size 4,683 2,263 16,873 | 275,586 1,526 49,828 5,042 7,321 704
COV of Transfer Size 1.88 6.04 4.05 2.09 9.71 4.60 7.29 6.54 18.60

Table 6: Breakdown of Document Types and Sizes (CANARIE)

[ Ttem || HTML | Image | Audio | Video | Text | Compressed | Application | Dynamic | Others |
% of Requests 16.83 80.67 0.20 0.05 0.44 0.07 0.45 0.01 1.28
% of Bytes Transferred 16.42 54.35 1.93 5.57 2.73 5.08 7.84 0.01 6.07
Mean Transfer Size 9,276 | 6,403 | 89,680 | 1,165,395 | 59,027 | 713,208 163,003 2,080 | 45,023
Median Transfer Size 4,697 2,573 15,812 49,220 3,215 67,619 5,334 989 1,026
COV of Transfer Size 1.78 2.92 4.80 1.83 6.01 4.38 6.79 2.30 15.42

4.2 One-Time Referencing

A surprising observation made in previous analyses of Web server work-
loads [3] was that (regardless of the duration of the access log studied) typ-
ically 15-30% of the documents accessed in the log were accessed only once
in the log. This so-called “one-time” referencing behaviour is of concern for
Web caching, since there is clearly no point caching something that will be
accessed only once.

The precise cause of this one-time referencing behaviour is not fully un-
derstood. Several explanations have been proposed. First, it might indicate
the vastness of the World-Wide Web, and the low signal-to-noise ratio for
much of its content. Second, it might reflect human nature in browsing
habits (e.g., once a site has been visited, there is no need to visit it again).
Third, it might reflect the behaviour of content providers, who might use
date-based URL names, or who might redesign or modify Web pages on a
regular basis to keep them current, while possibly removing or renaming old
pages. Fourth, it may reflect the presence of search engines or Web robots
that traverse many pages to construct an index. Finally, it may be the conse-
quence of document prefetching (i.e., prediction) algorithms in some proxies
and/or client browsers These hypotheses all seem plausible. If any (or all)
of them are true, then they indicate a challenging workload environment for
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Table 7: Breakdown of Document Types and Sizes (NLANR)

[ Ttem || HTML | Image | Audio | Video | Text [ Compressed | Application | Dynamic | Others |
% of Requests 27.85 67.83 0.24 0.28 0.76 0.32 0.61 0.86 1.26
% of Bytes Transferred 17.05 36.83 0.85 8.63 1.90 8.76 14.73 0.46 10.69
Mean Transfer Size 9,067 | 8,054 | 53,004 | 464,608 | 36,880 | 400,739 356,738 7877 | 125,678
Median Transfer Size 3,994 2,699 16,697 | 254,083 2,815 90,730 20,260 2,435 1,068
COV of Transfer Size 2.73 3.51 11.04 2.96 16.38 3.34 5.40 7.03 4.81

Web caching algorithms.

Several other explanations seem less plausible. For example, attributing
this one-time referencing to the presence of Dynamic requests (e.g., CGI) is
not possible, since Dynamic files typically account for much less than 5% of
the workload in Web server and Web proxy access logs. File modification
events also tend to occur at low enough rates that they are unlikely to be a
factor in most analyses [3]. Attributing one-time referencing to typographical
errors made by clients in requested URL names does not make sense, since
the access log analyses usually focus on successful requests, not errors.

On the positive side, one could argue that one-time referencing occurs
because the Web caching hierarchy is working well. That is, repeated re-
quests to the same document are not seen at higher level caches or servers
because the document has been pulled into a cache at a lower level (e.g.,
browser cache, intermediate level proxy cache). While this may well be an
indication of (improving) effectiveness of hierarchical Web caching, we re-
main skeptical, for two reasons. First, the one-time referencing observation,
first made in server workloads in 1995, predated much of the large-scale de-
ployment of national-level Web caching hierarchies. Second, the volume of
GET If-Modified-Since requests (as indicated by HTTP 304 Not Modified
responses) still seems low in many workload studies (e.g., 5-15%), implying
either limited effectiveness of caching, or limited cache validation occurring
(e.g., lengthy timeouts on cached documents, or browser implementations
that don’t use or don’t support GET If-Modified-Since requests).

In any event, one-time referencing is deemed to be an important workload
characteristic of interest. Thus, the next step in our workload characteriza-
tion study was to assess the one-time referencing behaviour present in Web
proxy workloads.

