
The Impact of Capacity Scheduler Configuration Settings on MapReduce Jobs

Jagmohan Chauhan, Dwight Makaroff and Winfried Grassmann
Dept. of Computer Science, University of Saskatchewan

Saskatoon, SK, CANADA S7N 3C9
Email: [jac735, makaroff, grassman]@cs.usask.ca

Abstract—MapReduce is a parallel programming paradigm
used for processing huge datasets on certain classes of dis-
tributable problems using a cluster. Budgetary constraints and
the need for better usage of resources in a MapReduce cluster
often influence an organization to rent or share hardware
resources for their main data processing and analysis tasks.
Thus, there may be many competing jobs from different
clients performing simultaneous requests to the MapReduce
framework on a particular cluster. Schedulers like Fair Share
and Capacity have been specially designed for such purposes.
Administrators and users run into performance problems,
however, because they do not know the exact meaning of
different task scheduler settings and what impact they can have
with respect to the application execution time and resource
allocation policy decisions.

Existing work shows that the performance of MapReduce
jobs depends on the cluster configuration, input data type and
job configuration settings. However, that work fails to take
into account the task scheduler settings. We show, through
experimental evaluation, that task scheduler configuration
parameters make a significant difference to the performance
of the cluster and it is important to understand the influence
of such parameters. Based on our findings, we also identified
some of the open issues in the existing area of research.

Keywords-MapReduce, Task Scheduler, Performance

I. INTRODUCTION

MapReduce [1] is a software framework for distributed
processing of large data sets on compute clusters, where
computation is divided into a map function and a reduce
function. Hadoop1 is an open source framework that imple-
ments the MapReduce parallel programming model. Hadoop
consists of a MapReduce engine and a user-level filesystem
[2] that manages storage resources across the cluster. These
two components are briefly described below.

• MapReduce Engine: It consists of one master Job-
Tracker and one slave TaskTracker per cluster-node.
The master is responsible for scheduling and moni-
toring the jobs’ component tasks on the slaves and
re-executing failed tasks. The slaves execute tasks as
directed by the master according to the task scheduling
algorithm.

• HDFS: The Hadoop Distributed File System (HDFS)
provides global access to files in the cluster [2]. HDFS
is implemented by two services: the NameNode and

1http://hadoop.apache.org/

Figure 1. Hadoop Framework (http://4.bp.blogspot.com)

DataNode. The NameNode is responsible for maintain-
ing the HDFS directory tree, and is a centralized service
in the cluster. The DataNode(s) store the blocks of data.
The Secondary name node is another component of
Hadoop and it performs periodic checkpoints. Figure
1 shows the Hadoop framework.2

Existing research [3], [4] shows that the performance of
MapReduce applications depends on the cluster configura-
tion, job configuration settings and input data. The focus
is mainly on the FIFO scheduler. We focus on the Capacity
Scheduler, which shares the computing resources in a cluster
between concurrent jobs. We performed simple experiments
on representative MapReduce applications.

We study each major Capacity Scheduler configuration
parameter in detail and demonstrate that it is important to
understand their significance and fine tune the task scheduler
settings to meet user needs. To the best of our knowledge, we
are the first to study the impact of task scheduler settings
on MapReduce applications with the Capacity Scheduler.
However, one of the main intentions of this work is to bring
to the fore some of the important open questions regarding
MapReduce performance and the need for better tools to
model and simulate scheduling behaviour.

2http://4.bp.blogspot.com/



It is not the goal of this work to optimize the task
scheduler parameters to get optimal performance from the
cluster for running MapReduce applications, but to show
that these parameters have a significant impact on system
performance and application response time. Through our
experiments, we have found that some parameters have
obvious effects (queue capacity and priority), but the effects
differ between our benchmark applications. Some have no
discernible effect and are not described in the paper, while
yet other parameters interact in interesting and surprising
ways. In particular, the user limit percentage had a non-
intuitive effect on reduce time and interacted with the job
scheduling parameters producing unexpected results.

