
Simulation and Performance Evaluation of the Hadoop
Capacity Scheduler

Jagmohan Chauhan, Dwight Makaroff and Winfried Grassmann

Department of Computer Science, University of Saskatchewan
Saskatoon, SK, CANADA, S7N 5C9

jac735@mail.usask.ca, {makaroff, grassman}@cs.usask.ca

Abstract
Hadoop task schedulers like Fair Share and Ca-

pacity have been specially designed to share hard-
ware resources among multiple organizations. The
Capacity Scheduler provides a complex set of pa-
rameters to give fine control over resource alloca-
tion of a shared MapReduce cluster. Administra-
tors and users often run into performance prob-
lems because they do not understand the perfor-
mance influence of the task scheduler parameters
on MapReduce workloads. Interaction between pa-
rameter settings is particularly problematic.

In this paper, we implemented a Capacity
Scheduler simulator component, integrated it into
an existing simulator and then validated the simu-
lator with small test cases, consisting of standard
benchmark sort programs. We then studied the im-
pact of Capacity Scheduler parameters on different
MapReduce workload submission patterns with a
more complex set of benchmark programs. Among
other results, we found maxCapacity and minUser-
LimitPCT to be influential parameters suggested
by previous work and that using separate queues
for short and long jobs provides the best perfor-
mance in terms of response ratio, execution time
and makespan compared to submitting both types
of jobs in the same queue.

1 Introduction
Research and government organizations as well
as corporations produce huge amounts of data for

Copyright c© 2014 Mr. Jagmohan Chauhan, Dr. Dwight
Makaroff, and Dr. Winfried Grassmann. Permission to copy is
hereby granted provided the original copyright notice is repro-
duced in copies made.

varying internal and external purposes contribut-
ing to the world-wide data explosion often re-
ferred to as “Big Data”. Applications that ac-
cess and process Big Data in a parallel manner to
produce meaningful information are called data-
intensive computing applications. Analysis and
processing of Big Data is crucial to these orga-
nizations and data-intensive computing addresses
this need. MapReduce [6] was the most popular
of the new processing frameworks that emerged.
An open-source framework based on MapReduce
called Hadoop1 emerged in 2007 and is used by or-
ganizations like Yahoo! and Facebook, and many
others. Organizations that do not have the need for
a private cluster often utilize a shared cluster on de-
mand [17].

The Task Scheduler is an important part of the
MapReduce framework. Initially, MapReduce was
designed to handle batch-oriented jobs and a FIFO
task scheduler was suited to handle such jobs. The
emergent needs to have better data locality, better
response time for short jobs, cluster sharing be-
tween different organizations/users led to the de-
velopment of various other schedulers, like Fair-
Share,2 Delay aware [22], Capacity,3 Quincy [10],
etc. Recently, YARN [17] was introduced to the
Hadoop framework which fundamentally redesigns
higher level shared cluster resource management.

Several Capacity Scheduler configuration pa-
rameters are provided that affect how the resources
in the cluster are shared between organizations and

1http://hadoop.apache.org
2http://hadoop.apache.org/common/docs/r0.20.2/

fairscheduler.html
3http://hadoop.apache.org/common/docs/r0.20.2/

capacityscheduler.html



users within an organization. Unfortunately, set-
ting these parameters properly to provide the de-
sired sharing behaviour is a challenging task. Our
previous work measuring the influence of Capac-
ity Scheduler parameter settings found that only
some parameters have significant impact on the
performance of jobs [4]. It is important to esti-
mate the magnitude of these consequences before
making any such changes in a real production sys-
tem; a Capacity Scheduler simulator would save
both time and cost. Simulation can characterize the
behaviour of running jobs on a MapReduce cluster
across different job submission patterns, job mixes,
network topologies and cluster configurations.

In this paper, we modified an existing simulator
named MRPerf [20] and then validated it against a
real cluster setup using representative MapReduce
applications. The validation experiments exposed
the factors which limited prediction accuracy in the
simulator. The factors identified can be used to de-
sign a better simulator.

We then conducted a simulation study to deter-
mine the degree to which the parameters identified
as being influential in our previous experimental
study [4] affect performance measures when the
size and configuration of a cluster and its work-
load are varied to larger scales. In particular, we
study three different job submission settings: (i) a
sequence of long jobs followed by a sequence of
short jobs, (ii) interleaving jobs, and (iii) separate
queues for long jobs and short jobs. For input to the
simulation, job types are characterized by a small
number of parameters: the number of map/reduce
tasks and the size of input and output data. The cur-
rent design of MRPerf abstracts away other facets
of job and task functionality.

Our simulation results confirm that Capacity,
maxCapacity, and minUserLimitPCT influence the
execution and waiting time, but do not affect the
data locality of the tasks scheduled on the process-
ing nodes. Finally, we observe that separating long
jobs and short jobs into disjoint queues with proper
parameter settings improves the overall execution
time (makespan) of the short job queues. These ex-
periments are a case study and not a comprehensive
evaluation of the variety of MapReduce use cases.

The remainder of this paper is organized as fol-
lows. Section 2 introduces the Capacity Scheduler
and its various configuration parameters. Related
work is covered in Section 3. Section 4 describes
the Capacity Scheduler simulator implementation.

In Section 5, we provide the simulator validation
results. In Section 6 we present and analyze the
results of additional experiments on a simulated
medium-sized cluster. Finally, Section 7 shows our
conclusions and future work.

2 Hadoop Scheduling
A Hadoop cluster consists of 3 main control com-
ponents: a dedicated NameNode server to provide
file system support, a secondary NameNode, which
generate snapshots of the NameNode’s metadata
and a JobTracker server to manage job scheduling
decisions using a task scheduling algorithm. The
task scheduler runs on the job tracker and decides
where and when the tasks of a job will be executed.

There are at least three well-known Hadoop task
schedulers:4

• FIFO: All the users submit jobs to a single
queue, and jobs are executed sequentially.

• Fair Scheduler: Resources are evenly allo-
cated to multiple jobs with capacity guaran-
tees. Jobs are placed in pools; each pool has a
guaranteed capacity. Excess capacity is allo-
cated between jobs using fair sharing.

