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Abstract. Real-time monitoring applications for sensor networks can
require high sampling rates and low-delay forwarding of the sensor val-
ues to a sink node at which the data is to be further processed. High data
collection rates can be efficiently supported by aggregating data as it is
being forwarded to the sink. Since aggregation requires that some sensor
data be delayed at intermediate nodes, while waiting for other data to
be received, a key issue in the context of real-time monitoring is how
to achieve effective aggregation with minimal forwarding delay. Previous
work has advocated synchronous aggregation, in which a node’s position
in the aggregation tree determines when it transmits to its parent. This
paper shows that asynchronous aggregation, in which the time of each
node’s transmission is determined adaptively based on its local history
of past packet receptions from its children, outperforms synchronous ag-
gregation by providing lower delay for a given end-to-end loss rate.

Key words: sensor networks, aggregation protocols, real-time monitor-
ing, performance evaluation

1 Introduction

Data aggregation is an important technique for reducing sensor network traffic
and energy consumption [1–6]. Various aggregation protocols have been proposed
for different applications, such as monitoring and periodic data collection [7–9],
dynamic event detection[10], and target tracking[11]. This paper considers data
aggregation in the context of sensor networks supporting real-time monitoring,
specifically real-time monitoring systems where sensor data is sampled periodi-

cally and forwarded to a single sink node. A high sampling rate and a low delay
in forwarding data to the sink are required in such systems so as to maintain a
current “view” of the environment being monitored.

Aggregation protocols for sensor networks with periodic traffic transmit sen-
sor values over a tree or cluster topology, rooted at the sink [12, 7–9]. Previous
work has advocated synchronous aggregation protocols, in which a sequence of
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time intervals are statically defined for each round (collection of one set of sen-
sor values), with each interval dedicated to transmissions from particular sensor
nodes. TAG is an example of an aggregation service using synchronous aggrega-
tion [7]. In TAG, each node, beginning with the sink node, informs its children
in the aggregation tree of the interval during which it will be receiving data. A
child’s transmission interval is fixed as the receiving interval of its parent, and
the child’s own receiving interval is chosen as the immediately preceding inter-
val. Thus, all of the sensors at the i’th level of the aggregation tree, 1 ≤ i ≤ H ,
share transmission interval H − i, where H denotes the height of the tree and
where the first interval in a round is numbered as interval zero. All intervals are
of identical duration. A potential disadvantage of synchronous aggregation is
increased delay, since the interval duration must be conservatively chosen so as
to provide a high probability that each node will be able to successfully transmit
its data to its parent prior to the end of its transmission interval. A second po-
tential disadvantage is that the constraints imposed on node transmission times
may result in suboptimal use of spatial multiplexing.

Solis and Obraczka have described and evaluated two asynchronous aggre-
gation protocols, called periodic simple and periodic per-hop aggregation [8]. In
periodic simple aggregation, each node waits for a period of time equal to the
round duration, aggregating all of the data received from its children over that
period, before transmitting to its parent. This approach does not provide low
delay; in fact, data generated during one round may not be received at the sink
for a number of rounds equal to the height H of the aggregation tree. Periodic
per-hop aggregation is similar to periodic simple aggregation in that nodes may
wait for a period of time equal to the round duration before transmitting to their
parent, but each node may transmit earlier if data is received and aggregated
from all children prior to the end of the round. Again, this approach may result
in long delays, with the data generated in one round not being received at the
sink until some subsequent round. These simple asynchronous protocols were
found to yield poorer performance than synchronous aggregation.

In this paper, improved asynchronous aggregation protocols are designed
through use of more aggressive methods for determining when a node should
transmit to its parent. If a node receives data from all of its children prior to
sending its own data to its parent, in a given round, all of this data is aggregated
and sent to the parent at that point. A node will also transmit to its parent if the
time it has been waiting for its children exceeds an adaptively determined time-
out value. In this case, any “late arrivals” from its children are simply dropped.
The choice of timeout value is critical, since a long timeout value may cause ex-
cessive delay, while substantial data loss may be incurred if the timeout value is
too short. In the proposed protocols, timeout values are adaptively determined
based on local history of past packet receptions.