The reminder of this paper is organized as follows.
Section II introduces the Capacity Scheduler and its various
configuration parameters. Related work is covered in Section
III. Section IV contains details of experimental testbed and
evaluation methodology. In Section V, we describe the
experiments and evaluate the results. In section VI, we
discuss the implications of our results. Finally, Section VII
shows our conclusions and future work.

II. BACKGROUND

The task scheduler runs on the job tracker and plays an
important role in deciding where the tasks of a particular
job will be executed in the cluster. There are three different
well-known task schedulers in Hadoop:

• FIFO: Initially, Hadoop was used mainly for running
large batch jobs such as web indexing. All the users
submit jobs to a single queue, and jobs are executed
sequentially.

• Fair Scheduler: The Fair Scheduler3 arose out of
Facebook’s need to share its data warehouse between
multiple users. Resources are allocated evenly between
multiple jobs and capacity guarantees for production
jobs are supported. It has pools where jobs are placed
and each pool have a guaranteed capacity. Excess
capacity is allocated between jobs using fair sharing.

• Capacity Scheduler: The Capacity Scheduler4 from
Yahoo offers similar functionality as the Fair Scheduler,
but in a different way. In the Capacity Scheduler, one
has to define a number of named queues. Each queue
has a configurable number of map/reduce slots. The
scheduler gives each queue its guaranteed capacity
when it contains jobs, and shares unused capacity
between the queues. However, within each queue, FIFO
scheduling with priorities is used, except that one can
limit the percentage of running tasks per user, so that
users share a cluster equally. Tasks have varying rela-
tionships with the data: node-local tasks have the data
on the same machine’s local disk, rack-local tasks have

3http://hadoop.apache.org/common/docs/r0.20.2/fair scheduler.html
4http://hadoop.apache.org/common/docs/r0.20.2/capacity scheduler.html

the data on a machine in the same rack and network
data transfer to the local switch/router is necessary to
complete the task, and finally, remote tasks are neither
node-local nor rack local. Remote tasks incur greater
latency, as the network transmission may be across
multiple network links.

The Capacity Scheduler works according to the following
principles:

1) The existing configuration is read from capacity-
scheduer.xml at cluster startup. It contains all the task
scheduler settings. The queues and other parameters
are set using this information.

2) An initialization poller thread is started and worker
threads are also initialized. The poller thread wakes up
at specified intervals (init-poll-interval), distributes the
work to worker threads and then goes to sleep. The
number of worker threads are setup as min(number
of queues, init-worker-threads). A single thread can
handle multiple queues. All the jobs admitted into
the system are not initialized instantly to reduce the
memory footprints on the job tracker.

3) When a job is submitted to the cluster, the scheduler
checks for job submission limits to determine if the
job can be accepted or not (based on the queue and
user).

4) If the job can be accepted, the initialization poller
checks the job against initialization limits (e.g.
“maximum-initialized-active-tasks”). If the the job can
be initialized it is submitted to the assigned worker
thread for the queue which initialize the job.

5) Whenever the job-tracker gets the heartbeat from a
task tracker, a queue is selected from all the queues.
A queue is selected by sorting the queues according to
number of running tasks/capacity of the queue. Queue-
and user- specific limits are checked to see if they are
under appropriate limits (e.g. “max-capacity”). After
selecting the queue, the first job is chosen from the
queue unless its user is over the user limit. Next a task
is picked up from the job and the preference is given
to node-local task over rack-local task. This procedure
is repeated until all jobs complete.

Both the Capacity Scheduler and the Fair Share Scheduler
offer various configuration parameters, allowing administra-
tors to tune scheduling parameters for the jobs. Table I shows
the two types of configurable parameters available for the
Capacity Scheduler:

1) Resource allocation (first 5 parameters), and
2) Job initialization (last 6 parameters).

There are other parameters which can be categorized
under memory management. We have not taken them into
account as they are only supported in Linux and only have
an impact on memory intensive jobs.



