
Simulation Evaluation of a
Heterogeneous Web Proxy Caching Hierarchy

Mudashiru Busari Carey Williamson
Department of Computer Science

University of Saskatchewan
Email: carey@cs.usask.ca

Abstract

This paper uses trace-driven simulations to evaluate the
performance of different cache management techniques for
multi-level Web proxy caching hierarchies. In particular,
the experiments consider heterogeneous cache replacement
policies within a two-level caching hierarchy, and size-
based partitioning across the levels of a caching hierarchy.
Three different synthetic Web proxy workloads are used in
the study, reflecting complete overlap, partial overlap, and
no overlap in the workloads seen by the child-level prox-
ies. The simulation results demonstrate that heterogeneous
replacement policies and size-based partitioning each offer
modest improvements in caching performance. The sensi-
tivity of the results to the degree of workload overlap is also
discussed.

1. Introduction

Caching proxies have gained widespread popularity on
the Internet [1, 4, 5, 6, 7, 13, 31]. Proxies function as
intermediaries between Web clients (browsers) and Web
servers, accepting client requests and forwarding them to
Web servers only as neccessary. When a requested docu-
ment is returned by a Web server, the proxy server sends the
document to the client and stores a copy of the document in
its local cache. Depending on client request patterns, the
proxy may be able to satisfy future client requests directly
from the cache without contacting the Web servers.

In recent years, multi-level proxy cache configurations
have received increasing research attention [12, 14, 16, 18,
22]. In a hierarchical configuration, proxies at or near the
end-user constitute the lowest level of the hierarchy, often
with sibling-sibling relationships with one another. The
lowest level proxies may have a child-parent relationship
to a higher level proxy, usually a (geographically) regional
proxy. A regional proxy can in turn connect to a higher

level proxy, such as a national proxy [18]. A request that
cannot be satisfied by a proxy node is typically sent to a
nearby sibling or to the parent using an Inter-Cache Proto-
col [14, 21, 23, 28].

Interesting design issues arise with caching hierarchies,
and performance tradeoffs exist. For example, the potential
advantages of reduced server load, reduced network traffic,
and reduced end-user latency may be offset by inter-cache
communication overhead, delays incurred at each level of
the hierarchy, and performance bottlenecks at higher level
proxies [23, 24].

Empirical measurements suggest that Web proxy
caching hierarchies are not that effective [18, 19, 24]. For
example, the measurements reported in [19] for a three-
level caching hierarchy show document hit ratios of 35-40%
for a university-level Web proxy cache, hit ratios of 15-20%
for a national-level Web proxy, and hit ratios of 5-10% for
a root-level NLANR (National Laboratory for Applied Net-
working Research) cache. Thus a caching hierarchy can
suffer “diminishing returns”: the further up the hierarchy
you go, the less likely you are to find the document of in-
terest. In many cases, a request to the originating server is
eventually needed to resolve the sequence of cache misses
incurred.

The diminishing returns phenomenon makes sense intu-
itively, since the lower-level caches filter out many of the
hits. As a result, the workload characteristics seen at higher-
level caches become more “random” in nature. The only
surprising aspect is that the diminishing returns occur de-
spite the fact that higher-level caches are often larger (some-
times significantly larger) than the caches at the lower lev-
els. These observations suggest that caching hierarchies are
not that well-designed. Often, too much focus is placed on
the performance of a proxy cache in isolation, rather than as
part of an overall caching system [27].

Several researchers have suggested ways to improve the
performance of caching hierarchies. Tewari et al. [25] sug-
gested a distributed approach using metadata to track where
copies of files are stored in the hierarchy. A similar tech-



nique is suggested by Povey et al. [22], where only the
lower level caches are responsible for storing documents,
while upper level caches maintain information about the
contents of lower level caches. The collaborative method
proposed by Yu et al. [30] employs a protocol that passes
caching information down the proxy hierarchy for the lower
level proxies to make better caching decisions. The Cache
Array Routing Protocol (CARP) [26] is a form of dis-
tributed caching where multiple proxy servers are config-
ured to appear as a single logical cache to the clients. In the
“summary cache” scheme proposed by Fan et al. [14], each
proxy stores a summary of URLs of documents cached at
every other proxy so that misses can be sent to a proxy with
a copy of the requested document, or otherwise directly to
the Web server.