Table 8 summarizes the one-timers with respect to the number of distinct
documents and the total requests seen for all the three data sets. We conclude
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that approximately one-fourth of the total requests (18.1% - 30.3%) are one-
timers and approximately 70% of the documents referenced (67.8% - 74.9%)
are one-timers. The latter number is significantly higher than the one-timer
referencing behaviour seen in Web server workloads [3]. Again, one can only
hope that this is an indication that caching hierarchies are actually working

as intended.

Table 8: One-Time Referencing Behaviour in Web Proxy Workloads

| Ttem [ USask [ CANARIE| NLANR |
Distinct Documents 5,527,667 | 1,423,081 | 7,681,214
One-Timer Documents 77?? ?2?7? 277
One-Timer/Distinct Documents (%) 67.8 74.9 70.9
Total Requests 20,754,720 351,296 20,018,680
One-Timer Requests 777 777 777
One-Timer/Total Requests (%) 18.1 30.4 27.2

Furthermore, the one-time referencing characteristic appears to be inde-
pendent of (i.e., orthogonal to) document type. Table 9 presents a more
detailed analysis of one-timer documents based on document type. This
analysis shows that HTML and Image files constitute 95% of the one-timers
seen, with each type occuring in the same proportion as they do in the request
stream.

Table 9: Breakdown of Document Types for One-Timers

| Item || USask | CANARIE | NCSA |
HTML | 23.0 20.19 22.27
Image 74.38 77.44 74.42
Others | 2.62 2.47 3.31
Total 100.0 100.0 100.0

The predominance of one-time referencing for Web documents highlights
the need for novel Web caching policies that can effectively discriminate
against one-timers. For example, frequency-based algorithms, such as Least

13



Frequently Used (LFU), tend to perform better than recency-based algo-
rithms, such as Least Recently Used (LRU). Similar observations have been
made for Web server caching algorithms [4, 30].

4.3 Transfer Size Distribution

Our next analysis focuses on the transfer size distribution for the documents
returned to the requesting clients (either directly by the proxy, or after ob-
taining the document from a higher-level proxy or the originating server).
In particular, we are interested in the shape of this distribution, the pres-
ence of heavy-tails in the distribution, and the impact of the heavy-tailed
distribution on Web and network performance.

Figure 1 shows the cumulative distribution function of the transfer sizes
for each proxy server, using a logarithmic scale on the horizontal axis. Almost
all of the transfer sizes are in the range from 100 to 100,000 bytes, with very
few small transfers (say, less than 100 bytes) and very few large transfers
(say, more than 100,000 bytes). This distribution is similar to the file size
distribution reported for Web clients [13] and for Web servers [3, 4, 6, 8, 11].

08 UofS ——
Canarie -----

Nlanr -------

0.6 [

P[X <= x]

04

02

log10(File Size)

Figure 1: Cumulative Distribution Function for Transfer Sizes, by proxy
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The transfer size distribution in Figure 1 is in fact heavy-tailed. A distri-
bution is defined to be heavy-tailed if, regardless of the distribution for small
values of the random variable, the asymptotic shape of the distribution is
hyperbolic [3, 11, 21, 24]. That is, a distribution is heavy-tailed if:

PX>z]~z2 7%z —00,0<a<?2

The heavy-tailed property of World-Wide-Web workloads is an impor-
tant characteristic because it has been suggested as one of the causes for the
presence of self-similarity (i.e., long-range dependence) in Web traffic [11]. In
simple terms, a “heavy tail” to a Web document size distribution means that
the very large “elephants” (i.e., outliers) in the tail of the distribution are rel-
atively few in number, but are large enough to contribute significantly to the
overall traffic volume observed (e.g., skew the mean transfer size distribution,
as observed in Table 4).

The simplest example of a heavy-tailed distribution is the doubly-exponential
Pareto distribution; its probability density function is:

P(z) = ak® > a, k> 0,2 >k
The cumulative distribution function for the Pareto distribution is:
Fx)=P[X<z]=1-(k/x)"

The Pareto distribution has been applied to phenomenon observed in social
sciences, such as the distribution of the length of books on a library shelf [22]
and distribution of income [18]. This distribution has been used to model
FTP data bursts [24, 25] and Web traffic [3, 13, 11].