• Capacity Scheduler: A number of named
queues are configured. Each queue has a guar-
anteed capacity (i.e. number of map and re-
duce slots). Any unused capacity is shared be-
tween the remaining queues. FIFO scheduling
with priorities is used in each queue. Limits
can be placed on the percent of running tasks
per user, so that users share a cluster equally.

The Capacity Scheduler operates according to the
following principles:

1. At cluster startup, a configuration file with all
the task scheduler settings for the queue char-
acteristics and other operations is used to ini-
tialize the system.

2. An initialization poller thread is started along
with worker threads. The poller thread wakes
up at specified intervals, distributes jobs to
worker threads and then sleeps.

3. At job submission time, the scheduler checks
job submission limits to determine if the job
can be accepted for the queue and user.

4http://en.wikipedia.org/wiki/Apache Hadoop



4. If the job can be accepted, the initialization
poller checks initialization limits. If initializa-
tion is permitted, a worker thread is assigned
to initialize the job.

5. Whenever the JobTracker gets a heartbeat
signal from a TaskTracker indicating that a
node is available, a queue is selected from all
the queues with available jobs by sorting the
queues by current settings and load. Queue-
and user- specific limits are checked for ca-
pacity limits. The first permissible job is cho-
sen from the chosen queue. Next, a task is
picked from the job with preference given to
tasks with data closer to the nodes. This pro-
cedure is repeated until all the jobs complete.

Note that the Capacity Scheduler dynamically
assigns tasks to threads and nodes, respectively. In
particular, tasks have the following relationships
with data location: node-local tasks have the data
on the local disk, rack-local tasks have data on a
machine in the same rack and network data trans-
fer is necessary to complete the task, and finally,
remote tasks have data further away in the cluster.

Many configuration parameters are provided, al-
lowing administrators to tune scheduling parame-
ters for the jobs. Table 1 shows the configurable
resource allocation parameters that we consider in
our experiments. Our initial exploration of the ef-
fect of task scheduler parameters via experimenta-
tion on a small cluster [4] showed that these were
the most influential in elapsed time performance. A
value of -1 for a parameter means the parameter is
not used. There are other parameters that are not
shown which are categorized under memory man-
agement and job initialization.

Table 1: Capacity Scheduler Parameters

Parameter
Name

Brief Description/Use Default
Value

queue.qname.
Capacity

Percentage of cluster’s
slots available for jobs in
queue.

1 queue
@100%

queue.qname.
maxCapacity

Maximum percentage of
cluster capacity for a sin-
gle queue.

-1

queue.qname.
minUserLimit-
PCT

A limit on the percentage
of resources allocated to a
user at any given time, if
there is competition.

100

queue.qname.
userLimitFactor

Capacity multiple for user
to acquire more slots.

1

3 Related Work
Jiang, Ooi, Shi and Wu [12] studied the perfor-
mance of MapReduce in a very detailed man-
ner. They identified five design factors that affect
Hadoop performance: 1) grouping schemes, 2) I/O
modes, 3) data parsing, 4) indexing, and 5) block-
level scheduling. By carefully tuning these factors,
the overall performance improved by a factor of 2.5
to 3.5. Babu [2] measured a real system and found
that the presence of too many job configuration pa-
rameters in Hadoop is cumbersome, highlighting
the importance of an automated tool to optimize
parameter values. Herodotou et al. [9] introduced
Starfish, which profiles and optimizes MapReduce
programs based on cost. Starfish aims to relieve
users from having to fine tune job configuration pa-
rameters for different cluster settings and input data
sets. All these profiling tools require a real system
on which to test potential workloads and are tuned
to the job scheduler and not the task scheduler.

Experiments with YARN utilized the Capacity
Scheduler with particular parameter settings [17].
Production results at Yahoo! for a small clus-
ter (10 machines) show the benefits of the YARN
framework with a recently developed capability of
YARN: work-preserving preemption. This is not
modelled in current simulators, but shows the need
for some method of evaluating scheduler perfor-
mance at scale.

Several discrete event simulators for MapRe-
duce application workloads have been developed.
Each provides different levels of support for inte-
grating new task schedulers and different details in
the computation and communication models.

SimMR [18], MRSim [8] and SimMapRe-
duce [16] are designed to evaluate different sched-
ulers/provisioning strategies. SimMR focuses
on JobTracker decisions and task/slot allocations
among different jobs. MRSim measures scalability
easily and captures the effects of different config-
urations of Hadoop setup on job completion times
and hardware utilization. SimMapReduce allows
researchers to evaluate different scheduling algo-
rithms and resource allocation policies.

Hsim [13] simulates the dynamic behaviours of
Hadoop environments and models a large number
of Hadoop parameters such as node parameters (re-
lated to processors, memory, hard disk, network in-
terface, map and reduce instances) and cluster pa-
rameters, (number of nodes, node configurations,



network routers, job queues and schedulers), and
Hadoop system parameters. Mumak [14] can esti-
mate performance of MapReduce applications un-
der different schedulers. It takes a job trace derived
from production workload and a cluster definition
as input, and simulates the execution of the jobs us-
ing different schedulers. The detailed job execution
trace (recorded in relation to virtual simulated time)
is the output that can be analyzed to capture various
traits of individual schedulers (turn around time,
throughput, fairness, capacity guarantee, etc.).

MRPerf [20, 21] analyzes application perfor-
mance on a given Hadoop setup, enabling the eval-
uation of design decisions for fine-tuning and cre-
ating Hadoop clusters. MRPerf was made open
source to be used by the research community to en-
able exploration of design issues, validation of new
algorithms and optimization in MapReduce.

The need for production level traces by some
simulators makes them inappropriate for general
research, since often the traces are proprietary in-
formation and not easily available to the academic
community. Only recently have MapReduce sim-
ulators supported schedulers other than FIFO, Mu-
mak being the first.

A new simulation environment, SLS5 has been
recently introduced by Yahoo! for the YARN
framework includes support for many components
within Hadoop. SLS provides detailed execution
traces as well as resource usage metrics. It even
provides analysis of low-level scheduler opera-
tions, measuring their overhead and assessing scal-
ability. The environment is designed in a modular
fashion to incorporate new scheduler development.
There are many parameters in the simulator itself.
The goals and approach of our work and SLS are
similar, but SLS was not a mature tool at the begin-
ning of our investigation.