Table I
CONFIGURABLE PARAMETERS FOR CAPACITY SCHEDULER

Parameter Name Brief Description and Use Default Value
queue.q-name.capacity Percentage of the number of cluster’s slots available for jobs in this queue. 1 queue@100%
queue.q-name.maximum-capacity Limit beyond which a queue cannot use the capacity of the cluster. -1
queue.q-name.minimum-user-limit-percent Each queue enforces a limit on the percentage of resources allocated to a

user at any given time, if there is competition for them.
100

queue.q-name.user-limit-factor Queue capacity multiple to allow a single user to acquire more slots. 1
queue.q-name.supports-priority If true, priorities of jobs will be taken into account in scheduling decisions. False
maximum-system-jobs Maximum number of jobs in the system which can be concurrently

initialized
3000

queue.q-name.maximum-initialized-active-tasks Maximum number of concurrently initialized tasks, across all jobs, all users 200000
queue.q-name.maximum-initialized-active-tasks-per-user Limit of concurrently initialized tasks per-user, for every job of a user 100000
queue.q-name.init-accept-jobs-factor The multiple of (maximum-system-jobs*queue-capacity) used to determine

the number of jobs which are accepted by the scheduler.
10

init-poll-interval Time between polls of the scheduler job queue to initialize new jobs 5000 ms
init-worker-threads Number of worker threads used by Initialization poller to initialize jobs 5

III. RELATED WORK

Jiang, Ooi, Shi and Wu [5] studied the performance
of MapReduce in a very detailed manner. They identified
five design factors that affect the performance of Hadoop:
1) grouping schemes, 2) I/O modes, 3) data parsing, 4)
indexing, and 5) block-level scheduling. By carefully tuning
these factors, the overall performance of Hadoop improved
by a factor of 2.5 to 3.5. Wang, Butt, Pandey and Gupta
developed a simulation tool named MRPerf [4], [6]. MRPerf
provides a means for analyzing application performance on
a given Hadoop setup, enabling the evaluation of design
decisions for fine-tuning and creating Hadoop clusters.

To ease the task of evaluating and comparing different
MapReduce provisioning and scheduling approaches, an-
other simulator named SimMR [7] was proposed. Babu [8]
showed that the presence of too many job configuration
parameters in Hadoop is cumbersome and highlighted the
importance of an automated tool for optimizing parameter
values. Herodotou et al. [9] introduced Starfish, which
profiles and optimizes MapReduce programs, based on cost.
The main aim of Starfish is to relieve users of trying to
fine tune the job configuration parameters for MapReduce
applications in any cluster settings and input data. MRSim
[10] is yet another MapReduce simulator based on discrete
event simulation, which can estimate job performance and
capture job completion time/hardware utilization.

All the work described earlier pointed out that the task
scheduler makes an important contribution to the perfor-
mance of MapReduce applications but none of them delve
into it in detail. We are trying to fill that gap with a detailed
performance study. It is assumed that task scheduler choice
has an impact but the nature and reasons for the effect
it makes and the influence of task scheduler configuration
parameters remains largely unexplored.

IV. EVALUATION METHODOLOGY

We conducted experiments on an isolated 6-node cluster.
One node was designated as the job-tracker and name-node.

The other 5 nodes carry out the tasks of data node and task
tracker. All the nodes have 128Gb of hard disk with 2xQuad
core Intel Xeon L5420 processors at 2.5GHz, 8 GB of
RAM and a 1 Gbps network connection. RedHat 5.3 Linux
is the OS on all the nodes, executing Hadoop 0.20.203.
Measurements directly on hardware allows us to clearly
isolate and identify the performance variations caused by
the task scheduler settings.