The « parameter is the known as the tail-index [12], and k defines where
the “tail” of the distribution begins (i.e., it represents the smallest possible
value of the random variable in the heavy-tailed distribution). As « de-
creases, the tail of the distribution becomes heavier [11]. In other words,
an arbitrarily large portion of the probability mass may be present in the
tail of the distribution as « decrease. As k increases, only the tail of the
distribution is modelled.

To estimate the tail-index a for our transfer size data sets, we follow the
approach outlined in [11] and [5]. First, a log-log complementary distribution
(LLCD) is plotted for the transfer sizes in the data sets. A LLCD plot
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graphs logF (x) = log (1 — F (z)) versus logz, for large x [5]. Heavy tailed
distributions have the following property:

dlogF (z)

=— k
dlogx “e >

An estimate of the tail-index « is obtained by determining the slope of the
LLCD plot for values of = greater than £, using least squares linear regres-
sion. Estimates of o can also be obtained using Hill Estimator [32], Maxi-
mum Likelihood Estimator [20], Least Square Techniques [24], and Scaling
Estimators [12].

Figure 2 shows the LLCD plots for all the data sets, along with the
least square regression fits for the heavy-tail (kK = 1000 bytes). All three
data sets show transfer size distributions that are heavy-tailed. Table 10
summarizes the estimated « value for each data set, along with the coefficient
of determination (R?), which assesses the “goodness of fit” for the linear
regression. These results show a very strong fit (R? is close to 1.0), and «
values ranging from 1.1 to 1.3.

Figure 2: Log-Log Complementary Distribution (LLCD) Plots for Transfer
Sizes: (a) USask; (b) CANARIE; (¢) NLANR

Among the three data sets considered, the NLANR data set exhibited
the most heavy tail (¢ = 1.11), while the USask data set shows the least
heavy tail (o = 1.37). We conclude that proxy transfer sizes, just like server
transfer sizes, are heavy tailed, with o ranging from 1.11 and 1.37.
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Table 10: Estimates of « for Heavy-Tailed Transfer Size Distributions
| Item || USask | CANARIE | NLANR |

«a 1.37 1.30 1.11

R? 0.98 0.98 0.99

logl0Fle Size) log10{Fie Size) log10{Fie Size)

(a) (b) (c)

Figure 3: Distribution of File Sizes by Document Type: (a) USask; (b)
CANARIE; (c) NLANR

The heavy-tailed nature of the transfer size distributions also applies
within each document type category. Figure 3 shows the cumulative dis-
tribution function for transfer sizes by document type, for the three data
sets. These distributions all show heavy-tail behaviour consistent with the
foregoing analyses.

4.4 Document Popularity versus Document Size

It was observed earlier that most Web transfers involve small documents,
as reflected by a median value lower than the mean value of the transfer
size. To determine whether there is any relationship between the frequency
of reference to a document and the document size, a simple visual test was
performed.

Figure 4 shows the frequency of access versus transfer size on a log-log
plot. Visual inspection of the plots suggests that small documents are trans-
ferred more often than large documents. To ascertain this claim, the cor-
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relation coefficient is calculated for each of the data sets. The correlation
coefficient always lies between -1 and +1: a correlation coefficient close to
+1 would indicate that large transfers occur more often, whereas a correla-
tion coefficient close to -1 indicates that large transfers occur less often. A
correlation coefficient close to zero indicates no linear relationship between
number of requests and document size.

log10{Fie Size) loglo(Fie Size) loglo(Fie Size)

(a) (b) (c)

Figure 4: Frequency of Access versus Transfer Size: (a) USask; (b) CA-
NARIE; (¢) NLANR

The correlation coefficients for each of the data sets are shown in Table 11.
The results indicate a strong negative correlation between the frequency of
access to documents and the transfer sizes. That is, transfers of large docu-
ments occur less often. The correlation coefficients for individual file types
for each data set was also calculated (results not given here). It was ob-
served that the Image files and the HTML files have a very high negative
correlation coefficient, while the Video and Compressed files had little corre-
lation between transfer size and frequency of access. This might be because
of browsing habits of users. Users like to download web documents on the
click of the mouse button, which is possible for small documents. There-
fore, there are more accesses to smaller sized HTML and Image files. While
downloading Video or Compressed files, users have less choice because most
of these documents are large; hence there seems to be no correlation between
the transfer sizes and the frequency of reference.
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Table 11: Correlation Analysis: Frequency of Reference versus Transfer Size
| Ttem | USask | CANARIE | NLANR |

| Correlation Coefficient | -0.84 |  -0.84 | -0.83 |

4.5 File Referencing Behaviour

This section studies various characteristics of the file referencing behaviour
in Web proxy workloads.