Our approach is different. As a starting point, we as-
sume the existence of a traditional Web proxy caching hier-
archy, such as that in [18], and then strive to improve its
performance. The work is motivated by the observation
that the workload characteristics differ across the levels of a
caching hierarchy [18], due to filtering effects at lower-level
caches [10, 27]. This observation suggests the use of differ-
ent (i.e., heterogeneous) caching policies at different levels
of a caching hierarchy.

In particular, this paper addresses two research ques-
tions:

� In a multi-level caching hierarchy, can overall caching
performance be improved by using different cache re-
placement policies at different levels of the hierar-
chy (e.g., Least-Recently-Used at the lowest level and
Least-Frequently-Used at the highest level)?

� In a multi-level caching hierarchy, can overall caching
performance be improved by maintaining disjoint doc-
ument sets at each level of the hierarchy (e.g., small
documents at the lowest level, and large documents at
higher levels)?

This work uses trace-driven simulation, and a synthetic
Web proxy workload generator called ProWGen (developed
in previous work [9]) that captures the salient characteristics
of Web proxy workloads (e.g., one-time referencing, Zipf-
like document popularity, heavy-tailed file size distribution,
temporal locality). For simplicity, only a two-level caching
hierarchy is considered, with three types of cache replace-
ment policies: recency-based, frequency-based, and size-
based. Synthetic workloads are used to investigate the per-
formance of different combinations of replacement policies
at different levels of the hierarchy, and then to investigate
size-based document partitioning approaches.

The simulation results show that combining different re-
placement policies at different levels of the hierarchy im-
proves performance. The results also indicate benefits for

size-based partitioning, if small files are kept close to the
clients.

The remainder of this paper is organized as follows. Sec-
tion 2 presents the simulation model and methodology used
in the experiments. Section 3 presents the simulation re-
sults. Finally, Section 4 concludes the paper.

2. Simulation model and methodology

2.1. Simulation model

The simulation experiments model a two-level hierarchi-
cal Web proxy configuration as shown in Figure 1. In the
simulation model, requests from the aggregate workload are
forwarded to the lower level proxies, and misses are for-
warded to the upper level proxy. Misses from the upper
level proxy are forwarded to the (simulated) Web servers.
There are no interactions directly between the two lower-
level proxies, and there are no cache consistency mecha-
nisms in the modeled hierarchy, since the workload is as-
sumed to consist only of static documents, with sizes and
contents that do not change over time.

2.2. Web proxy workload model

A Web proxy workload generation tool called ProW-
Gen [9] is used to synthesize an aggregate client workload,
with workload parameters shown in Table 1. These values
are based on empirically observed workload characteristics
at the lowest level of a Web caching hierarchy [8, 18].

The statistical characteristics of the resulting workload
produced are shown in Table 2. The generated workload
closely matches the desired characteristics from Table 1.
Figure 2 provides a graphical illustration of selected work-
load characteristics, including a Zipf-like document popu-
larity profile (Figure 2(a)), and a heavy-tailed file size dis-
tribution (Figure 2(b) and (c)). A more detailed discussion
of the validation of ProWGen and the workloads that it gen-
erates appears in [8, 9].

The aggregate workload is then split across the two
lower-level proxies to model three different scenarios: com-
plete overlap, partial overlap, and no overlap. Each sce-
nario reflects a different degree of overlap (i.e., common
URLs in the Web document request streams) in the work-
loads of the two lower level proxies.

The complete overlap scenario models the situation
where the two lower-level proxies reside in “similar” orga-
nizations (i.e., the aggregate client sets behave similarly, in
terms of the Web content requested). Thus the cache con-
tents at the two lower level proxies are likely to be statisti-
cally similar, on average. This scenario is modeled by ran-
domly dispatching each request in the workload to one of
the lower-level proxies (equiprobably, at random).
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Figure 1. Simulation model for two-level Web
proxy caching hierarchy

Table 1. Parameter settings for ProWGen

Parameter Value

Requests 10,000,000
Unique documents (% of total requests) 30%
One-timers (% of unique documents) 70%
Correlation (file size and popularity) Zero
Zipf Slope 0.75
Mean of the lognormal distribution ( � ) 7,000
StdDev of lognormal distribution ( � ) 11,000
Pareto tail index 1.3
Beginning of the tail ( � ) in bytes 10,000
Percentage of documents in the tail 20%
LRU Stack Model for temporal locality Dynamic
LRU Stack Size for temporal locality 1,000

The no overlap scenario models Web proxies with en-
tirely different document request streams (i.e., completely
different client behaviours). This scenario is modeled by as-
signing requests for odd-numbered documents to one lower-
level proxy, and requests for even-numbered documents to
the other lower-level proxy.