TeraSort, Sort, and WordCount Sort were used as bench-
mark MapReduce applications for the experiments. TeraGen,
RandomWrite and RandomTextWrite were used to generate
the input data for TeraSort, Sort and WordCount respectively.
In all executed MapReduce applications the size of the
input data file was 5 GB. The number of task trackers
is 5 and there are 10 map and 10 reduce slots (i.e. 2
slots/node for each phase). We chose short jobs because
current studies shows that short jobs are popular in practice
[11]. Nevertheless, we argue that the results obtained from
our paper will also be valuable for longer jobs and for jobs
running in big cluster. With longer jobs or a set of short and
long jobs in a big shared cluster, the contention for resources
will be prevalent, which shall lead to impact on the job’s
performance when the administrator changes the parameter
settings present in the Capacity Scheduler. The effects can
vary but they will definitely be present because the main
concept behind the Capacity Scheduler is the allocation of
tasks to slots.

For our experiments, we use the execution time as the
performance metric. The execution time includes time from
submission to the completion time. We also show the in-
dividual Map and Reduce execution time. The time shown
in our results is an average of 3 runs. In all the runs for
a particular setting, there was not much variation except
while testing the minimum user limit percentage where we
observed two modes of distribution. This phenomenon is
described in more detail later in Section V. The experiments
were designed keeping in mind the Capacity Scheduler
configuration settings. Multiple users were supported to start



the jobs at the same time. We created a simple workload
generator which submits the job in every defined queue of
the scheduler.

V. EXPERIMENTAL RESULTS

This section discusses our experiments and results. In
these experiments, we changed the Capacity Scheduler con-
figuration settings one by one and observed their impact on
the job execution time. Under these experiments the number
of queues ranged from 1 to 3. Each queue has 3 users
and each one of them submits one job, one after another
at the interval of one second. The first user in each queue
submits application Sort, the second submits TeraSort and
third submits WordCount. Users 1-3 are in queue 1, users
4-6 are in queue 2 and users 7-9 are in queue 3 in all the
results shown in the paper. Subsequent experiments use the
same settings in terms of the number of users per queue and
their job submission pattern, unless stated otherwise.

The number of Map tasks depends on the size and type
of input. The Hadoop framework decides at runtime how
many Map tasks to create. In our experiments, we observed
70-80 Map tasks for each job. Each job has one reduce task.
The number of reduce tasks for a job is a job configuration
parameter and its default value is 1. In almost all the
experiments unless specified otherwise, we used the default
values for job configuration parameters. The primary reason
for choosing default values for job configuration parameters
was that we want to show that task scheduler parameters
have an effect on job performance even if one does not
change job configuration parameters, and secondly, our main
focus in this work was on task scheduling parameters.

The results graphs show the 2 components of execution
time, as well as total execution time: Map Time and Reduce
Time. The total execution time is not the sum of the 2
components, since there is overlap between the map and
reduce phases of a job.

A. Impact of Resource Allocation Parameters

In these experiments, we changed the parameters of the
Capacity Scheduler related to cluster resources, such as the
number of queues, their capacity and user related queue
configuration settings. These experiments provide empirical
evidence supporting the claim that these parameter settings
influence performance and that the default parameters do not
necessarily provide the desired performance. The wait time
in these experiments for all the jobs was under 10 seconds.

1) NumberofQueues and QueueCapacity: QueueCapac-
ity is the guaranteed capacity which a queue will have at any
time. Figure 2 shows the execution times for the various jobs
under different settings. We can observe that the execution
times of jobs depend on the value of these parameters.
The time for each job increases with NumberofQueues and
decreasing QueueCapacity due to increasing contention for
shared resources like disk and network bandwidth.

To check the impact of increasing NumberofQueues, we
compare Figure 2(a) and 2(c). The map, reduce and total
execution times for all jobs increase significantly. The effect
of QueueCapacity can also be clearly seen between Figure
2(a) and 2(b). For the same number of jobs, we observed
different execution times. The jobs being executed in queue
1 get more slots and hence a reduction in their execution
times. Note that this improvement is mainly because more
map slots are available for that queue. The number of reduce
tasks is 1, requiring one reduce slot. More capacity means
more map and reduce slots, decreasing map execution time
for jobs in queue 1 and subsequently reduce time as well.
However, sometime the improvement may not be clearly
visible because of stragglers as with TeraSort for user 2
in Figure 2(b). Due to stragglers in the Map phase, tasks in
the reduce phase do not continue smoothly and have to wait
a lot before they finish which eventually also affects total
execution times. The speculative execution was not enabled
in our experiments.