Optimizing cluster utilization and reducing
makespan has been studied using job scheduler ad-
justments. HFSP [15] uses a run-time estimate of
job size and age to order jobs; pre-emption priori-
tizes shorter jobs without starvation. Verma et al.
[19] use the FIFO scheduler and choose to order
the jobs optimally to reduce makespan. While there
has been a rich history of scheduling research in the
area of cluster and grid computing, it is beyond the
scope of this work to evaluate the design of such
scheduling algorithms.

5http://hadoop.apache.org/docs/r2.3.0/hadoop-
sls/SchedulerLoadSimulator.html

4 Simulator Implementation
The main code to implement the Capacity Sched-
uler simulator includes 1) queue setup, 2) initializa-
tion poller configuration, 3) job launching and ini-
tialization, 4) the main scheduler driver and 5) job
removal. A new config file was created containing
parameter settings and a conversion program writ-
ten to support multiple users/new job types. The
existing main logic in MRPerf interfaces with the
scheduler code. The stages of MapReduce pro-
cessing are coded as front-end TCL files. Interface
code was required for the Capacity Scheduler code
as was support for multiple heartbeats for reduce
tasks. The Capacity Scheduler component required
500 lines of Python/TCL interface code and 2000
lines of C++ code for processing.

The MRPerf simulator lacked variability be-
tween simulation runs. A fixed set of jobs always
produced the same results because the heartbeat ar-
rival time at the JobTracker was at fixed times and
in the same order as the DataNodes generated ini-
tial heartbeats. This is not realistic as there is al-
ways some randomness in heartbeat arrivals to the
JobTracker due to operating system scheduling and
network communication delays. A random seed
was added to the time at which a node can gen-
erate its first heartbeat to create randomness in the
system in two ways: a node can provide an initial
heartbeat to the JobTracker at a random time, and
no fixed order was placed on the nodes with respect
to the initial heartbeat. The subsequent heartbeat
from a node is generated a multiple of 300 ms later.

5 Simulator Validation
5.1 Setup
The experimental cluster used for validation ex-
periments consisted of 5 nodes on local lab ma-
chines. One node was the JobTracker and NameN-
ode while the other nodes served as TaskTracker
and DataNodes. Each node had a 2.4 Ghz CPU,
4 GB of RAM and 250 GB hard disk, running
Ubuntu 10.04 Linux, executing Hadoop 0.20.203.
The data replication factor was 3. All nodes were
on same rack and connected through a 1 Gbps
switch. The simulator validation was conducted on
a similarly-configured LINUX laptop.

In the validation experiments, Sort and TeraSort
(called TSort hereafter) were used as the jobs as
their output data is proportional to the input data



(a requirement for MRPerf); this kept the valida-
tion simple to implement and evaluate. Two queues
were used, with 2 users per queue. Jobs in each
queue were submitted with an inter-arrival time of
5 seconds, while jobs of the same type in different
queues were submitted at the same time. TeraGen
generated the input data for TSort (RandomWriter
for Sort). TSort used 2 GB of input data, while
Sort used 1 GB of input data, so as to have differ-
ent input data sizes for different types of jobs, but
to keep the dataset size intentionally small and limit
the time required for validation. We generated jobs
in the following order:

• TSort for user 1/user 3 in Queue 1/Queue 2.

• TSort for user 2/user 4 in Queue 1/Queue 2,
respectively, after 5 seconds.

• Sort for user 1/user 3 in Queue 1/Queue 2, re-
spectively, when their TSort job is finished.
The same is done for user 2/user 4 in Queue
1/Queue 2 respectively.

Two different node configurations were used:
one reduce slot per node and two reduce slots per
node. We captured map, reduce, execution and
waiting time. The graphs show the mean of 10
runs and the 95% confidence interval as error bars.
“Job/Number” is used for identification purposes in
both the graphs and the descriptions. Detailed com-
parison of phase execution times is necessary to
identify sources of simulator inaccuracy. Chauhan
[3] contains more experimental results.

5.2 One Reduce Slot per Node
Changing numQueues. In the first experiment, a
single queue with 2 users and 4 jobs in total was
used. In the second experiment, an identical queue
was added (Capacity set at 50% for each queue,
but not modifying maxCapacity). Figure 1 shows
the results. With two queues, the map/reduce/total
execution times increase for all jobs.

The confidence interval for the map execution
time for TSort/2 and TSort/4 was large. The reason
for this was delayed map execution, which occurs
when a job is started before it should be, given the
scheduling discipline in place. If job 1 is submitted
before job 2, then job 2’s map tasks do not exe-
cute until job 1’s map tasks are finished or there
are extra slots remaining idle. In some runs, job 2
gets one or two map slots quickly (even though job

1’s map tasks were not finished). Later, when the
JobTracker received new heartbeats from the Task-
Tracker, job 1 took preference as it was submitted
earlier and until job 1 completed all its map tasks,
there were no job 2 map tasks scheduled.

This occurred only once for TSort/2 and TSort/4
in the real system. These jobs almost always exhib-
ited delayed map execution behaviour in the simu-
lator. This leads to huge differences in execution
and waiting time. The results match closely on the
runs without delayed map execution. Delayed map
execution differences are caused by heartbeat ar-
rival times. The other major factor for TSort’s vari-
ation was straggler tasks in some real system runs
when resources cannot be obtained in time to com-
plete with other map tasks [1].

Delayed map execution also leads to increased
reduce time in some executions. The reduce phase
is started when a certain percentage of map tasks
are completed. By default, it is 0.05% of the total
map tasks. Sort with 1 GB of input data has 16 map
tasks; one map task completion triggers the reduce
phase. However, the reduce phase cannot proceed
fully until the map phase is completed, which will
be delayed until any preceding job completes all its
map tasks. Straggler map tasks affect the reduce
execution of all jobs.

