
DEVELOPING AND EVALUATING A LOSSLESS COMPRESSION SCHEME FOR
SCIENTIFIC DATA FROM A NANOSATELLITE

Spencer Clark, Dwight Makaroff and Kevin Stanley

Department of Computer Science, University of Saskatchewan,
Saskatoon, SK CANADA S7N 5C9

spencer.c@usask.ca, {makaroff, stanley}@cs.usask.ca

ABSTRACT

This paper examines the problem of of developing a loss-
less compression scheme for data from a nano-satellite being
developed by the University of Saskatchewan Space Design
team, the USST-Sat. The benefit of compressing scientific
data from the satellite will be an increased ability to perform
experiments and downlink the results. Goals for the compres-
sion scheme are to maximize space savings and result in a net
energy savings over storing and transmitting uncompressed
data.

Our evaluations show that the custom scheme that we de-
veloped, called USST-Compress, performs compression as
well as or better than the generic compression schemes eval-
uated, and additionally results in better net energy savings.

Index Terms— Compression algorithms, Data compres-
sion, Low earth orbit satellites, Computer science

1. INTRODUCTION

The University of Saskatchewan Space Design Team (USST)
designed a nanosatellite for measuring total electron content
in the ionosphere as the satellite passed over ground stations,
generating significant data. The data downlink rate was esti-
mated to be 100 kilobits per second, and for only a few min-
utes a day. With the satellite passing over multiple ground
stations per day and collecting data at each station, the pay-
load data can accumulate quickly. Higher compression of pri-
mary payload data makes room for more downlink time for
diagnostic and secondary payload data. The second motiva-
tion for compression is to minimize power usage. The cost
of transmitting data can be much higher than the cost of col-
lecting and processing [1]. The energy cost of compressing a
bit can be much less than the cost of transmitting that bit [2].
By conserving power through compression, the satellite will
be able to complete more duty cycles and/or provide more
power to other non-essential subsystems.

To properly evaluate a compression scheme for this scien-
tific data, we must obtain a collection of sample data for eval-
uation. Due to the novel method of data collection, however,
there exist no records from previous missions, so a method

of simulating record generation was developed. The require-
ments of the artificial data are as follows: 1) the data gener-
ated is easy to place into the format of the USST-Sat’s sci-
entific records, 2) the data is generated with random compo-
nents, 3) erroneous data points are inserted into the data to
simulate sensor error, and 4) it is easy to change data distri-
bution parameters.

By exploiting our knowledge of the structure of payload
data, we were able to develop a compression scheme (USST-
Compress) that combined the best aspects of speed and com-
pression ratio of the two generic compression schemes that in-
spired our experimentation. The compression ratio of USST-
Compress approaches that of a dictionary coder (LZ77 [3]),
but is 3 orders of magnitude faster in execution time, and
therefore consumes less energy for computation.

2. RELATED WORK

Data compression has been studied for years.1 Generic com-
pression algorithms such as Huffman coding [4] and Lempel-
Ziv ’77 [3] (LZ77 ) achieve compression without prior knowl-
edge of the data they compress. Huffman coding creates a
binary tree of codes, where each code is mapped to a sym-
bol that occurs in the target data, Symbols that appear more
frequently are given shorter codes than less frequent symbols.
LZ77 is a dictionary coder, essentially encoding each new
symbol as an extension to a symbol that is already in the dic-
tionary.

Tailoring custom compression schemes to specific types
of data, such as HTML source or fingerprint images has been
shown to achieve improved results. Skibinski exploited the
typical structure of HTML documents [5], and was able to
achieve compression results 8-15% better than generic com-
pression methods. Zirkind encoded fingerprint images in a
tri-color format [6] to achieve a compression ratio of 1:92,
compared to the 1:23 achieved by JPEG compression.

1History of Lossless Data Compression Algorithms.
http://www.ieeeghn.org/wiki/index.php/
History of Lossless Data Compression Algorithms



3. SYSTEM MODEL AND TESTING ENVIRONMENT

The purpose of our algorithm was to leverage known proper-
ties of the data to create a custom data compression scheme
which outperformed typical compression, and was capable
of being run efficiently on the low power CPUs typical of
nanosatellite architectures. Our target architecture was specif-
ically a SAM7S256 microcontroller with 64KB of on-chip
RAM and a 32-bit ARM7 processor running at roughly 50MHz
executing the eCos operating system.2

When the satellite passes over a ground station, it may
perform an experiment, where the payload instrument mea-
sures a series of time differences (∆t’s) between two radio
signals (one at UHF and one at VHF) sent from the ground
station at 100 Hz for an average of 80 seconds along with
GPS fixes for the satellite at both the beginning and end of
the experiment.