2) MaximumCapacity: This parameter allows a queue to
use unused capacity of other queues if available. A queue can
use resources in the cluster between the value of QueueCa-
pacity and MaximumCapacity (100% when the default value
of -1 is used). The value of MaximumCapacity has to be at
least QueueCapacity. Figure 3 shows the execution times
for the various jobs under different settings. The first set of
bars shows the execution times for 2 queues, each having
50% capacity while 2nd set has 2 queues with first having
90% and other queue having 10% MaximumCapacity. In
both cases, MaximumCapacity is equal to QueueCapacity.

Comparing the first set of bars in Figure 3 with Figure
2(a), we observed that setting MaximumCapacity equal to
QueueCapacity does not make much difference. No queue
can use more than 50% of the map and reduce slots. In this
case, no queue’s jobs can interfere with jobs from another
queue; this leads to slightly better Map execution time. The
reduce time is not affected by this change as each job needs
1 reduce slot; it is available in both 50% configurations
without or with MaximumCapacity enforcement. For second
set of bars in Figure 3, the execution times for jobs in queue
1 remain similar to Figure 2(b) for the reasons explained
before. However, for the second queue, the execution times
increase for all jobs as it is allocated only 10% of the
allocated capacity (1 map and 1 reduce slot) and cannot
take more than its allocated capacity.

We also observed in the second set of graphs that the Map
phase execution time is greater than reduce phase execution
time after the first job because, as mentioned earlier, a job
typically has multiple map tasks, but one reduce task; when
there is only one map slot present, it takes more time for
map tasks to finish. The other reason for this phenomenon is
that when a queue has only one reduce slot, the second job
cannot start its reduce phase until the first job is finished.
However, the second job’s map phase gets started when the



(a) 2 queue 50% each capacity (b) 2 queue 90%-10% capacity (c) 3 queue 33% each capacity

Figure 2. Effect of changing NumberofQueues and QueueCapacity (3 users/queue, 1 job/user)

first job finishes its map phase. So, by the time the second
job gets its reduce slot most of its map tasks are already
finished. As a result, the reduce phase gets most of the data
it needs to proceed immediately and does not have to wait
much for Map tasks to finish, which leads to faster reduce
time. This also affects the total execution time.

Figure 3. Effect of Changing MaximumCapacity on running time of jobs.
First 6 bars represent 2 queues, 3 jobs/queue, 1 job/user, 50% capacity
to each queue. Next 6 bars represent 2 queues, 3 jobs/queue, 1 job/user,
90%-10% capacity to queues.

3) MinimumUserLimitPercent: This parameter allows
limits to be defined on per user allocation of resources for
a given queue. To check the impact of this parameter, we
used a single queue, 100% capacity and 4 users. Each user
simultaneously submitted one TeraSort job. Figure 4 shows
the execution times for the various jobs. We can see that the
Map execution times for all jobs increase significantly when
MinimumUserLimitPercent is changed from 100% to 25%.
This is because when MinimumUserLimitPercent is 100%,
the first jobs gets executed on all the Map slots and when
its Map Phase is finished, the Map phase for the second job
starts and so on. When MinimumUserLimitPercent is 25%,
however, each job starts the Map phase at the same time
which also leads to increase in Map execution time as there
are fewer Map slots.