Changing minUserLimitPCT. The minUserLim-
itPCT parameter was changed to 50%, allowing
concurrent execution of map tasks for different
jobs. All map, reduce and overall execution times
increased. This trend was captured by the simula-
tor. The high variation for reduce tasks in the real
cluster shown in Figure 2 is due to stragglers.

5.3 Two Reduce Slots per Node
In this configuration, some jobs’ reduce tasks were
executed in parallel on the same node (the same-
reduce-node effect). Two different graphs are
shown, one with reduce phases in isolation, and one
when paired with another job on the same node,
as the reduce time increases substantially in the
paired configuration, skewing the average elapsed
times. Table 2 shows the number of isolated-paired
cases for the real cluster and simulation runs when
the parameters were varied, respectively. Heart-
beat arrival times affect the relative frequency of
the same-reduce-node effect.

Changing numQueues. The same experimental
parameters were used as with one reduce slot per



(a) 1 queue 100% capacity

(b) 2 queue 50% capacity each

Figure 1: numQueues (one Reduce Slot per Node)

Figure 2: minUserLimitPCT=50%, Capacity=50% (One Reduce Slot per Node)

node. The results are shown in Figure 3. Single
queue results matched well for Sort, but not for
TSort. A small standard deviation exists because of
straggler tasks in some real cluster runs. With the
additional queue, map, reduce and total execution
time increases for all jobs and differeces appear be-
tween the real system and the simulation in both ap-
plications. Delayed map execution happened once
in the real cluster for TSort/2 and TSort/4. Delayed
map execution occurred in all simulation runs. This
helps explain the variation for TSort/2 and TSort/4.
In the real cluster, TSort/2 and TSort/4 started when
the map phase for TSort/1 and TSort/3 ended. In
the simulation runs, they started map execution at
submission time, leading to different waiting times.

Differences in the reduce execution time in Fig-
ure 3(c) can be attributed to the same-reduce-node
effect. The different scale on the graph shows that
the paired reduce is much slower. Two independent
factors cause the variation: 1) which job executes in
parallel with which other job, and 2) when the jobs
pair with each other. In the real cluster, TSort/3 in
particular was always paired with another TSort job
and as TSort jobs execute longer, the reduce execu-
tion time for TSort/3 is much higher than all other
jobs. All other TSort jobs were paired with TSort
as well as Sort jobs, reducing execution times less
than TSort/3. If two jobs start their reduce phase on
the same node simultaneously, they will be affected
by competition for resources. If the reduce phase



(a) 1 queue 100% capacity Cluster

(b) 2 queue 50% capacity Cluster - Isolated reduce

(c) 2 queue 50% capacity Cluster - Paired reduce

Figure 3: numQueues (Two Reduce Slots per Node)

starts later for the second job, there will be less
overlap. Discrepancies between simulation and the
real system can be attributed to heartbeat arrivals.

Changing minUserLimitPCT. The identical ex-
periment was conducted as with one reduce slot per
node. The results in Figure 4 show increasing map,
reduce and execution times captured by the simu-
lator well only in the isolated reduce case. The dif-
ference in the means and large variation for reduce
tasks in the paired-reduce phase is due to the same-
reduce-node effect and delayed map execution.

5.4 Analysis/Summary
The simulator depicts all behaviour observed on
the real cluster for which there is a scheduler com-

ponent modelled. The best results occur with mi-
nUserLimitPCT set to 50% and 2 reduce slots per
node as all simulator averages were within the con-
fidence interval of the real system. The worst re-
sults came with paired-reduce behaviour.

Several factors limited the simulator accuracy.
First, straggler tasks (which are not modelled in
the simulator), and the same-reduce-node effect
occurring more frequently in the simulator in-
creased variability. Second, the simulator does not
model all the different sub-phases of the map/re-
duce phase. Factors like disk access time, CPU and
network contention, prefetching etc. are not mod-
elled in the simulator. Stragglers and same-reduce-
node effect modelling is part of future work.



(a) Isolated reduce phase

(b) Paired reduce phase

Figure 4: minUserLimitPercent (Two Reduce Slots per Node)

Table 2: Isolated-Paired Reduce Runs

Real Cluster
Factor TSort

1
Sort
1

TSort
2

Sort
2

TSort
3

Sort
3

TSort
4

Sort
4

Capacity 10/0 6/4 5/5 8/2 7/3 7/3 7/3 7/3
max Ca-
pacity

9/1 6/4 7/3 8/2 8/2 7/3 5/5 9/1

minUser
Limit-
PCT

6/4 8/2 7/3 7/3 6/4 9/1 7/3 9/1

Simulation
Factor TSort

1
Sort
1

TSort
2

Sort
2

TSort
3

Sort
3

TSort
4

Sort
4

Capacity 2/8 4/6 3/7 7/3 3/7 5/5 5/5 4/6
max Ca-
pacity

2/8 3/7 7/3 4/6 3/7 6/4 4/6 4/6

minUser
Limit-
PCT

4/6 3/7 3/7 5/5 2/8 4/4 4/6 6/4

6 Simulation Experiments
A 31-node cluster was simulated under different
job submission patterns. Each node was configured
identically to the real cluster nodes. This is similar
in size and configuration to Pastorelli et al. [15].
We limited ourselves to the parameters defined in
Table 1 [4]. There were no discernible effects of

UserLimitFactor in the experiments and so, there
are no results presented based on this parameter.

The experiments were designed based on three
questions: 1) What Capacity Scheduler settings can
optimize the performance of short jobs when they
arrive after a sequence of long jobs? In particu-
lar, are there settings that allow some short jobs to
be executed while the majority of the cluster’s re-
sources are occupied by long jobs? 2) What are the
effects of Capacity Scheduler settings where a long
job and a series of short jobs arrive in an interleaved
fashion? 3) Does providing different queues for
short and long jobs improve system performance
and the performance of short jobs in particular?

Two queues were used, each containing 50 jobs
as described in Table 3, motivated by Chen et al.
[5]. A 1 second inter-arrival time was used. The
shuffle ratio is the amount of data generated by the
map phase that needs to be sent to the reduce phase
relative to the input data, while the output ratio is
the size of the output file compared to the input
file. Map compute and Reduce compute are mul-
tiplicative factors representing the processing time
needed per task compared to the smallest job.

