
Performance Evaluation of Yahoo! S4: A First Look

Jagmohan Chauhan, Shaiful Alam Chowdhury and Dwight Makaroff
Department of Computer Science

University of Saskatchewan
Saskatoon, SK, CANADA S7N 3C9

(jac735, sbc882, makaroff)@cs.usask.ca

Abstract—Processing large data sets has been dominated
recently by the map/reduce programming model [3], originally
proposed by Google and widely adopted through the Apache
Hadoop1 implementation. Over the years, developers have
identified weaknesses of processing data sets in batches as in
MapReduce and have proposed alternatives. One such alterna-
tive is continuous processing of data streams. This is particu-
larly suitable for applications in online analytics, monitoring,
financial data processing and fraud detection that require
timely processing of data, making the delay introduced by
batch processing highly undesirable. This processing paradigm
has led to the development of systems such as Yahoo! S4 [1] and
Twitter Storm.2 Yahoo! S4 is a general-purpose, distributed and
scalable platform that allows programmers to easily develop
applications for processing continuous unbounded streams of
data. As these frameworks are quite young and new, there is a
need to understand their performance for real time applications
and find out the existing issues in terms of scalability, execution
time and fault tolerance.

We did an empirical evaluation of one application on Yahoo!
S4 and focused on the performance in terms of scalability, lost
events and fault tolerance. Findings of our analyses can be
helpful towards understanding the challenges in developing
stream-based data intensive computing tools and thus provid-
ing a guideline for the future development.

Keywords-Yahoo! S4; Performance; Stream-based Data In-
tensive computing

I. INTRODUCTION

Cost-per-click billing model has become common for
online advertisement, and this model is used by various
commercial search engines like Google, Yahoo!, and Bing
[2]. In this model, the advertisers pay the owner of the
website (publisher) according to the number of clicks a
specific ad gains by the users. However, it is a very challeng-
ing task to place the most accordant advertisements in the
appropriate positions on a page. That is why algorithms were
developed to estimate the time varying probability of click
on a specific advertisement, considering user access history,
geographic locations etc. An efficient search engine is capa-
ble to process thousands of queries per second, thus ensuring
that a significant number of appropriate advertisements can
be selected within a very short period of time (citation).

1http://hadoop.apache.org/
2http://engineering.twitter.com/2011/08/storm-is-coming-more-details-

and-plans.html

Inspired by these kinds of applications, especially to process
user feedback, Simple Scalable Streaming System (S4) was
developed by Yahoo! [1] to address the shortcomings of
MapReduce [3], is a tool for distributed stream processing
that applies data mining and machine learning techniques
with the goal of ensuring low latency and scalability.

Disregarding fault tolerance issues, the MapReduce pro-
gramming model enables parallelization of number of batch
data processing tasks that consist of two different functions:
‘map’ and ‘reduce’ [3]. Not surprisingly, because of its effi-
ciency in producing results, MapReduce has become a com-
mon technique in different kinds of real-world applications.
However, with the proliferation of high frequency trading
and real-time search, batch data processing systems, such as
MapReduce, are becoming less satisfactory, indicating the
necessity of significantly scalable software infrastructure for
stream computing. The developers of Yahoo! S4 claim that
the reason it was created was to overcome the shortcomings
encountered by MapReduce in the case of massive amounts
of real-time data processing [1]. In this paper, several
performance issues of S4 are investigated that can be helpful
in designing a more efficient and robust programming model
for future data intensive applications.

In this study, our main focus is on the scalability, lost
events and fault tolerance aspects of Yahoo! S4. The rest
of the paper is organized as follows. Section II discusses
the background and concepts related to Yahoo! S4. Related
work is discussed in Section III. Section IV explains the ex-
perimental testbed and our evaluation methodology. Section
V presents our experimental results and analysis. Finally, the
conclusions are drawn in Section VI, with a brief description
of future work.