The partial overlap scenario represents an intermediate
situation between the two extremes already discussed. In
particular, we examined a scenario where there is 50% over-
lap in the workload of the two lower level proxies. This
scenario is modeled by randomly choosing half of the doc-
uments to be shared (as in complete overlap), with the re-
maining documents split between the two child proxies on
an odd-even basis.

Table 2. Characteristics of synthetic workload

Item Value

Requests 9,749,703
Unique documents 3,000,000
One-timers 2,099,045
Total bytes of unique documents (GB) 30
Total transferred content bytes (GB) 89
Smallest file size (bytes) 9
Largest file size (bytes) 51,600,679
Mean file size (bytes) 10,850
Median file size (bytes) 3,815
Correlation (file size and popularity) -0.004982
Zipf Slope -0.768985
Pareto tail index -1.300494
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2.3. Experimental design

The experimental methodology considers two main fac-
tors: cache size and cache replacement policy. Cache sizes
range from 1 MB to 32 GB in the experiments, with all three
caches (parent and two children) identical in size.

The replacement policy for the cache determines which
document(s) to remove from the cache when more space
is needed to store a new incoming document. Three cache
replacement policies are considered: Least Recently Used
(LRU), Least Frequently Used with Aging (LFU-Aging),
and Greedy-Dual Size (GD-Size). In simple terms, LRU
tries to keep recently active documents in the cache, LFU
tries to keep popular documents in the cache (with ag-
ing to reduce the relative popularity of old popular docu-
ments), and GD-Size tries to keep small documents in the
cache. These policies represent a broad range of candi-
date replacement policies (i.e., recency-based, frequency-
based, and size-based), and are well-documented in the lit-
erature [2, 3, 11].

2.4. Performance metrics

Two performance metrics are used to evaluate cache per-
formance: document hit ratio and byte hit ratio. The docu-
ment hit ratio is the number of requests satisfied by a partic-
ular proxy’s cache divided by the total number of requests
seen by the proxy. The byte hit ratio is the volume of data
(in bytes) satisfied by the proxy’s cache divided by the total
volume of data requested from the proxy.

Both metrics are required since Web documents can dif-
fer dramatically in size. The document hit ratio indicates
the fraction of requests that are “offloaded” from the ori-
gin Web server by the presence of the proxy, while the byte
hit ratio indicates the reduction in network traffic volume to
and from the origin server.

A cache replacement policy might be designed to opti-
mize one metric at the expense of the other. For example,
caching only small documents might produce a high docu-
ment hit ratio (since many documents fit in the cache), but
a low byte hit ratio (since large documents must still be ob-
tained from the origin Web server).

In general, the higher the document hit ratio and byte
hit ratio are, the better a replacement policy is. Further-
more, the closer the “hit” is to the client, the lower is the
(expected) document retrieval latency.

3. Simulation results

3.1. Heterogeneous replacement policies

The experiments in this section consider different re-
placement policies (LRU, LFU-Aging, and GD-Size) at the

child and parent caches in the caching hierarchy.
Simulation results for the complete overlap scenario are

shown in Figure 3. In this figure, the leftmost column of
graphs shows document hit ratio results, while the rightmost
column of graphs shows the corresponding results for byte
hit ratios. Figures 3(a) and (b) show the results for the LRU
policy at the child level, while Figures 3(c) and (d) show the
results for LFU-Aging at the child caches, and Figures 3(e)
and (f) show the results for GD-Size at the child caches.
On each graph, the uppermost line shows the results for the
child1 cache, and the remaining three lines show the results
for the parent cache, for each replacement policy consid-
ered.

In general, the child proxy caches have much higher hit
ratios than the parent proxy. This observation is not sur-
prising, given that the parent proxy only sees the requests
that miss at the lower level caches (i.e, the request stream is
filtered by the lower level proxies) [27, 29].