A full-factorial experiment with 10 replications
was performed with settings as shown in Table 4.



Table 3: Job Types

Job Description % of job mix Map Reduce Shuffle Output Map Reduce
Type Tasks Tasks ratio ratio compute compute
1 Data transformation 8 100 15 1 1 5 40
2 Aggregate and expand 6 200 1 0.025 3 40 5
3 Expand and aggregate 4 400 30 3 0.025 40 40
4 Data summary 2 800 8 0.075 0.0005 20 20
5 Small job 48 1 1 1 1 1 1
6 Small job 24 2 1 1 1 1 1
7 Small job 8 10 1 1 1 1 1

We defined a short job as one having 10 or fewer
map tasks. We restricted long job sizes to those

Table 4: Parameter Settings: Sequential Job Types

Exp
No

Num
Queues

Capacity Max Ca-
pacity

User
Limit
Factor

Min
User
Limit
PCT

1 2 50-50 -1 1 100
2 2 50-50 50-50 1 100
3 2 50-50 -1 2 100
4 2 50-50 -1 1 25
5 2 50-50 50-50 2 100
6 2 50-50 50-50 1 25
7 2 50-50 -1 2 25
8 2 50-50 50-50 2 25
9 2 70-30 -1 1 100
10 2 70-30 50-50 1 100
11 2 70-30 -1 2 100
12 2 70-30 -1 1 25
13 2 70-30 50-50 2 100
14 2 70-30 50-50 1 25
15 2 70-30 -1 2 25
16 2 70-30 50-50 2 25

considered large (less than 50 GB), ignoring those
which were denoted as very large or huge [5]. In-
cluding these job types would have totally domi-
nated any scheduler settings effect, and are so rare
(less than .002% in the Facebook trace) that the
workload would need to be 3 orders of magnitude
larger to consider their relative occurrence. We
believe this does not affect our ability to evaluate
scheduler performance on common workloads.

To answer the first question, long jobs were sub-
mitted followed by short jobs. To answer the last
two questions, two types of job submission pat-
terns were submitted. In the interleaved case, 4
short jobs were submitted and then a long job until
all 50 jobs were submitted with two equal capacity
queues. Each user had a single job in the system.
In the separate queue case, each queue was split in

a 4:1 ratio, providing 4 queues and allocating more
slots to the long job queues. Table 5 contains pa-
rameter settings for these experiments.

Table 5: Parameter Settings: Separate Job Queues

Exp
No

Num
Queues

Capacity Max Ca-
pacity

User
Limit
Factor

Min
User
Limit
PCT

17 2 50-50 -1 1 100
18 2 50-50 50-50 1 100
19 2 50-50 -1 2 100
20 2 50-50 -1 1 25
21 2 50-50 50-50 2 100
22 2 50-50 50-50 1 25
23 2 50-50 -1 2 25
24 2 50-50 50-50 2 25
25 4 10-10-

40-40
-1 1 100

26 4 10-10-
40-40

10-10-
40-40

1 100

27 4 10-10-
40-40

-1 2 100

28 4 10-10-
40-40

-1 1 25

29 4 10-10-
40-40

10-10-
40-40

2 100

30 4 10-10-
40-40

10-10-
40-40

1 25

31 4 10-10-
40-40

-1 2 25

32 4 10-10-
40-40

10-10-
40-40

2 25

Five important metrics are reported: data local-
ity, response ratio, elapsed time, coefficient of vari-
ation in job execution time and makespan. Data
locality is the percentage of node-local tasks. Re-
sponse ratio is defined as the ratio of execution time
to waiting time. Finally, makespan is the elapsed
time until all jobs are completed.

We model the system from an initially empty
setting. Comprehensive full-scale steady state sim-



ulations would require a much larger job pool and
computation effort to evaluate. As well, this only
addresses an interleaved scenario, in which jobs of
any type can arrive. With temporally segregated
job types, steady state measurements are not infor-
mative, and makespan is not relevant. Our results
will be relevant in a system that experiences tempo-
rary load reductions where resources are not always
fully subscribed and queues occasionally empty.
We show how long the system will be utilized when
given a specific set of tasks. For example, our input
could be the daily set of jobs submitted by 2 orga-
nizations sharing the cluster submitted at a certain
time of day. We are interested in confirming which
parameter settings have an effect on these sample
job submission patterns.

6.1 Equal Capacity Queues
Data Locality. The experiments in the simulation
were done on a single rack. Data locality plays an
important role in MapReduce environments. Re-
duced network activity for node-local tasks should
reduce latency. For small jobs, the percentage
of node-local map tasks scheduled is moderate to
small (between 39% and 47% for Job Type 7, and
between 6% and 12% for Job Type 5). Fewer node-
local tasks means less data locality. For jobs with
1 map task, the distribution was bi-modal (either
node-local or rack-local). Similarly, for jobs with 2
map tasks, the distribution was tri-modal (0, 50 and
100%). For large jobs, the percentage of node-local
tasks is high (from 88% for Job Type 1 to 98% for
Job Type 2). As the number of map tasks increases,
the data is more widely distributed and nodes that
have the data locally can be found.

Changing parameter settings does not signifi-
cantly alter data locality in nearly all cases. The
parameters provide stringent limits to ensure that
a single job/user/queue cannot consume a dispro-
portionate amount of resources. Data locality de-
pends on which TaskTracker gets assigned a task
and whether the data is local. The decision to give
a task to a TaskTracker is determined by the Job-
Tracker running the task scheduler, and is designed
to be independent of Capacity Scheduler parame-
ter settings. The absolute percentage of node-local
tasks varies less than 2% for long jobs. For short
jobs, the relative difference is at most 20% (from
39% to 47% for job type 7 between experiment 1
and experiment 2).

