
Hybrid vs. Monolithic OS Kernels: A Benchmark Comparison

Dylan Griffiths and Dwight Makaroff
University of Saskatchewan

Saskatoon, Saskatchewan, S7N 5C9
Canada

Abstract

Operating Systems are huge, complex pieces
of software that are difficult to design and
maintain in both security and functionality.
Microkernel-based operating system designs re-
duce implementation complexity and increase
code modularity, but have had serious perfor-
mance drawbacks. The increase in the speed
of both processing and memory access has led
some to reconsider the relative advantages and
disadvantages in microkernel design [5].

In this paper, we investigate the performance
of modern, widely-used workstation operating
systems using a standard process-based bench-
mark. The experiments were executed on com-
modity hardware and the results indicate that
hardware characteristics dominate the differ-
ences in the kernel architecture, lending sup-
port to the idea that microkernels may be
poised to gain widespread deployment.

1 Introduction

As hardware has become more complex, OS
kernels have also become more complex. Mono-
lithic kernels have added such features as dy-
namic module loading, multithreading, and
kernel locks to allow reentrant access to the
data structures and code sequences inside. An-
other way of dealing with the complexity has
been to structure the kernel of the operating
system as a microkernel.

The overhead of coordinating the different
parts of the microkernels limited the perfor-
mance possible in early microkernels. Current

Copyright c© 2006 University of Saskatchewan.
Permission to copy is hereby granted provided the orig-
inal copyright notice is reproduced in copies made.

personal workstations have increased in power
by orders of magnitude since initial microker-
nel research, particularly in memory size and
bus speeds.

If the performance issues of early microker-
nels [1] were related to memory throughput,
rather than the software design, it is possible
that such a system could run on modern ma-
chines with minimal overhead.

Early monolithic kernels did not easily han-
dle the large number of dynamic devices that
could be added to a system, without requiring a
restart. Microkernels [1, 4] break the operating
system kernel up into discrete parts, isolated
by memory protection barriers. The core mi-
crokernel handled only such basics as message
passing, time slicing, and the initial bootstrap-
ping of the hardware and software. Servers
providing facilities such as network communi-
cation and filesystem access are connected via
the main synchronizing microkernel.

Initially, message passing (IPC) overhead de-
graded performance. Subsequent research in-
vestigated hybridization to solve the perfor-
mance problem of microkernels. IPC overhead
was reduced by allowing strongly logically con-
nected components to reside within the same
memory space.

Related research into comparative perfor-
mance of kernel designs (e.g. [3]) has not looked
at commercial microkernel operating systems
such as MacOS X and Windows. In this paper,
we examine some performance characteristics
of hybrid and monolithic kernels on commod-
ity hardware using a standard benchmark.

1

2 Methodology

We chose lmbench3, which has been widely used
[2], as our benchmark program. Four tests were
selected from lmbench’s suite to characterize
some of the performance details of the proces-
sor, memory, and OS of the test systems. The
first test was that of memory latency. Mem-
ory latency provides a baseline measurement
for the hardware. The other three tests were re-
lated to combinations of the software and hard-
ware: context switch overhead, memory read
bandwidth, and file read bandwidth.

Context switch overhead is measured by
passing a token between a number of concur-
rent processes via IPC, capturing IPC imple-
mentation efficiency. Memory read bandwidth
is tested by allocating a block of memory, ze-
roing it, and then copying the contents of the
first-half to the second-half. The file read band-
width benchmark is very similar in concept:
open a file and read it in 64 KB chunks.

Each operating system was installed and
minimally configured to support compilation
and execution of the lmbench3 benchmark.
The benchmark was executed 10 times on each
combination of software and hardware.

3 Test Environment

Table 1 lists the operating systems tested
and corresponding hardware for each test.
Two systems have monolithic kernels (Linux,
OpenBSD), while two are microkernel based
with some hybrid features in each (MacOS X,
Windows).