We saw completely unexpected results for the Reduce

time. We observed two different modes of distribution in
reduce execution time in our results. The reduce execution
time hovered around 14 minutes for the jobs in one mode of
distribution and in the other the reduce time hovered around
25-29 minutes. A closer look at the logs revealed that it was
caused by scheduling of two jobs simultaneously on two
different slots on the same cluster node. Recall that every
node has 2 map and 2 reduce slots. So, at times when the
Capacity Scheduler selects a job’s reduce phase to run on a
node where no other job’s reduce phase is running, then the
job’s running time was lower (i.e. 14 minutes). In the other
case, however, as two jobs were running on the same cluster
node, the reduce time increased, mainly due to increase in
shuffle and sorting time. The shuffle time was increased
because both jobs share network bandwidth and the sorting
time was increased due to sharing of disk bandwidth. Shuffle
is a sub-phase during the reduce phase where sorted output
of the mappers is transferred to the reducer over the network
via HTTP. During sorting, the output from different mappers
coming to the reducer is sorted based on keys.

In our experiments, we found that job 3 in Figure 4(b) was
always executed on a cluster node where there was no other
job’s reduce task was running and hence we see a decrease
in reduce time, compared to Figure 4(a). In Figure 4(a), the
reduce task of job 3 was sometimes scheduled with other
jobs on same cluster node. We consider this as a stochastic
effect, because apart from the exception for job 3 in Figure
4(b), the reduce phase of all other jobs were scheduled with
another job reduce task on same node at some time.

In figure 4(c), we showed the interaction between job
configuration parameters (number of reduce tasks) and
scheduling parameters (user limit factor). It is shown to
emphasize that job execution time in MapReduce is not
only dependent on job configuration but also on scheduling
parameters. With more reduce tasks, the execution times of
jobs is reduced as more parallelism is achieved.

4) UserLimitFactor: This parameter allows a single user
to acquire more slots than the configured queue capacity.



(a) User limit 100% (b) User limit 25% (c) User limit 25%, 5 reduce tasks/job

Figure 4. Effect of changing MinimumUserLimitPercentage (1 queue, 100% QueueCapacity, 4 user jobs)

Figure 5 shows the execution times for the various jobs.
The number of reduce tasks per job and user limit factor
was varied in these experiments. There is no change in
execution times of jobs between Figure 5(a) and 2(a). This
is because although UserLimitFactor is 2, it does not help
as the number of reduce tasks for each job is 1. Each job
needs one reduce slot and it got it through its allocated queue
capacity; UserLimitFactor was not relevant.

However, we see a big difference between Figure 5(b) and
5(c) here. The execution times for jobs in the second queue
are much higher in 5(b) than in 5(c). The reason is the value
of MinimumUserLimitFactor. In Figure 5(b), the user from
queue 2 cannot use more than 1 map and reduce slot as user
limit factor is 1 and queue capacity is 10% (1 map and 1
reduce slot). In Figure 5(c), however, the user from queue
2 can get twice the queue capacity and hence it can get 2
reduce slots (from the other queue because the jobs in the
1st queue only need 6 reduce slots and 4 are free) which
leads to substantial reduction in execution time.

5) Supports-priority: This parameter allows priority to be
given to the users of any queue. The values of priority are of
the following types: VERY LOW, LOW, HIGH, NORMAL
and VERY HIGH. We found that high priority jobs have
shorter execution times than lower priority jobs, depending
on the priority type. Figure 6 shows the execution times for
the various jobs. Compared with Figure 2(a), we can see
that priorities clearly affect job execution times.

B. Impact of Job Initialization Parameters

In these experiments, we changed the job initialization
parameters in the Capacity Scheduler. These parameters
determine the number of system jobs, tasks per queue and
tasks per user which can be executed concurrently on the
cluster. The real execution time (excluding from submission
time to launch time) is used as a metric in some of the results
in this section to isolate the effects of the waiting time.

1) MaximumSystemJobs: In this experiment, we varied
the number of MaximumSystemJobs from 2 to 4, respec-

tively, to observe the impact on the execution times of the
jobs. Figures 7 and 8 show the execution times for the
various jobs under different settings.