The performance of the new asynchronous protocols, as well as that of syn-
chronous aggregation, is evaluated using simulation. Asynchronous aggregation
is found to outperform synchronous aggregation. Performance comparisons of
the asynchronous protocols show that adaptation of timeout values based on



a weighted average of history information from multiple rounds is preferable
to adaptation based only on the immediately previous round. It is also found
that randomizing the transmission times of leaf nodes to avoid congestion at
the beginning of each round, and the duration of the randomization interval,
have a great impact on delay and end-to-end loss rate. A method is proposed
for adaptively determining the duration of the randomization interval.

The remainder of the paper is organized as follows. The new asynchronous
aggregation protocols are presented in Section 2. Section 3 presents simulation
results evaluating the performance of the new asynchronous protocols and of
synchronous aggregation. Section 4 concludes the paper.

2 Asynchronous Aggregation

The main goal is to design asynchronous aggregation protocols that maximize
aggregation efficiency by ensuring that as much aggregation occurs as possible,
while still providing timely arrival of aggregation results at the sink. Three asyn-
chronous protocols are proposed in the following subsections, beginning with the
simplest of these protocols, and then making enhancements that yield improved
performance as shown by our performance results in Section 3.

The proposed protocols run above the network layer. Aggregation is per-
formed as data packets are forwarded to the sink. The union of the routes to
the sink forms an aggregation tree with the sink as its root node. For simplicity,
it is assumed that a node can aggregate data from its subtree, together with its
own data, into a fixed-size packet.

2.1 Basic Asynchronous Aggregation Protocol

In our basic asynchronous protocol, each non-leaf node sets a timeout in each
round, establishing the maximum time it will wait to receive data from its chil-
dren. The timeout value is determined adaptively, based on the timings of packet
receptions from its children in the immediately preceding round. The node trans-
mits its data packet for this round to its parent (aggregating its own data with
whatever it has received from its children) either when it hears from all of its
children, or when the timeout expires.

For simplicity, it is assumed that all nodes agree on the same base time T0

defining the beginning of the first round. (In Section 3.5, however, it is shown
that the proposed protocols are tolerant of substantial variability in the values
of T0 used at different nodes.) To avoid concurrent transmissions, each node i
(other than the sink node) picks a random value ri between 0 and R at T0, where
R is a protocol parameter. At time T0 + ri, node i sends a packet containing its
sensor data for the first round to its parent.

At each subsequent round j, each node i that is a leaf in the aggregation tree
sends a packet containing its sensor data at time T0 + ri + (j − 1) × t, where t
is the time between successive sensor readings at each node (i.e., the inverse of
the sensor sampling rate). Each non-leaf node operates as follows. Let Lj

i denote



the time by which non-leaf node i receives the last packet for round j. Let TOj

i

denote the timeout for round j at node i. Node i sets its timeout for the second
round to TO2

i = L1
i + t.

For round j + 1, j + 1 > 2, the timeout of node i is updated as follows:

1. If node i received data packets for round j from all of its children before
TOj

i , it sets the timeout for round j + 1 to TOj+1

i = Lj

i + t + e (since a
packet from each child should arrive approximately once every time t). The
protocol parameter e allows for some variance in the times at which packets
are successfully transmitted.

2. If the timer for round j went off before node i received packets from all of its
children, node i sets the timeout for round j+1 to TOj+1

i = TOj

i +t. If node

i receives one or more packets for round j after time TOj

i (“late arrivals”),

it updates TOj+1

i to Lj

i + t. Such late arrivals have been received too late to
be aggregated in node i’s round j transmission to its parent, and are simply
dropped, since only up-to-date data is of interest in real-time monitoring.

The choice of the protocol parameter e impacts the timeliness of the arrivals
of data packets at the sink, and the number of late arrivals at the intermediate
nodes in the aggregation tree. If e is set too small, timeouts may be set too
aggressively, and data packets that experience normal variability in transmission
times may arrive after the expiry of the respective timeout and be dropped.
When e is set too large, latency may build up as nodes wait for data packets
that will never be received owing to transmission failures. Our experiments show,
however, that e can be set to a fixed value that yields good performance over
a wide range of conditions. In contrast, we find that tuning the parameter R
according to the particular network scenario can yield substantial improvements
in performance. A method is proposed in Section 2.3 to adaptively determine
the value for R.