CPU/mode Operating System
PowerPC Linux (2.6.12.X),

MacOS X (10.4.5),
OpenBSD 3.8

Sempron Linux, OpenBSD,
Windows 2K (SP4)

Athlon64 32-bit Linux, MacOS X,
OpenBSD, Windows

Athlon64 64-bit Linux, OpenBSD

Table 1: Test Configurations

As shown in Table 1, three processors were

tested. Two of these processors have a CISC
interface, while the third is a RISC machine.
Table 2 gives more detail regarding the hard-
ware components. The bus speed referred to is
the memory bus speed.

Feature AMD64 Sempron PPC G4
CPU 2.0 GHz 1.75 GHz 1.5 GHz

Memory 1024 MB 768 MB 512 MB
Bus Speed 800 MHz 266 MHz 333 MHz
L1 Cache 64 KB 64 KB 32 KB
L2 Cache 512 KB 256 KB 512 KB

Table 2: Hardware Characteristics

4 Results

Preliminary analysis of the result graphs iden-
tified interesting performance behaviour. De-
tailed results for Windows are not shown as
lmbench interacted with the Cygwin environ-
ment in unpredictable ways.

Fig. 1 shows the memory latency for the A64
in 32-bit mode for Linux. It is typical of all
the graphs on this architecture. The stride size
is the offset into a fixed array for each access.
The small memory size operations were very
fast and did not differ between operating sys-
tems or hardware platforms. This corresponds
to data being held in registers and/or L1 cache.
Once the memory accesses reached the bound-
ary of the L2 cache, latencies went up by a fixed
amount representing the time required to ser-
vice the request by issuing a read command, the
delay of waiting for the data to become ready,
and the bus transit time.

 1

 10

 100

 0.1 1

La
te

nc
y

in
 n

an
os

ec
on

ds

Array size MB

Stride 16
Stride 32
Stride 64

Stride 128
Stride 256
Stride 512

Stride 1024

Figure 1: Memory Latency (A64-32 bit Linux)

2

Some stride sizes have a higher initial latency
as the cache refills with data, settling to a lower
overall latency. This pattern was not found
on any other machine, and improves latency
of access patterns inside of L2 cache. Once the
working set size exceeded the L2 cache size, la-
tencies again increase. Differences can be ob-
served between all stride lines on all architec-
tures, with smaller strides generally gaining the
most benefit from prefetching and caching.

Context switching latency is very impor-
tant in a system, given its frequent occurrence.
The data transferred consists of the registers
and some state information. This is stored
in memory while another context is restored
from memory onto the processor. It appeared
that there was a direct relationship between the
speed of the memory subsystem and the con-
text switch latency. However, there was one
case where there was not a linear relationship
between bus speed and context switch latency:
OpenBSD’s A64-64bit port.

The OpenBSD context switch latency does
not level off as it does under Linux, as shown in
Fig. 2. It appears to increase in terms of both
the number of processes active, and the size
of the token sent via IPC. Each line illustrates
this well; each line has a steep slope early, and
a shallow, but non-zero slope later on.

 10

 20

 30

 40

 50

 10 20 30 40 50 60

O
ve

rh
ea

d
in

 m
ic

ro
se

co
nd

s

Processes

OpenBSD 4k
OpenBSD 16k
OpenBSD 64k

Linux 4k
Linux 16k
Linux 64k

Figure 2: Context Switch Latency (A64)

Context switch latency under MacOS X is
similar in performance to Linux. In Fig. 3,
MacOS X appears to have 4 ns of additional
latency. This is possibly due to the microkernel
context switch overhead. This also holds for
the Power PC, where MacOS X’s latency shows

roughly a 10 ns increase.

 20

 40

 60

 80

 100

 120

 140

 160

 10 20 30 40 50 60

O
ve

rh
ea

d
in

 m
ic

ro
se

co
nd

s

Processes

MacOS X 4k
MacOS X 16k
MacOS X 64k

Linux 4k
Linux 16k
Linux 64k

OpenBSD 4k
OpenBSD 16k
OpenBSD 64k

Figure 3: Context Switch Latency (PPC)

Table 3 summarizes the memory bus speed.
Memory performance for the PPC and Sem-
pron are affected by more than DRAM mem-
ory latency. The PPC context switch latency
is worse than the Sempron’s because its faster
RAM does not compensate for the additional
general purpose registers (32 vs. 8).