The graphs in Figure 3 illustrate some interesting differ-
ences in marginal utility (i.e., additional incremental value
gained) when more cache space is added at either the child
level or the parent level. This behaviour can be seen by not-
ing the differences in the slopes of the hit ratio plots for the
parent level and child level cache, as the cache sizes are in-
creased (exponentially) from left to right. At some points,
increasing the size of the child-level cache produces a sharp
increase in hit ratio; at other points the graph is fairly flat.
Similar observations apply for the parent level cache.

In some cases, the hit ratio results for the parent level
cache drop as the cache size is increased. This non-
monotonic behaviour happens because the child cache is
also being increased in size, absorbing more hits, and re-
ducing the number of requests to the parent level cache.
In other words, the relative balance between “cold misses”
(first request for a document) and “capacity misses” (subse-
quent request for a document that used to be in the cache,
but has now been removed from the cache) changes as the
cache sizes are scaled. This impact may be different at each
level of the hierarchy.

The exact shape of these curves depends, of course, on
the nature of the workload: the temporal locality property,
the Zipf-like referencing behaviour, and the size (in bytes)
of the “document working set”, relative to the cache size
used. These marginal utility trends also depend on the cache
replacement policy used, since the replacement policy at
one level changes the workload characteristics for the next
level of cache.

Overall, Figure 3 shows that the GD-Size policy at the
parent cache provides a significantly better document hit
ratio than either LRU or LFU-Aging at the parent cache.
This document hit ratio advantage is a factor of two or more

1Since the hit ratios are similar for each child cache, only the results
for one child cache are shown, for clarity.
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for most of the cache sizes considered, when the child level
cache uses LRU (Figure 3(a)) or LFU-Aging (Figure 3(c)).
Furthermore, this advantage does not come at the expense
of the byte hit ratio (see Figure 3(b) and (d)), as is often the
case with GD-Size [3]. The performance advantage of GD-
Size at the upper level is less pronounced, but still present,
when the child proxies use GD-Size (see Figure 3(e)). How-
ever, the document hit ratio advantage is compromised by a
lower byte hit ratio (Figure 3(f)).

In summary, the potential advantage of heterogeneous
caching policies is most evident in Figure 3(a). For a given
cache size, the effectiveness (hit ratio) of a second-level
cache can be doubled or tripled by using a size-based re-
placement policy that is different from that used at the first-
level cache (LRU, for example).

3.2. Sensitivity of results to workload overlap

This section explores the sensitivity of the previous re-
sults to the degree of workload overlap between the two
child-level proxies in Figure 1. The previous section as-
sumed complete overlap in the workload: clients at either
proxy are equally likely to access any given page in the Web
document space. This section considers:

� a partial overlap scenario, in which 50% of the Web
document space is common to all clients (accessed
from any child proxy), and 50% is of regional inter-
est only (accessed from only one child proxy)

� a no overlap scenario, in which the two child proxies
handle reqeusts for completely disjoint document sets

Results for the partial overlap workload scenario are
not shown here, for space reasons, but are available in [8].
These results follow the same trend as in the complete over-
lap case, except for a slight improvement in hit ratios for
the child cache, and a noticeable drop in the hit ratios of the
parent cache.

The explanation for this behaviour is the reduced over-
lap in the workloads of the two lower level proxies. That is,
the 50% overlap in the workloads means that the left-most
child proxy exclusively sees requests to 25% of the aggre-
gate document set, the right-most child proxy exclusively
sees requests to a different 25% of the aggregate document
set, and the remaining 50% of the documents are (typically)
seen by both proxies.

The partial overlap workload assumption has two impor-
tant consequences. First, each child proxy sees only a subset
(75%) of the total document space, which means fewer doc-
uments contending for cache space. Second, references to a
particular document, as generated by ProWGen’s document
popularity and temporal locality models [8, 9, 20], may now
be concentrated on a single child proxy, rather than ran-
domly split across the two proxies. Again, this translates

into better caching performance at the child proxies. On
the other hand, the reduced overlap in the workload implies
worse caching performance at the parent cache: the proba-
bility that a file requested by one child (and pulled into the
parent cache from the origin server prior to delivering to
the child) will also be requested later by the other child is
about 50%, instead of almost 100% (ignoring one-timers) in
the complete overlap scenario. Furthermore, repeated hits at
the parent cache for such a document can only occur if there
are repeated capacity misses at the child level.