Based on information from NASA,3 we devised a method
to model the total electron content (TEC) data that the USST-
Sat experiment is designed to measure. A set of integers is
produced, each representing a time difference between the ar-
rival of VHF and UHF signals from the ground to the satellite,
and two artificial GPS fixes are generated for the satellite’s
position the beginning and end of the experiment. Algorithm
1 describes the process of generating an artificial record.

Algorithm 1: Artificial Record Generation Algorithm
Data: meanSamples, refpointPct , spread, snr, λ
Result: An artificial USST-Sat experiment record

/* Select a ‘seed’ integer for
reference points */

x← RandFromUniform(range = [3995000, 4000000])
/* Choose a number of samples

normally distributed */
numSamples← RandFromNormal(µ =meanSamples,
σ = meanSamples ∗0.2)

/* Generate reference points, create
a cubic spline, representing the
‘pure’ signal without noise */

for i← 1 to (numSamples/100)∗ refpointPct do
refpoints[i]← RandFromNormal(µ = x, σ =
spread∗5000)

pure← CubicSpline(refpoints)

/* Add noise */
whiteNoised← AddWhiteNoise(pure, snr)
final← AddDisruptionsPoisson(whiteNoised, λ)
return final

The algorithm was run 30 times with each combination of
3 different sets of parameters, generating a total of 810 arti-

2SAM7S256 data sheet. http://atmel.com/devices/SAM7S256.aspx
3D. Bilitza. International Reference Ionosphere. http://iri.gsfc.nasa.gov/

ficial records. The parameter values for the data conditions
are shown in table 1. Conditions i, iv, and vii represent a
‘clean’ condition (∆t’s measured have low variance, repre-
senting low noise). Conditions ii, v, and viii represent a mod-
erate condition, and conditions iii, vii, and ix represent the
‘dirty’ condition, with corresponding increases in variance.

Condition Size Variability Noise
Size Ref% Spread SNR λ

i 30000 .02 .06 80 .0001
ii 30000 .04 .12 40 .0002
iii 30000 .08 .24 5 .0004
iv 80000 .02 .06 80 .0001
v 80000 .04 .12 40 .0002
vi 80000 .04 .24 5 .0004
vii 160000 .02 .06 80 .0001
viii 160000 .04 .12 40 .0002
ix 160000 .04 .24 5 .0004

Table 1: Data Conditions.

3.1. Compression Scheme

USST-Compress, exploits knowledge of the experimental record
format and consists of three distinct steps: base subtraction,
differential modulation, and entropy encoding.

Since the body of a single record consists entirely of a
set of integers, they are encoded in 32-bit two’s-complement.
The payload team expects the maximum range of ∆t values
will be roughly 5000, so by subtracting the minumum-value
∆t in the experiment from each other ∆t, we quickly reduce
the storage size required for the measurements to 13 bits.

After base-subtraction, integer values remain. The TEC
measurements are anticipated to reveal a natural random pro-
cess that follows a smooth curve between inflection points.We
exploit this fact using a technique similar to differential mod-
ulation [7]. We define each ∆t value in an experiment record
as a ‘sample.’ The compression algorithm begins by mark-
ing the first sample as a ‘reference sample,’ and then iterates
over each sample in the record. If the difference between the
current sample and the reference sample can be encoded in a
predetermined number of bits bc,4 the sample is recorded in
this way and marked as a ‘residual sample.’ If the difference
between the current sample and the reference sample cannot
be encoded in bc bits, the current sample becomes the new
reference sample. A bitmap is maintained which stores the
status of each sample as either a reference or residual sample.

The final step is re-encoding the result of the differential
encoding step using a general-purpose entropy encoder. The
first two stages of USST-Compress are tailored to the experi-
ment record data and do not compress based on symbol occur-

4which should be less than the number of bits used to encode the base-
subtracted values



rences; content-independent compression can further reduce
the output size.