The above protocol supports adaptivity to dynamics in the topology of the
aggregation tree, as long as nodes have some mechanism for dynamically al-
tering when necessary their set of child nodes and their parent. The timing of
transmissions can be quickly adjusted according to the above rules.

2.2 Asynchronous Aggregation Protocol with EWMA

While the basic protocol is straightforward, it may cause a “timeout chain”
phenomenon under certain circumstances. Suppose, for example, that a node 1
has only one child, node 2, and only one grandchild, node 3. Suppose that node
2 receives the packet for round j from node 3 at time Lj

2
, and sets its timeout

for round j + 1 to Lj
2 + t + e. Suppose further that the aggregate sent by node 2

arrives at node 1 after a transmission delay d, causing node 1 to set its timeout
for round j + 1 to Lj

2
+ d + t + e. If the round j + 1 packet from node 3 is not

successfully received by node 2, node 2 will time out and send its packet for
round j +1 at time Lj

2 + t+ e. If the transmission delay of this packet exceeds d,
node 1 will also time out, causing the packet to be a late arrival and be dropped.



The main reason for the above phenomenon is that the timeout for the next
round at a node is set too aggressively when packets are received from all children
prior to timeout expiry. In the second asynchronous protocol that we propose, an
Exponentially Weighted Moving Average (EWMA) strategy is used to adjust the
timeout value in this case. Specifically, if a node i heard from all of its children
before timeout in round j, it sets its timeout for round j + 1 to TOj+1

i =

(1− δ)× (TOj

i + t)+ δ× (Lj

i + t+ e)]. The parameter δ controls how quickly the
protocol reacts to changes in the network.

The above adjustment method bears some similarity to the Additive Increase
Multiplicative Decrease (AIMD) algorithm in TCP. Both react slowly to “good
news” while aggressively to “bad news”. In our case, the timeout for the next
round is adjusted cautiously when packets are received from all children prior to
timeout expiry, but more aggressively when there is a late arrival.

2.3 Adaptive Asynchronous Aggregation Protocol

It is important to randomize the transmission times of leaf nodes to avoid con-
gestion at the beginning of each round. The parameter R controls the duration
of the randomization interval. Choosing an appropriate value of R requires bal-
ancing the risk of congestion (if R is set too small) versus increased delay (if R is
set too large). The best value is network dependent. In our third asynchronous
aggregation protocol, R is determined adaptively.

Based on the observation that the “asynchronous with EWMA” protocol
achieves good performance when the ratio of R to the average data collection

delay D is within a certain range, the adaptive protocol works by calculating the
average data collection delay at the sink and adjusting R when the ratio is out
of range. The data collection delay for a round is defined as the maximum delay
from when a sensor value is captured, until the corresponding aggregate arrives at
the sink. Although sensor values may be captured at somewhat different times
at the various nodes, in our simulation implementation the capture times are
approximated for each node and round j as T0 + (j − 1) × t.

The average data collection delay is calculated as D = αD + (1 − α)D∗,
where D∗ is the latest measurement for the data collection delay and α is a
parameter determining the weight given to the previous value of the average.
Suppose the desired range of R/D is [β − ∆, β + ∆]. When the sink observes
that R/D is out of range, it updates R as follows. If R/D < β−∆, R is updated
to R = D × (β + ∆). If R/D > β + ∆, R is updated to R = D × (β − ∆). With
suitable parameter value selections, changes to R with this protocol would be
relatively rare, and we do not model any particular technique for communicating
changes in R from the sink to the other network nodes.



3 Comparative Evaluation

3.1 Synchronous Aggregation

The synchronous aggregation protocol used here for comparison uses a similar
synchronization structure as that in TAG [7] and the cascading timeout protocol
[8]. In particular, it is assumed that each node i knows its hop count to the sink,
hi, and accordingly chooses its transmission interval within each round. Let I
be the duration of the interval. For each round j, node i picks a random value
rj

i between 0 and λ × I, 0 ≤ λ ≤ 1, aggregates the data it has received for this

round and sends out its packet at T0+t×(j−1)+(H−hi)×I +rj

i . Randomizing
transmissions over λ × I yields better performance than when all nodes at the
same tree level attempt to transmit at the same time. Parameter λ is set to
0.8 in all experiments. Alternative values were tried, but did not yield better
performance.