Response Ratio. In Figure 5, we present the ex-
ecution and waiting times for selected job types.
The smallest execution time is for Job Type 5, but
in many of the configurations, an extreme amount
of time is spent waiting. Table 6 shows the average
response ratios for all the job types. The waiting
times for all job types decrease when minUserLim-
itPCT is modified (Experiments 4, 6, 7 and 8). As
well, the response ratio is improved, though less
for the long jobs. Setting minUserLimitPCT allows
more jobs to execute concurrently. The lower value

Table 6: Response Ratio: Equal Capacity

Experiment
Job
Type

1 2 3 4 5 6 7 8

1 1.2 1.2 1.2 1.0 1.2 1.0 1.0 1.0
2 1.9 2.0 2.0 1.5 2.0 1.5 1.5 1.5
3 1.2 1.5 1.5 1.1 1.5 1.2 1.1 1.1
4 2.1 6.7 6.7 1.5 6.8 1.5 1.5 1.5
5 15.0 15.0 14.0 3.0 14.0 3.6 3.2 3.5
6 12.8 12.9 12.8 3.0 12.7 3.0 2.7 3.0
7 10.3 10.4 10.3 1.8 10.5 1.8 1.8 1.9

for response ratio in experiment 1 for Job Type 4 is
an artifact of delayed map execution. The benefit in
elapsed time for most of the job types (in particu-
lar, Job Types 4 and 5) indicates these are preferred
operating configurations.

Elapsed Time. Users are interested in elapsed
time. Does a low response ratio lead to reduced
elapsed time? Execution time increases for all
job types when the response ratio decreases due to
minUserLimitPCT changes, because of increased
competition between the jobs. The improvement
in response ratio does not change elapsed times for
Job Type 2 (in fact, that increases slightly). For
Job Type 4, elapsed time decreases greatly, because
of the factor by which the response ratio improves.
The response ratio changes by only 25% for Job
Type 2. The response ratio for Job Type 4 improves
by a factor of 4; thus, improving elapsed time. This
improvement averages a reduction to 50% of the
original elapsed time. For Job Type 5, elapsed time
decreases by a factor of 4.

Execution Time Variation. The coefficient of
variation in execution time for long jobs was less
than 0.1. For short jobs, it lies in the range of 0.1-
0.5 (Table 7), due to data locality. Node-local data
usually provides very fast map times, but node-
local tasks may take longer than rack-local tasks
if there are co-located map/reduce tasks from the



(a) Job Type 2 (b) Job Type 4

(c) Job Type 5 (d) Job Type 7

Figure 5: Execution And Wait Times For Selected Job Types: Equal Capacity Queues

same or different jobs due to disk contention. Fi-
nally, remote disk contention may occur.

Table 7: Coefficient of Variation: Short Job Types

Experiment
Job
Type

1 2 3 4 5 6 7 8

5 0.18 0.18 0.18 0.18 0.19 0.18 0.49 0.18
6 0.14 0.12 0.14 0.41 0.12 0.31 0.31 0.25
7 0.14 0.13 0.12 0.50 0.15 0.49 0.46 0.42

Makespan. Makespan is similar for both queues
at 1230 seconds for nearly every experiment. The
difference in makespan between the queues is less
than 3 seconds across all experiments (within 0.2%,
except experiment 2, which had a 1.5% smaller
makespan at 1200 seconds). Makespan for the sys-
tem is determined by the longest jobs.

6.2 Differential Capacity Queues
The next set of experiments had the relative queue
capacity changed to 70-30%, so that the smaller
queue is not squeezed for capacity but the larger
queue still dominates resource allocation. The mi-
nUserLimitPCT setting reduces waiting time and
improves response ratio as in the previous scenario

for the high-capacity queue in most cases as shown
in Figure 6. Approximate values of response ra-
tios can be inferred from the diagram. Job Types 1,
2 and 3 did not show elapsed time reduction. Job
Type 4 had an increased response ratio for exper-
iment 9, but other experiments showed slight im-
provements. For the short jobs, there was signif-
icant improvement in response ratio for all exper-
iments. Unfortunately, the improved response ra-
tio in the high-capacity queue was occasionally ac-
companied by a significant increase in elapsed time
for the shorter jobs, most notably experiment 15.

In the low-capacity queue, response ratios are
largely unaffected for the long jobs, except for ex-
periments 10 and 13, where they are over 10, as
compared with around 6.7 for the equal capacity
case. This is when userLimitFactor was set to 2.
For the short job types, most response ratios in-
creased, some substantially. In particular, Job type
5 had an increase in response ratio from 15 to 26
from experiment 2 to experiment 10. Figure 7
shows the execution/waiting times for selected Job
Types for the low capacity queue.

In experiments 10, 13, 14 and 16, where maxCa-
pacity was set to Capacity, neither queue interfered
with the other. Elapsed times were lower for the
high-capacity queue than the low-capacity queue.



(a) Job Type 2 (b) Job Type 4

(c) Job Type 5 (d) Job Type 7

Figure 6: Execution And Wait Times For Selected Job Types: Differential Capacity (70% Queue)

(a) Job Type 2 (b) Job Type 4

(c) Job Type 5 (d) Job Type 7

Figure 7: Execution And Wait Times For Selected Job Types: Differential Capacity (30% Queue)



The magnitude of the differences changed with the
experiment and job type. In particular, experiments
14 and 16 had decreased execution times in both
queues, but the high-capacity queue had decreased
waiting times and the low-capacity queue had in-
creased waiting times.

In all other experiments, there was queue inter-
ference. For Job Type 7, both execution and wait-
ing time increase in experiments 12 and 15 in the
high capacity queue, when compared with the cor-
responding experiments in Figure 5. In the low-
capacity queue, execution time and wait time de-
crease. With minUserLimitPCT used, more users
executed tasks in parallel, sometimes increasing
elapsed times of the high-capacity queue to longer
than the low-capacity queue.

The coefficient of variation of execution time for
long jobs was less than 0.1. Data locality and disk
contention (on either local or remote disk) again
contribute to higher variation for short job types.
Makespan is similar for both queues when maxCa-
pacity is not set; the low-capacity queue can get
additional capacity from the high-capacity queue.
When the maxCapacity limit is used, the high-
capacity queue makespan decreases by an average
of 200 seconds. The low-capacity queue makespan
increases by between 160 and 260 seconds.