System Latency
333MHz MPX PowerPC 140 - 160 ns
266MHz EV6 Sempron 100 - 120 ns
800MHz HT 64-bit A64 30 ns
800MHz HT 32-bit A64 25 - 30 ns

Table 3: Bus and context switch latency

A subset of the memory throughput perfor-
mance for the A64 in 32-bit mode is shown in
Fig. 4. Memory accesses less than L1 cache
size have constant speed. As working set sizes
increase, the hardware becomes more of a lim-
iting factor. Moving from L1 to L2 reduces the
achieved bandwidth substantially.

The filesystem performance builds directly
on the memory performance. If the kernel is
able to align its accesses and be smart about
page management for the disk-cache, a signifi-
cant performance improvement can be gained.
The effect of the L1 and L2 caches on the
graphs (Fig. 5) are noticable. Within the L2
cache size, algorithms which invalidate fewer
cache lines have a higher throughput. Once
the L2 cache boundary is exceeded, most sys-
tems experience nearly identical throughput –

3

 1000

 10000

 0.1 1

B
an

dw
id

th
 M

B
/s

Memory size

OpenBSD read
OpenBSD write
MacOS X read
MacOS X write

Linux read
Linux write

Figure 4: Memory Read (A64-32 bit)

being primarily limited by the hardware, not
their cache management algorithms.

 1

 10

 100

 1000

 10000

 0.2 0.4 0.6 0.8 1

B
an

dw
id

th
 M

B
/s

Memory size

OpenBSD mmap
OpenBSD mmap-open2close

OpenBSD read
MacOS X mmap

MacOS X mmap-open2close
MacOS X read

Linux mmap
Linux mmap-open2close

Linux read

Figure 5: File Read (A64-32 bit)

Within the L1 cache boundary, Linux out-
performed MacOS X by an order of magnitude
on some operations, while within the bound-
aries of the L2 cache they perform within a
few percentage points of each other. Once the
working set exceeded the size of the L2 cache,
Linux and MacOS X performed similarly.

OpenBSD was the only operating system to
exhibit different behaviour. We see that the
file mmap open2close line starts off much lower
than any other operating system, and does not
appear to be affected by caching.

5 Conclusions

Based on our limited set of experiments, dif-
ferences between microkernels and monolithic

kernels are still present, but hardware seems to
be the dominant factor. Linux appears to have
a performance advantage on some operations,
but this advantage is marginal once the work-
ing set exceeds the L2 cache size. MacOS X’s
results indicate reasonable performance with a
hybrid microkernel design.

Modern workstations execute applications
that are extremely network intensive. An ef-
ficient network protocol stack is essential to
make meaningful comparisons between the two
kernel architectures. Examination of these re-
sults in further detail, as well as how to tune
the operating systems for better performance
is part of continuing work.

References

[1] M. Accetta, R. Baron, D. Golub, R. Rashid,
A. Tevanian, and M. Young. Mach: A New
Kernel Foundation for UNIX Development.
In Summer 1986 USENIX Technical Con-
ference, June 1986.

[2] A. Brown and M. Seltzer. Operating sys-
tem benchmarking in the wake of lmbench:
a case study of the performance of netbsd
on the intel x86 architecture. In ACM SIG-
METRICS, pages 214–224, Seattle, WA,
USA, 1997.

[3] H. Hartig, M. Hohmuth, J. Liedtke,
S. Schonberg, and J. Wolter. The Perfor-
mance of uKernel-Based Systems. Operat-
ing Systems Review, 31(5):66–77, 1997.

[4] J. Liedtke. On µ-Kernel Construction. In
SOSP, pages 237–250, 1995.

[5] A. Tanenbaum, J. Herder, and H. Bos. Can
We Make Operating Systems Reliable and
Secure? IEEE Computer, 39(5):44–51, May
2006.

4