The results for the no overlap scenario (not shown here)
show the same trend: further improvement in the perfor-
mance of the children, and a further decrease in the per-
formance of the parent cache [8]. This trend is consistent,
regardless of the replacement policies used.

For the no overlap scenario, the only role for the par-
ent cache is to serve capacity misses from the lower level
caches. In such a case, the GD-Size policy at the parent
cache has the best performance, since it will store the most
documents. The results show that the parent cache has its
highest hit ratio when the size of the child cache is about
1-2 GB: about 10% of the total size of the Web content
accessed. As the child caches grow larger, fewer capac-
ity misses occur, and the relative benefit of the parent cache
diminishes.

In summary, the effectiveness of caching hierarchies di-
minishes when there is little overlap in the Web work-
loads seen at the lowest-level proxies. For the scenarios
and workloads studied here, the LRU or LFU-Aging poli-
cies at the lower level combined with GD-Size at the up-
per level always provide improvement in performance over
an LRU-LRU combination. The GD-Size policy often pro-
vides twice the document hit ratio of other policies at the
parent cache, without any penalty in byte hit ratio. Using
GD-Size at both levels improves the document hit ratio, but
sacrifices the byte hit ratio.

3.3. Size-based partitioning

The next caching strategy evaluated is size-based parti-
tioning. That is, based on a specified size threshold

�
, the

lower level caches are allowed to store only files smaller
than

�
, while the upper level cache is allowed to store only

files of size
�

or larger. This simple policy provides a nat-
ural partitioning of the document space, using a minimal
amount of information, which is directly available to Web
servers and proxies in the HTTP response header.

For completeness, the converse of this policy is also con-
sidered, namely large files at the lower level, and small files
at the upper level. With either of these approaches, dis-
tinct documents are maintained at each level of the hierar-
chy. Some replication of documents in multiple caches at
the child level of the hierarchy is still possible.



The first design issue for size-based partitioning is the
choice of the threshold size

�
. To understand the impact of

different threshold sizes, three values are considered: 5,000
bytes, 10,000 bytes, and 100,000 bytes. For each chosen
threshold size, heterogeneous replacement policies are stud-
ied. For space reasons, only the results for the partial over-
lap workload scenario and the LRU replacement policy at
the lower level caches are presented here. Complete results
are available in [8].

Figure 4 shows the results for a threshold size of 5,000
bytes. The top two graphs (Figures 4(a) and (b)) show the
results when small files are kept at the lower level of the
hierarchy, and large files at the upper level. The bottom two
graphs (Figures 4(c) and (d)) are for the converse policy.

Figures 4(a) and (b) show that with size-based partition-
ing, the child caches have higher hit ratios than the parent
cache (Figure 4(a)), but the parent cache achieves a much
higher byte hit ratio (Figure 4(b)). The result for the par-
ent cache is particularly interesting, in that it is able to
achieve significant document hit ratios as well as byte hit
ratios. This behaviour can be attributed to the high pro-
portion of small files in the workload: about 60% of the
requests are for files below this threshold size. The penalty
for not keeping the large files (files

�
5,000 bytes) in the

lower level cache is the lower byte hit ratios, as observed
in Figure 4(b). The significant hit ratios and byte hit ratios
achieved by the parent cache indicate that many references
occur to files stored in its cache, and these files are respon-
sible for a significant fraction of the total volume of data
transferred.

Figure 4(a) shows that the GD-Size policy still provides
the best document hit ratio at the parent cache, among
the policies considered. However, its performance advan-
tage over LRU and LFU-Aging has diminished significantly
from that in Figure 3(a). Furthermore, it has a slight disad-
vantage in terms of byte hit ratio (Figure 4(b)) at large cache
sizes.

The flattening of the hit ratio plots for the child caches
beyond a cache size of 2 GB indicates a form of “cache
ineffectiveness” beyond this point. That is, while increas-
ing the cache size beyond 2 GB can improve the perfor-
mance of the parent cache, it has no further benefit for the
child caches. The reason for this is that the child cache
is already large enough to accommodate all requested files
smaller than 5,000 bytes, without any replacements required
for the workloads generated. The hit ratios thus stabilize for
this “infinite” cache size.