When the value of MaximumSystemJobs is 2, only a single
job from each queue gets executed in parallel. As a result, the
first Sort job in both queues has a better execution time than
in Figure 8. When one job in a queue finishes execution, the
second one starts executing, causing a long launching time
for subsequent jobs. They have to wait a lot before they
start executing. That is why we see long execution times
for the other two types of jobs. In the second scenario, the
number of jobs which are being executed in each queue in
parallel is 2. This leads to more resource contention among
the running jobs and affects their execution times. The Sort
job execution time increases because more parallel jobs
can run in the system and each runs slower. Alternatively,
TeraSort and WordCount have faster real execution times
because they do not have to wait as long as in the previous
scenario. WordCount also has a faster response time as it
was the last executed job in this scenario and did not face
much competition from the other jobs which had completed.
The real execution time for WordCount was similar in both
scenarios and the difference observed is due to waiting time.

2) MaximumInitializedActiveTasks and MaximumInitial-
izedActiveTasks/user: Both these parameters are related.
MaximumInitializedActiveTasks defines the maximum num-
ber of tasks which can be executed concurrently for any
queue, serving as an upper limit for maximum initialized ac-
tive tasks per user. MaximumInitializedActiveTasks/User per
user cannot be greater than MaximumInitializedActiveTasks.
Figures 9 and 10 show the execution times for the various
jobs under different settings. We can see the same trends
for all the jobs in both the figures for the same reasons as
explained earlier for MaximumSystemJobs.

The reason for choosing 80 active tasks per user was that
all the jobs had between 75 and 80 Map tasks. In scenario
1, when MaximumInitializedActiveTasks for a queue is 100,
then only a single job can be run from that queue as

⌊
100
80

⌋
=



(a) 2 queues 50% each, ulf=2, 1 reduce task (b) 2 queues 90%-10%,ulf=1, 2 reduce tasks (c) 2 queues 90%-10%,ulf=2, 2 reduce tasks

Figure 5. Effect of changing user limit factor (3 users/queue and 1 job/user)

Figure 6. Execution times for 2 queues, 3 users/queue,1 job/user, 50%
capacity each. All queues support priority. Priority of Sort=VERY LOW,
TeraSort=NORMAL, WordCount=VERY HIGH

Figure 7. Execution times for 2 queues, 3 users/queue, 1 job/user, 50%
capacity each, max system jobs=2

1. Hence, we get large waiting times for all jobs after the
first job, but short real execution times. In scenario 2, the
number of jobs which can be executed simultaneously from
any queue is

⌊
160
80

⌋
= 2. This leads to smaller waiting times

for the jobs but large real execution times, due to contention
of resources except WordCount which was the last job to run
in both the scenarios.

Figure 8. Execution times for 2 queues, 3 users/queue, 1 job/user, 50%
capacity each, max system jobs=4

VI. DISCUSSION

Careful selection of scheduler configuration parameters
is crucial to reduce the execution times of jobs in an
environment where the Capacity Scheduler is used. The
different values for Capacity Scheduler configuration param-
eters may have different impacts on the performance of the
running jobs in the cluster as shown by our experiments.
The Capacity Scheduler has been around for a while and
is used in Yahoo clusters, but most Hadoop users and
administrators do not know the precise meaning of the
parameters and the kind of impact they can have on the
execution time of the running jobs. A number of queries
have been asked on Hadoop forums5 regarding this issue.
Finding the performance impact can be troublesome as well
as time consuming; there is need for a tool which can not
only help them to identify the performance of jobs after
changing certain settings but also help them to find the
optimal values of task scheduler configuration settings for a
given cluster configuration and a set of jobs.

Yahoo has developed a simulator named Mumak,6 which

5http://lucene.472066.n3.nabble.com/Hadoop-lucene-users-f647590.html
6https://issues.apache.org/jira/browse/MAPREDUCE-728



Figure 9. Execution time for 2 queues, 3 users/queue and 1 job/user,
50% capacity each, maximum-initialized-active-tasks=100, maximum-
initialized-active-tasks-per-user=80

Figure 10. Execution time for 2 queues, 3 users/queue and 1 job/user,
50% capacity each, maximum-initialized-active-tasks=160, maximum-
initialized-active-tasks-per-user=80

can do the task of identifying performance of MapReduce
applications under different schedulers. Mumak takes a
job trace derived from production workload and a cluster
definition as input, and simulates the execution of the jobs
as defined in the trace in the virtual cluster. However, this
simulator cannot predict the performance for jobs when the
cluster configuration is changed. It also does not simulate the
shuffle phase, hindering its accuracy. Starfish [9] analyzes
performance of MapReduce applications under changing
cluster and job configuration settings. Unfortunately, it only
supports the FIFO scheduler.