The duration of the interval is the decisive performance factor once the net-
work configuration is fixed. In the performance evaluation experiments, different
interval durations are used to explore the best achievable performance.

3.2 Goals, Metrics, and Methodology

The performance of the asynchronous protocols and the synchronous protocol is
evaluated through ns2 simulation. The primary metrics are the end-to-end loss

rate, equal to the ratio of the number of samples not included in the aggregates
arriving at the sink to the total number of samples the nodes generate, and the
maximum data age, which measures how old the data at the sink can be by the
time the next samples arrive. The maximum data age is approximated by t plus
the average data collection delay. An additional metric for which some results
are presented is the average number of MAC layer data packet transmissions per
round, which may yield insight into relative energy usage.

Different sensor networks are generated by randomly scattering nodes in
square areas with different sizes. The sink is located in the center of the network
unless otherwise stated, and the aggregation tree is constructed as a shortest
path tree. The physical layer packet loss rate is specified as a simulation input
parameter. The uniform random error model is used for all experiments except
those in which the two-state Gilbert error model is used to simulate channel
errors (Section 3.5).

An 802.11 MAC layer is simulated, without RTS/CTS [13], with a transmis-
sion range of 40 meters and rate of 2Mbps, and a fixed packet size of 52 bytes.
A data packet is retransmitted up to three times before being discarded if an
ACK is not received.

3.3 Parameter Analysis

While the asynchronous protocols have more protocol parameters than the syn-
chronous protocol, experimental results show that e and δ can be easily fixed



at 0.1 second and 0.05 respectively for all network settings. For adaptive aggre-
gation, α, β, and ∆ are fixed at 0.875, 0.7, and 0.15 respectively. Fig. 1 shows
the impact of e on end-to-end loss rate and maximum data age. Fixing e at 0.1
second yields good performance for different physical layer loss rates. Experi-
ments are also conducted with different sensor networks and the results show
that good performance is achieved for all sensor networks when e is 0.1 second.
Similar results are obtained showing that the chosen values of the other parame-
ters (δ, α, β, and ∆) yield good performance across all of the simulated network
configurations. Figures showing the impact of these parameters are omitted.
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Fig. 1. Impact of Parameter e (160 nodes, 250m × 250m, t = 0.5 sec., R = 0.3 sec.)

The performance of the synchronous protocol is very sensitive to the choice
of the duration of the interval. Experimental results show that link quality and
aggregation tree structure have a great impact on the choice of I. In practice,
it may be difficult to set this parameter in a manner yielding consistently good
performance.

3.4 Principal Performance Comparison

Fig. 2 shows the performance of the aggregation protocols at three different sam-
pling rates. Each point for basic asynchronous and asynchronous with EWMA
is achieved at a specific R. For t = 0.25, R ∈ [0, 0.1, 0.2, 0.25]. For t = 0.5 and
0.75, R ∈ [0, 0.1, 0.2, 0.3, 0.4, 0.5] and [0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.75] respec-
tively. Similarly, each point for the synchronous protocol is achieved at a specific
I. Two different values, 0 and t, are used as the initial value for R in adaptive
asynchronous. For all three sampling rates, asynchronous aggregation achieves
lower maximum data age than synchronous aggregation for a given end-to-end
loss rate.

The performance of basic asynchronous and asynchronous with EWMA is
very close when t is 0.5 and 0.75 second. Fig. 2 shows that both protocols get
end-to-end loss rate close to 1% at similar maximum data age. At such a low



end-to-end loss rate, almost all packet transmissions are triggered when a parent
hears from all children. The timeout strategy doesn’t have much impact. When
t is 0.25 second, the end-to-end loss rate gets higher and the difference between
the two protocols becomes bigger as more packet transmissions are triggered by
timeout.