The performance results for the converse policy (i.e.,
keeping large files at the lower level and small files at the
upper level) are shown in Figures 4(c) and (d). In these
graphs, the parent cache shows consistently better docu-
ment hit ratios than the child caches (Figure 4(c)). This
is not surprising: the child proxies are not allowed to cache

files smaller than 5,000 bytes, and these files account for
a large fraction of the requests. While the observed doc-
ument hit ratios at the children are low, the byte hit ratios
(Figure 4(d)) are better than for the parent cache.

Figure 4(d) also shows that with the converse size-based
partitioning approach, there are no noticable differences in
byte hit ratio performance for the three different replace-
ment policies considered at the parent cache (which is not
allowed to cache large files). In other words, the perfor-
mance impact of the size-based threshold scheme between
levels of the proxy hierarchy is so dominant that the pre-
cise replacement policy used at the upper level is irrelevant.
LRU, LFU-Aging, and GD-Size are equally effective (or in-
effective) at the parent cache.

The results for size-based partitioning with a threshold
size of 10,000 bytes (not shown here) show a significant
improvement in performance for the lower level proxies,
while the performance of the parent cache decreases [8].
This trend occurs because the percentage of files that can
be cached at the lower level of the hierarchy increases: ap-
proximately 80% of the requests are for files smaller than
10,000 bytes. The byte hit ratio for the client caches shifts
up noticeably. However, the drop in byte hit ratio for the
parent cache is modest compared to the drop in document
hit ratio because the large files cached at the upper level still
contribute a significant fraction of the total bytes.

The results for the reversed threshold policy (i.e., keep-
ing large files at the lower level, and files smaller than
10,000 bytes at the upper level) show that there is an in-
crease in hit ratios for the parent cache, while the hit ratios
for the child proxies decrease [8]. By keeping only large
files in the lower level proxies, the byte hit ratio is still high,
but the document hit ratio is low because of fewer references
to the large files. The GD-Size policy provides the best doc-
ument hit ratio at the upper level, without compromising the
byte hit ratio. Again, the byte hit ratio results for the par-
ent level cache are largely independent of the replacement
policy used.

Increasing the size threshold further (
��� �������	�
���

bytes, not shown here) continues the same trends indicated
previously [8]. When small files are kept at the lower level,
the document hit ratio at the parent drops drastically, though
the byte hit ratio at the parent cache is still significant. Re-
versing the size threshold restriction improves hit ratios at
the parent, but at the expense of the lower level proxies.

3.4. Summary

The foregoing experiments have illustrated the perfor-
mance tradeoffs, in terms of document hit ratio and byte hit
ratio, at both child-level and parent-level caches in a two-
level Web proxy caching hierarchy. Several novel cache
management strategies were explored, including heteroge-
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Figure 4. Simulation results for size-based partitioning (Threshold = 5,000 Bytes)



neous cache replacement policies, and the partitioning of
Web document content across the levels of the caching hi-
erarchy based on document size.

The simulation results suggest performance advantages
for the use of heterogenous replacement policies across the
levels of a caching hierarchy. Determining which combi-
nation of policies is “best”, in terms of user-perceived re-
sponse time, requires in-depth consideration of network ca-
pacity, network latencies, server load, HTTP, and TCP-level
effects [15, 17]. Such a rigourous evaluation is beyond the
scope of the current paper. Further discussion of this is-
sue, and an approximate cost-benefit analysis of selected
caching strategies, appears in [8].

4. Conclusions

This work used synthetic Web proxy workloads and
trace-driven simulation to evaluate several different ap-
proaches to cache management for a two-level Web proxy
caching hierarchy. In particular, the experiments consider
heterogeneous replacement policies within the hierarchy,
and size-based partitioning of documents across the levels
of the hierarchy.

Simulation results show that combining different re-
placement policies at different levels of the hierarchy can
improve the performance of a caching hierarchy. The best
performance was typically provided by the use of LRU or
LFU-Aging at the lower level, combined with GD-Size at
the upper level. Using GD-Size at both levels provides a
better document hit ratio, but sacrifices the byte hit ratio.
For file partitioning, the simulation experiments show that
size-based partitioning (with small files at the lower level of
the hierarchy) can improve performance. However, the per-
formance improvements are sensitive to the size threshold
chosen, and to the degree of overlap in the workloads of the
child-level proxies.

Future work will study network-level effects in Web
proxy caching hierarchies. We also plan to extend our proxy
workload generation tool to model document modifications,
and extend our Web caching simulator to study cache con-
sistency issues.
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