3.2. Experimental Setup

We employed the compression scheme on data created using
the synthetic data creation algorithm to evaluate performance
relative to existing generic compression schemes. In keeping
with the goals for the compression scheme, we chose to evalu-
ate the candidate compression schemes based on two metrics:
Compression Time, the elapsed time from start to finish of
compressing a record, and Compression Ratio, the amount of
compression achieved. The tests were executed on a 2.53GHz
Intel i5 processor and 4GB of RAM running Mac OSX. The
compression ratio achieved by the algorithms is independent
of hardware. Though the test and target CPUs differ signif-
icantly, we are concerned principally with the relative exe-
cution times of the compression schemes and less concerned
with absolute execution times on target hardware.

Huffman Coding and LZ77 were the two standard com-
pression methods compared against 4 variants of USST-Compress.
The USST-11 and USST-13 algorithms use USST-Compress
with the number of bits to encode a residual sample value
fixed at 11 and 13, respectively, and no entropy-encoding.
HuffmanUSST-11 and HuffmanUSST-13 are the same as USST-
11 and USST-13, but apply Huffman coding for the entropy-
encoding step.

All six algorithms were run with each of the artificial records
in the corpus. Tests were conducted in batches based on the
clean, moderate, and dirty data conditions.

4. EVALUATION

Figure 1 depicts mean compression ratios for each algorithm
in each noise condition. When combined with an entropy-
coding pass with Huffman coding, the results of USST-Compress
are comparable to those of LZ77. Figure 1 is representative
of the charts for other data conditions.

0	
  

0.1	
  

0.2	
  

0.3	
  

0.4	
  

0.5	
  

0.6	
  

0.7	
  

A(low)	
   B(med)	
   C(high)	
  

Co
m
pr
es
si
on

	
  ra
,o

	
  

Noise	
  Condi,on	
  

Compression	
  Ra,o	
  vs.	
  Noise	
  Condi,on	
  	
  

USST-­‐11	
  

USST-­‐13	
  

Huffman	
  

HuffmanUSST-­‐11	
  

HuffmanUSST-­‐13	
  

LZ77	
  

Fig. 1: Compression Ratio vs. Noise Condition. Error bars
are at ± one standard deviation.

The mean time elapsed for compressing an experiment
record across all data conditions is shown in Figure 2. LZ77
is omitted because its execution time was 3 orders of magni-
tude higher than that of the other algorithms. USST-Compress
without entropy-coding is relatively fast, and adding an entropy-
coding pass produced a mean compression time comparable
to Huffman coding alone. When compression time is com-

0	
  

2	
  

4	
  

6	
  

8	
  

10	
  

12	
  

14	
  

US
ST
-­‐11
	
  

US
ST
-­‐13
	
  

Hu
ffm
an
	
  

Hu
ffm
an
US
ST
-­‐11
	
  

Hu
ffm
an
US
ST
-­‐13
	
  

M
ea
n	
  
Co

m
pr
es
si
on

	
  T
im

e	
  
(m

s)
	
  

Mean	
  Compression	
  Time	
  Across	
  all	
  Data	
  
Condi6ons	
  

Fig. 2: Overall mean time elapsed

pared between differing noise and variance conditions, the
relative performance is very similar. Figure 3 shows com-
pression times increasing directly with record size.

0	
  

5	
  

10	
  

15	
  

20	
  

25	
  

30	
  

30	
   80	
   160	
  

Co
m
pr
es
si
on

	
  +
m
e	
  
(m

s)
	
  

Mean	
  Record	
  Size	
  (num.	
  samples	
  x103)	
  

Compression	
  +me	
  vs.	
  Mean	
  Record	
  Size	
  

USST-­‐11	
  

USST-­‐13	
  

Huffman	
  

HuffmanUSST-­‐11	
  

HuffmanUSST-­‐13	
  

Fig. 3: Mean compression time vs. record size.

The energy, storage, and bandwidth constraints of USST-
Sat, combined with knowledge that the bulk of the generated
data would be experimental records containing integers of a
certain format and range, motivated the design of the content-
specific compression scheme USST-Compress. In this paper,
we described USST-Compress and compared it to content-
independant compression algorithms on synthetically-generated
data.

Compression results for USST-Compress with a Huffman
coding final pass are comparable to LZ77, with overall av-



erages of around 20% of the original record size. Huffman
coding alone only managed to compress the test data to about
30% of its original size, while USST-Compress variants with-
out a final entropy-coding pass managed to compress to about
45% of the original size. HuffmanUSST combinations exe-
cution times were comparable to those of Huffman coding, all
averaging 10-13ms. USST-Compress variants without entropy-
coding were the fastest, completing on average in under 6ms.
LZ77 had the longest execution time, taking over 12 seconds.