6.3 Interleaved Jobs
This section examines performance in a controlled,
but more realistic scenario in a Hadoop cluster: an
interleaving job submission pattern, where 4 short
jobs are followed by 1 long job and so on. Again,
the most important parameter is minUserLimitPCT.
It improved the response ratio for all job types. A
job arriving earlier under default settings gets min-
imal improvement in response ratio as its waiting
time does not change much. Table 8 shows the
response ratios. For a job arriving later, the huge
improvement in waiting time due to minUserLimit-
PCT improves the response ratio significantly (Ex-
periments 20, 22, 23, and 24). Unfortunately, it
does not affect makespan. In a system running over
the longer-term, more shorter jobs could be exe-
cuted and those arriving late would not suffer from
long waiting times; thus, the appearance of a fair
treatment of jobs as suggested by the analysis in
the single queue case. The fact that the response
ratio does not increase for other job types indicates
that resources are being used more evenly.

Table 8: Response Ratio: Interleaved Scenario

Experiment
Job
Type

17 18 19 20 21 22 23 24

1 1.18 1.18 1.18 1.02 1.18 1.02 1.01 1.02
2 1.90 1.94 1.93 1.46 1.91 1.46 1.47 1.47
3 1.35 1.51 1.51 1.15 1.50 1.15 1.15 1.15
4 8.46 8.70 8.91 1.79 8.48 1.79 1.77 1.80
5 2.03 2.02 2.03 1.41 2.02 1.43 1.43 1.42
6 3.19 4.16 4.24 2.47 4.10 2.53 2.53 2.48
7 4.20 6.91 6.85 1.90 6.70 1.89 1.90 1.90

6.4 Separate Job Queues
In Queues 1 and 2 are short job queues and receive
Job Types 5, 6, and 7. Queues 3 and 4 are the long
job queues and receive Job Types 1 through 4.

Setting minUserLimitPCT different than the de-
fault has improved the response ratio in all the con-
ducted experiments so far. Separate queue sub-
mission reveals something different. Instead of
minUserLimitPCT, maxCapacity improves the re-
sponse ratio for short jobs. For long jobs, minUser-
LimitPCT improves the response ratio. Table 9
shows the response ratio for different Job Types.

Table 9: Response Ratio: Separate Queues

Experiment
Job
Type

25 26 27 28 29 30 31 32

1 1.14 1.23 1.25 1.01 1.25 1.01 1.02 1.02
2 1.76 2.21 1.94 1.39 2.18 1.56 1.38 1.54
3 1.19 1.59 1.51 1.12 1.58 1.16 1.12 1.15
4 2.46 9.36 6.51 1.55 9.06 1.73 1.56 1.72
5 13.1 1.20 5.85 4.84 1.18 1.06 5.00 1.08
6 14.1 1.65 7.03 5.22 1.48 1.20 5.18 1.20
7 9.04 1.53 4.18 4.88 1.45 1.27 4.87 1.25

With separate queues, short jobs should finish
faster with lower response ratios. In experiments
25, 27, 28 and 31, where maxCapacity limit is not
imposed, however, the response ratio for short jobs
(Job types 5, 6, and 7) is high due to the long
job queues. These jobs take slots from the short
job queues, leading to huge waiting times for short
jobs. Imposition of limits reverses the trend. The
maxCapacity limit puts an upper bound on the ca-
pacity a queue can use; lower waiting time and
lower response ratios are the result.

Only jobs from a queue should determine the
makespan, but the short job queue was affected by



the long job queue when maxCapacity was not set.
Makespan was between 380 and 430 for Queues
1 and 2 with maxCapacity set, but within 5% of
the long job queue in the other cases and even 3%
longer in experiment 31. Limiting maxCapacity
prevents long job queues from stealing slots from
short job queues. It also decreases waiting times for
short jobs and reduces the short queue makespan.

Figure 8(a) shows that the long job queue inter-
feres with the short job queue, but in Figure 8(b),
isolation is achieved along with good elapsed time
for the shorter jobs. While Job Types 2, 3, and 4
experience longer wait times, only Job Type 4 has
a drastic change in response ratio. This job type is
relatively rare (2% of job mix), and therefore most
jobs are positively affected by this configuration
and the elapsed time of Job Type 4 is unaffected.

6.5 Analysis
We cannot make significant conclusions about the
behaviour and timing of workload scenarios in gen-
eral, due to the limited nature of the workloads and
size of the simulated system. Variability in exe-
cution time caused by factors not modelled by the
simulator prevent accurate predictions (e.g. same
node effect), but our results are consistent within
the restricted mode of operation.

With a long sequence of long jobs followed by
small jobs, minUserLimitPCT plays the most im-
portant role in determining response ratio for spe-
cific job types and arrival times. Changing mi-
nUserLimitPCT also increases competition for re-
sources and increased execution times for the jobs,
with reduction in elapsed time for some job types.

For queues with unequal capacity, maxCapac-
ity can be used for real performance gains. Oth-
erwise, long jobs in the low-capacity queue inter-
fere more often with high-capacity queue. For in-
terleaved jobs, minUserLimitPCT improves the re-
sponse ratio for all jobs, especially later arrivals.

For separate queues, two different behaviours
were observed. With no maxCapacity limits im-
posed, long jobs affect the short job queue by steal-
ing slots, increasing makespan and response ratio.
With maxCapacity limits imposed, the short jobs
are isolated from long jobs. Their response time
is small and makespan is not affected by the long
jobs. Setting minUserLimitPCT to guarantee shar-
ing when there are more jobs than instantaneous
cluster capacity improves the response ratio, but

less than setting maxCapacity.
If queue capacity is to be divided among short

and long jobs, long jobs must be given more ca-
pacity to obtain more slots over time. More accu-
rate job size estimation [15] may have an additional
increase in performance if jobs can be moved be-
tween queues. The examination of job size in terms
of map and reduce tasks distinguishes our analysis
from that of the general HPC community [11].