The performance modelling of Hadoop to date shows
that the performance of a job in a cluster depends on
Job configuration settings, cluster configuration and input
data. However, through our experiments we showed that
the execution time of jobs in certain environment depends
on both job and task scheduler configuration parameters.
Therefore, the performance model of Hadoop should include
task scheduler configuration parameters as a key component.

VII. FUTURE WORK

Based on our findings, we are in the process of building
a tool that will accurately predict the performance of jobs
in a shared cluster under different settings for the Capacity

Scheduler. It shall help administrators to find the optimal
values and save their time before doing any resource alloca-
tion changes in the cluster. Due to economic challenges, it
is possible that an organization sharing a cluster may want
to switch to a different resource allocation scheme. In such
cases, such a tool can be handy and let the organization
know in advance that how much its work will be impacted
if they change their budget.

ACKNOWLEDGMENT
The authors would like to acknowledge the support of

HPC team at the University of Saskatchewan and the Natural
Science and Engineering Research Council of Canada.

REFERENCES

[1] J. Dean and S. Ghemawat, “MapReduce: simplified data
processing on large clusters,” CACM, vol. 51, no. 1, pp. 107–
113, Jan. 2008.

[2] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The
Hadoop distributed file system,” in 2010 Symposium on
Massive Storage Systems and Technologies, Incline Village,
NV, May 2010, pp. 1–10.

[3] H. Herodotou and S. Babu, “Profiling, what-if analysis, and
cost-based optimization of MapReduce programs,” VLDB
Endowment (PVLDB), vol. 4, no. 11, pp. 1111–1122, 2011.

[4] G. Wang, A. Butt., P. Pandey, and K. Gupta, “A simulation ap-
proach to evaluating design decisions in MapReduce setups,”
in MASCOTS ’09, London, UK, Sep. 2009, pp. 1–11.

[5] D. Jiang, B. C. Ooi, L. Shi, and S. Wu, “The performance of
MapReduce: an in-depth study,” VLDB Endowment (PVLDB),
vol. 3, no. 1–2, pp. 472–483, Sep. 2010.

[6] G. Wang, A. R. Butt, P. Pandey, and K. Gupta, “Using realistic
simulation for performance analysis of MapReduce setups,” in
Large-Scale System and Application Performance Workshop,
Garching, Germany, Jun. 2009, pp. 19–26.

[7] A. Verma, L. Cherkasova, and R. Campbell., “Play it again,
SimMR!” in CLUSTER 2011, Austin, TX, Sep. 2011, pp. 253
–261.

[8] S. Babu, “Towards automatic optimization of MapReduce
programs,” in SoCC ’10, Indianapolis, Indiana, Jun. 2010,
pp. 137–142.

[9] H. Herodotou, H. Lim, G. Luo, N. Borisov, L. Dong, F. B.
Cetin, and S. Babu, “Starfish: A self-tuning system for big
data analytics,” in Conference on Innovative Data Systems
Research, Asilomar, CA, Jan. 2011, pp. 261–272.

[10] S. Hammoud, M. Li, Y. Liu, N. Alham, and Z. Liu, “MRSim:
A discrete event based MapReduce simulator,” in Interna-
tional Fuzzy Systems and Knowledge Discovery Conference,
Yuntai, China, Aug. 2010, pp. 2993 –2997.

[11] Y. Chen, A. Ganapathi, R. Griffith, and R. Katz, “The case for
evaluating MapReduce performance using workload suites,”
in MASCOTS 2011, Singapore, Singapore, Jul. 2011, pp. 390–
399.