The results for both evaluation metrics seemed to be gen-
erally independent of changes in the data conditions. This was
contrary to our expectations, and an interesting result. The
conditions chosen were meant to be as realistic as possible for
our application, implying that we can trust our compression
scheme to perform well under expected operating conditions.

Figure 4 represents the estimated average power savings
for each algorithm, for each class of record size. We esti-
mated the cost of transmitting 1 bit at 0.02mJ and the cost per
millisecond of cpu time at 0.25W.5 Compressing saves en-
ergy for all record sizes. The low energy cost of running the
compression operation on the microcontroller makes even the
slowest compression method worthwhile. USST-Compress
variants without an entropy-coding step run many times faster
than LZ77, but are worse candidates in terms of energy sav-
ings because of their lackluster compression results. The two
HuffmanUSST variants show the best energy savings.

0	
  

10000	
  

20000	
  

30000	
  

40000	
  

50000	
  

60000	
  

70000	
  

80000	
  

90000	
  

30	
   80	
   160	
  

Ap
pr
ox
im

at
e	
  
En

er
gy
	
  S
av
ed

	
  (m
J)
	
  

Mean	
  Record	
  Size	
  (num.	
  samples	
  x103)	
  

Approximate	
  Energy	
  Savings	
  vs.	
  Mean	
  Record	
  Size	
  

USST-­‐11	
  

USST-­‐13	
  

Huffman	
  

HuffmanUSST-­‐11	
  

HuffmanUSST-­‐13	
  

LZ77	
  

Fig. 4: Approximate Energy Savings

5. CONCLUSIONS AND FUTURE WORK

USST-Compress is evidently no better at compressing the test
data than LZ77, and no faster than Huffman coding, but it
combines the best aspects of each. The HuffmanUSST vari-
ants consistently proved to compress data 10% better than
Huffman coding alone, and are orders of magnitude faster
than LZ77. This combination of speed and compression per-

5SAMS7S256 Data Sheet, Atmel Corporation
http://atmel.com/devices/SAM7S256.aspx

formance make USST-Compress an excellent method of con-
serving energy, reducing storage requirements and managing
transmission time. It constitutes a novel and interesting ap-
plication of compression techniques to data management for
satellite-based atmospheric scientific measurements.

In the future, we would like to evaluate the performance
on other numerical data with and without the differential en-
coding step to determine how beneficial the step is to the over-
all performance of the algorithm. We are also curious to see
how the number of bits used to store residual values affects
the compression ratio. We would like to explore the possi-
bility of first sorting sample values before calculating resid-
uals. Finally, we would like to see the effect of entropy-
encoding the bitmap separately from the rest of the record
using a different entropy-coding method, such as RLE [8].
We would like to perform more tests with more extreme noise
and variance conditions to better determine the sensitivity of
USST-Compress to changes in the input data. Better mea-
sures of power consumption, such as execution counts for spe-
cific CPU operations, cache hits and misses or total memory
accesses could also prove useful.

6. REFERENCES

[1] N. Kimura and S. Latifi, “A survey on data compression
in wireless sensor networks,” in International Symposium
on Information Technology: Coding and Computing, Las
Vegas, NV, Apr. 2005, pp. 8–13.

[2] K. Barr and K. Asanovic, “Energy Aware Lossless Data
Compression,” in ACM MOBISYS, San Francisco, CA,
June 2003, pp. 231–244.

[3] J. Ziv and A. Lempel, “A Universal Algorithm for Se-
quential Data Compression,” IEEE Trans. on Information
Theory, vol. 23, no. 3, pp. 337–343, May 1977.

[4] D. A. Huffman, “A Method for the Construction of
Minimum-redundancy Codes,” IRE, vol. 40, no. 9, pp.
1098–1101, Sept. 1952.

[5] Przemyslaw Skibinski, “Improving HTML compres-
sion,” Informatica, vol. 33, pp. 363–373, Oct. 2009.

[6] Givon Zirkind, “AFIS data compression: an example
of how domain specific compression algorithms can pro-
duce very high compression ratios,” SIGGRAPH Comput.
Graph., vol. 41, no. 4, pp. 3:1–3:36, Nov. 2007.

[7] M. Nelson, The Data Compression Book, M&T Books,
New York, NY, 1995.

[8] D. Salomon, Data Compression: The Complete Refer-
ence, Springer-Verlag, New York, NY, 1998.