7 Conclusions/Future Work
There is limited knowledge about the effects of pa-
rameter settings on the performance of the Capacity
Scheduler. In this paper, we integrated the Capac-
ity Scheduler into the open-source Hadoop Simula-
tor MRPerf and validated its performance against a
real test cluster. This exposed some inaccuracies in
the simulation model, namely stragglers and same-
reduce-node effects, but was sufficiently accurate.
Finally, a simulation study was performed to under-
stand and quantify the impact of Capacity Sched-
uler parameter settings on a sample workload under
different job submission patterns. From this limited
set of experiments, the performance improvement
obtained by treating long and short jobs differen-
tially suggests new schedulers that could make use
of previous work in cluster scheduling [7].

MRPerf can be extended to have multiple-disk
support on a single node, memory configuration
and speculative execution. Some sub phases are
not currently modelled. Such sub-phase omission
leads to prediction errors in the simulator as cer-
tain real system behaviours cannot be reproduced.
As well, straggler support and stochastic heartbeat
arrivals can be put into MRPerf.

References
[1] G. Ananthanarayanan, S. Kandula, A. Greenberg,

I. Stoica, Y. Lu, B. Saha, and E. Harris. Reining in
the outliers in map-reduce clusters using Mantri. In
OSDI, pages 1–16, Vancouver, Canada, Oct. 2010.

[2] S. Babu. Towards automatic optimization of
MapReduce programs. In IEEE SoCC, pages 137–
142, Indianapolis, IN, June 2010.

[3] J. Chauhan. Simulation and Performance Evalua-
tion of Hadoop Capacity Scheduler. Masters thesis,
University of Saskatchewan, 2013.

[4] J. Chauhan, D. Makaroff, and W. Grassmann. The
Impact of Capacity Scheduler Configuration set-



(a) Experiment 25 (b) Experiment 26

Figure 8: Separate Queue Scenario wait/execution times

tings on MapReduce Jobs. In IEEE CGC, pages
667–674, Xiangtan, China, Nov. 2012.

[5] Y. Chen, S. Alspaugh, and R. Katz. Interactive an-
alytical processing in big data systems: a cross-
industry study of MapReduce workloads. VLDB
Endowment, 5(12):1802–1813, Aug. 2012.

[6] J. Dean and S. Ghemawat. MapReduce: sim-
plified data processing on large clusters. CACM,
51(1):107–113, Jan. 2008.

[7] N. Fallenbeck, H.-J. Picht, M. Smith, and
B. Freisleben. Xen and the Art of Cluster Schedul-
ing. In VTDC, pages 237–244, Tampa, FL, Nov.
2006.

[8] S. Hammoud, M. Li, Y. Liu, N. K. Alham, and
Z. Liu. MRSim: A discrete event based MapRe-
duce simulator. In Fuzzy Systems and Knowledge
Discovery, pages 2993–2997, Yantai, China, Aug.
2010.

[9] H. Herodotou, H. Lim, G. Luo, N. Borisov,
L. Dong, F. B. Cetin, and S. Babu. Starfish: A Self-
tuning System for Big Data Analytics. In CIDR,
pages 261–272, Asilomar, CA, Jan. 2011.

[10] M. Isard, V. Prabhakaran, J. Currey, U. Wieder,
K. Talwar, and A. Goldberg. Quincy: fair schedul-
ing for distributed computing clusters. In SOSP,
pages 261–276, Big Sky, MT, Oct. 2009.

[11] D. B. Jackson, Q. Snell, and M. J. Clement. Core
Algorithms of the Maui Scheduler. In Revised Pa-
pers from JSSPP, pages 87–102, Cambridge, MA,
June 2001.

[12] D. Jiang, B. C. Ooi, L. Shi, and S. Wu. The per-
formance of MapReduce: an in-depth study. VLDB
Endowment, 3(1-2):472–483, Sept. 2010.

[13] Y. Liu, M. Li, N. K. Alham, and S. Ham-
moud. HSim: A MapReduce Simulator in Enabling
Cloud Computing. Future Gener. Comput. Syst.,
29(1):300–308, Jan. 2013.

[14] A. Murthy. Mumak: Map-Reduce Simulator.
MAPREDUCE-728, 2009.

[15] M. Pastorelli, A. Barbuzzi, D. Carra,
M. Dell’Amico, and P. Michiardi. HFSP:
Size-based scheduling for Hadoop. In 2013 IEEE
Intl. Conf. on Big Data, pages 51–59, Silicon
Valley, CA, Oct. 2013.

[16] F. Teng, L. Yu, and F. Magoulaas. SimMapRe-
duce: A simulator for modeling MapReduce frame-
work. In FTRA Mobile and Ubiquitous Engineer-
ing, pages 277–282, Crete, Greece, June 2011.

[17] V. Vavilapalli, A. Murthy, C. Douglas, S. Agar-
wal, M. Konar, R. Evans, T. Graves, J. Lowe,
H. Shah, S. Seth, B. Saha, C. Curino, O. O’Malley,
S. Radia, B. Reed, and E. Baldeschwieler. Apache
Hadoop YARN: Yet Another Resource Negotiator.
In IEEE SOCC, pages 5:1–5:16, Santa Clara, CA,
Oct. 2013.

[18] A. Verma, L. Cherkasova, and R. H. Campbell.
Play it Again, SimMR! In IEEE CLUSTER, pages
253–261, Austin, TX, Sept. 2011.

[19] A. Verma, L. Cherkasova, and R. H. Campbell.
Two Sides of a Coin: Optimizing the Schedule of
MapReduce Jobs to Minimize Their Makespan and
Improve Cluster Performance. In MASCOTS, pages
11–18, Washington, DC, Aug. 2012.

[20] G. Wang, A. R. Butt, P. Pandey, and K. Gupta. A
simulation approach to evaluating design decisions
in MapReduce setups. In MASCOTS, pages 1 –11,
London, UK, Sept. 2009.

[21] G. Wang, A. R. Butt, P. Pandey, and K. Gupta. Us-
ing realistic simulation for performance analysis of
MapReduce setups. In LSAP Workshop, pages 19–
26, Garching, Germany, June 2009.

[22] M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmele-
egy, S. Shenker, and I. Stoica. Delay scheduling: a
simple technique for achieving locality and fairness
in cluster scheduling. In EUROSYS, pages 265–
278, Paris, France, Apr. 2010.