4.5.1 Document Popularity

The highly uneven popularity of Web documents has been noticed by many
researchers [2, 4, 6, 5, 8,9, 13], and Zipf’s Law [33] has been applied to model
this behaviour. Zipf’s Law states that if items are ranked (r) according to
their popularity (P), then the popularity of an item is inversely proportional
to its rank.

The Zipf distribution is a parameter-less hyperbolic distribution of the
form:

P~1/r

Note that in this distribution, r is raised (exactly) to the power -1. In
other words, the N** most most popular item is exactly twice as popular
as the 2N™ most popular item, and so on [2]. This type of referencing
behaviour is prevalent in many information systems (e.g., memory referencing
behaviour of computer programs[10, 26], popularity of words used in the
English language, popularity of books borrowed from a public libary [22, 33],
movies rented from a video store).

In the present context, the Zipf distribution implies that a few documents
are very highly referenced, a moderate number of documents are moderately
referenced, while a large number of documents are referenced only a few
times. To see whether or not documents follow the Zipf distribution, the
documents are first sorted in descending order according to their frequency
of reference. The documents are then ranked, with the most referenced
document being assigned a rank of one, followed by the next most referenced
document with a rank of two, and so on.

The frequency versus rank plots for the three data sets appear in Fig-
ures 5, 6, and 7 for the USask, CANARIE, and NLANR data sets, respec-
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tively. In each of these figures, the graph on the left shows the referencing
behaviour for all documents in the data set, while the graph on the right
refines the analysis to each category of document type.

Image ——

. HTML -

5\ Trace —— 1 Text oo
\ Fit ———— 4k Application

p E Dynamic ——+--

Compressed -~

Video ------

log10(Reference Count)
log10(Reference Count)

log10(Rank) log10(Rank)
(a) (b)

Figure 5: Reference Count versus Rank (USask): (a) All Files (b) By File
Type

Visual inspection suggests that the referencing behaviour in all cases fol-
lows a Zipf-like distribution, where:

P= k(l) ’
r
To determine the slope (3) of the aggregate data set (all files), a least squares
fit over the (log-transformed) data set is performed.

The calculated values for 8 and the goodness of fit (R?) values are shown
in Table 12. It is evident that the referencing behaviour is not Zipfian in
nature, as shown by the lower 3 values. It can also be observed that the
Least-Squares fit and the empirical distribution do not agree very strongly;
this is primarily due to the presence of many documents of low popularity
(i.e., more than predicted by Zipf’s Law) and many one-timers. We thus
conclude that document popularity follows a Zipf-like referencing behaviour,
but does not precisely match a Zipf distribution.
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Figure 6: Reference Count versus Rank (CANARIE): (a) All Files (b) By
File Type

Table 12: Estimated Slopes for Zipf-Like Referencing Distribution
| Item || USask | CANARIE | NLANR |

B 0.76 0.63 0.65
R? 0.93 0.88 0.89

4.5.2 Concentration of References

Another way of characterising the uneven document access patterns is to
determine the extent to which references are skewed towards certain docu-
ments. This measure of skewness, referred to as concentration, was originally
applied to file referencing behaviour in an Unix environment [10, 31], and
later to Web server document accesses [4, 8, 19].

The concentration phenomenon is illustrated in Figures 8, 9, and 10 for
the USask, CANARIE, and NLANR data sets, respectively. Again, two
graphs are used in each figure: the graph on the left shows the overall docu-
ment referencing concentration, and the graph on the right refines the anal-
ysis based on document types.

Non-uniform referencing of Web documents is clearly reflected in these
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Figure 7: Reference Count versus Rank (NLANR): (a) All Files (b) By File
Type

Figures. The USask data set shows the most concentration of references
among the three data sets, with approximately 30% of the documents ac-
counting for about 80% of the references. The remaining 70% of the doc-
uments (primarily the one-timers) account for the remaining 20% of the
requests.