Fig. 3 shows the performance of the considered protocols with alternative
sink placement. The same sensor network as for Fig. 2 is used, but with the sink
at the corner. Fig. 3 (compare with Fig. 2) shows that the maximum data age
of the synchronous protocol substantially increases when the sink is located at
the corner while that of the asynchronous protocols stays around the same. A
close look at the tree structure shows that the aggregation tree with the sink at
the corner is more than twice as long as the one with the sink in the center, but
the maximum number of nodes at the same tree level is quite similar in both
cases. Thus, for synchronous aggregation, a similar interval duration is required
in both cases, but twice as many intervals are required when the sink is at the
corner.

Another observation from Fig. 2 and Fig. 3 is that with the same 0.5 and
0.75 second sampling periods, asynchronous with EWMA performs much better
than basic asynchronous with the sink at the corner. The reason for the differ-
ence can be traced back to the tree structure as well. When the sink is located
at the corner, the sink only has four children and only one of these children
has three children. Moreover, only one of these three grandchildren of the sink
has its own children. The performance of basic asynchronous is very susceptible
to the “timeout chain” phenomenon mentioned in Section 2.2 with such a tree
structure. The number of late arrivals now differs enough to make a more signif-
icant difference in the end-to-end loss rate. The relative difference between basic
asynchronous and asynchronous with EWMA, however, doesn’t vary much with
different sink placement when t is 0.25 second. This is because packet losses due
to congestion now play an important role in the network. The loss caused by the
defects of basic asynchronous is less dominant.

Fig. 4 shows the average number of MAC layer data packet transmission per
round of the considered protocols with 10% and 30% physical layer loss rate.
Fig. 4 shows that the performance improvements shown in Fig. 2 and Fig. 3
are achieved without impact on the number of MAC layer packet transmissions.
The number of MAC layer data packet transmissions is very similar with all of
the considered protocols, and in fact even slightly better with the asynchronous
protocols when the end-to-end loss rate is low.

3.5 Other Factors

Fig. 5 shows that the maximum data age and the end-to-end loss rate of both
synchronous and asynchronous aggregation get worse as the physical loss rate
increases. Asynchronous aggregation outperforms synchronous aggregation for
different physical layer loss rates.

When the number of nodes is fixed, the performance of the asynchronous pro-
tocols is not very sensitive to the size of the area. For the synchronous protocol,
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the average data collection delay increases as the tree gets longer and skinnier
with a lower density. The maximum data age increases accordingly. As shown
in Fig. 6, the performance improvement asynchronous aggregation achieves over
synchronous aggregation increases as the size of the area increases.
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Fig. 6. Impact of Size of Area (160 nodes, 20% physical layer loss rate, t = 0.5 sec.)

When the size of the area is fixed, the maximum data age for all of the
considered protocols increases as the number of nodes increases. As seen in Fig.
7, the asynchronous protocols outperform the synchronous protocol for different
numbers of nodes.
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Fig. 7. Impact of Number of Nodes (250m × 250m, 20% physical layer loss rate, t =
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For both synchronous and asynchronous aggregation, it was assumed that
there is a common base time T0 that defines the beginning of the first period at
all sensor nodes. Here this assumption is relaxed by assuming that there is some
variable clock shift away from this common base time, so that different nodes
consider the first period to begin at somewhat different times. Fig. 8 (compare



with Fig. 1(b)) shows that the asynchronous protocols are much more tolerant
of clock shift than the synchronous protocol.

Fig. 9 considers the impact of a more bursty physical layer packet loss process
on the relative performance of the aggregation protocols. The two-state Gilbert
error model is used, with a “good” state in which there is no physical layer
packet loss, and a “bad” state in which there is a 40% physical layer packet
loss rate. When in each state, after a time duration of 5 seconds on average,
a transit decision is made with 20% probability of moving to the other state.
Each link independently transits between the two states. As seen in the figure,
the relative performance of the various protocols is qualitatively consistent with
that observed in the earlier experiments. Similar results have been obtained with
other settings of the Gilbert error model parameters.
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4 Conclusions

This paper presents three asynchronous protocols and compares them against
each other and against synchronous aggregation for the context of real-time mon-
itoring systems. Simulation results show that asynchronous aggregation outper-
forms synchronous aggregation in its ability to keep data “current” while achiev-
ing a low end-to-end loss rate. Results also show that the per-node transmission
adaptation strategy is crucial in asynchronous aggregation.
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