These results suggest that concentration of references is lower at Web
proxy servers than at Web servers [3, 4]. This observation makes sense in-
tuitively, since clients at a Web proxy can effectively access any available
document in the web (i.e. the document set is very large). For Web servers,
the requests are restricted to a limited set of documents (i.e. the documents
present in the Web server). Therefore, it is almost natural to observe more
concentration of references at the servers compared to the proxies. We can
also hypothize that a proxy server with homogeneous clients (institutional
level proxy caches like the USask cache) can expect to observe more con-

centration of references compared to that at higher level caches (like the
CANARIE and NLANR caches).
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Figure 8: Concentration of References (USask): (a) All Files (b) By File
Type

4.5.3 Temporal Locality

Temporal locality refers to the property that an object referenced in the re-
cent past will likely be referenced again in the near future. To measure tem-
poral locality, the Least Recently Used Stack Model (LRUSM) is used [27].
The LRUSM is a stack-based ordering of referenced objects, according to
their recency of reference (i.e., most recently referenced item on top (posi-
tion 1), and the least recently referenced item on the bottom). For each
reference in the request stream, the stack is searched until the requested ob-
ject is found, or the bottom of the stack is reached. If found (i.e., a hit), the
object is removed from its present position in the stack (say, d) and moved
to the top of the stack, pushing the other d —1 items that used to be above it
down one position, as needed. For an item that is not found in the stack (i.e.,
a miss), it is simply added to the top of the stack, pushing all other stack
items down one level. The most important part of the LRUSM is keeping
track of the stack depth d at which each hit occurs. The presence of temporal
locality manifests itself in a large number of hits at or near the top of the
stack.

Figure 11 shows the stack depth referencing frequency for all the data sets
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Figure 9: Concentration of References (CANARIE): (a) All Files (b) By File
Type

up to a stack depth of 100. It is immediately obvious that the USask data
set exhibits more temporal locality than the CANARIE and NLANR data
sets. This is due to the fact that both CANARIE and NLANR proxies are
higher-level caches which receive filtered requests (i.e., requests that lower
level caches could not service), from their clients, which are predominantly
lower level proxies.

We also note that temporal locality at the proxy servers, in general, is
not very high (compared to temporal locality results for Web servers [3]).
This may be due to caching effects elsewhere in the hierarchy, or due to the
document referencing behaviour generated by clients.

4.5.4 “Hot Set” Drift Analysis

A simple analysis was performed to understand how the “hot set” of docu-
ments changes with time for each Web proxy. For each of the data sets, the
most popular 500 documents were found on the inital day of the traces. Then
the most popular 500 documents were found for each of the following days
in the access log. The overlap of the documents in these hot sets for each of
the following days in the trace with respect to the starting day provides a

24



08 Nlanr —— 1 08

06t - mage
7 Application -
Compressed -~

Fraction of References
Fraction of References

0 I I I I 0 I I I
0 02 04 06 08 1 0 02 04 06 08 1

Fraction of Documents Fraction of Documents
(a) (b)

Figure 10: Concentration of References (NLANR): (a) All Files (b) By File
Type

measure of the “drift” in the hot set.

Figure 12 shows the results of the hot set analysis. The USask data set
shows the least drift in the hot set, while the CANARIE data set shows the
most drift in the hot set. The slow decay of the USask hot set shows that some
documents have long term popularity. The fast decay of the CANARIE hot
set suggests that the lower level caches tend to cache the popular documents
effectively. The intermediate behaviour of the NLANR data set implies that
there are some documents whose popularity at the proxy cache is due to the
multiplexed references from various other lower level caches. In other words,
certain documents are popular at many lower level cahes, but not popular
enough to make their way into the lower level proxy cache.

5 Conclusions

This document has reported on workload analysis of Web proxy access logs
from three different sites in a large-scale Web caching hierarchy.
The main observations from our study are:

e HTML and Image files account for 95% of the total requests.
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e Most Web document transfers are small. The mean document transfer
size is 7-15 KB, while the median transfer size is 2-3 KB.

e Transfer size distributions are heavy-tailed.

e Approximately one-fourth of the total requests are one-timers and ap-
proximately 70% of the documents referenced are one-timers.

e The popularity of Web documents does not strictly follow Zipf’s law,
but it does follow a Zipf-like referencing distribution.

e The concentration of requests is higher at lower-level Web proxies than
at higher-level proxies.

e Temporal locality in the document request stream at Web proxy servers
is generally low.

Work is on progress to characterise inter-arrival of document requests,
quantifying temporal locality, and ascertaining the applicability of the Inde-
pendence Reference Model (IRM) [14, 15] to model document references for
Web proxy servers.
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