II. BACKGROUND

In this section, we discuss the design and architecture
concepts related to Yahoo! S4.3 This design and architecture
distinguishes the deployment context and data processing
philosophy from MapReduce. In S4, data events are routed
to Processing Elements (PEs) on the basis of keys, which
consume the events and do one or both of the following:
1) produce one or more events which may be consumed by

3http://docs.s4.io/manual/overview.html



other PEs, or 2) publish results, either to an external database
or consumer. More details of each of these operations are
provided in the rest of this section.

S4 has been designed to achieve a number of specific
goals that make it usable and efficient. Firstly, language
neutrality was important for developers. Thus an application
in Yahoo! S4 can be written using different languages such
as Java, Python, C++, etc. Secondly, the framework can be
implemented on commodity hardware to enable high avail-
ability and scalability. Thirdly, the processing architecture
is designed to avoid disk access performance bottlenecks.
Latency is minimized for application programs by making
efficient and greater use of memory for processing events.
Finally, a decentralized and symmetric architecture makes
the system more resilient and avoids a single point of failure.

S4 is logically a message-passing system. Figure 1 shows
the Yahoo! S4 architecture.4 Events and the Processing
elements form the core of the Yahoo! S4 framework. Java
objects called Events are the only mode of communication
between the Processing Elements. The external client ap-
plication acts as the source of data which is fed into the
client adapter. The Client adapter converts the incoming
input data into events which are then sent to the Yahoo!
S4 cluster. Every event is associated with a named stream.
The processing elements identify the events with the help of
stream names.

Processing Elements (PEs) are the basic computational
units in S4. Some of the major tasks performed by PEs are
consumption of events, emitting new events and changing
the state of the events. A PE is instantiated for each unique
value of the key attribute. This instantiation is performed
by the S4 framework. Instantiating a new PE can have a
significant overhead and hence the number of values and
keys plays an important role in the performance of Yahoo!
S4. Determining the number of PEs is a challenging task
and should be done carefully to avoid overhead and gain
real performance benefits. Every PE consumes events which
contain the value that is assigned to the PE. As an example,
if we consider a WordCount application, then there can be
a PE named WordCountPE which is instantiated for each
word in the input.

There are two types of PEs: Keyless PEs and PE Proto-
types.

• A Keyless PE has no keyed attribute or value and
consumes all events on the stream with which it is
associated through a stream name. Keyless PEs are
generally used at the entry point of Yahoo! S4 cluster
because events are not assigned any keys. The assign-
ment of keys to the events is done later. Keyless PE’s
are helpful when every input data is to be consumed
without any distinction.

• PE Prototypes serve as a skeleton for PEs with only

4adapted from http://docs.s4.io/manual/client adapter.html

Figure 1. Yahoo! S4 Framework

the first three components of a PE’s identity assigned
(functionality, stream name, and keyed attribute). As it
is not a fully formed PE, the attribute value is unas-
signed. This object is configured upon initialization.
Later, when a fully qualified PE with a value V is
needed, the object is cloned to create fully qualified
PEs of that class with identical configuration and value
V for the keyed attribute.

PEs are executed on Processing Nodes (PN), whose major
tasks involve listening to events, executing operations on
incoming events, dispatching events and generating output
events. To send an event to an appropriate PE, Yahoo! S4
initially routes the event to PNs based on a hash function
of the values of all known keyed attributes in that event.
Once the event reaches the appropriate PN, an event listener
in the PN passes incoming event to the processing element
container (PEC) which invokes the appropriate PEs in the
appropriate order.

The client adapter enables the Yahoo! S4 cluster to
interact with the outside world, implementing a JSON-based
API, for which client drivers are written. The external clients
to Yahoo! S4, injects the events as and when they are
generated into the Yahoo! S4 cluster with the help of adapter.
Similarly, the external clients can receive events from S4
cluster through the adapter via the Communication Layer.

III. RELATED WORK

The work on stream-based data intensive computing can
be divided into two broad categories: developing new plat-
forms and performance evaluations of those frameworks.
These will be discussed in the rest of this section.

With respect to developing new and efficient stream-based
data intensive computing platforms, Gulisano, Jiminez-
Peris, Patino-Martinez, Soriente and Valduriez [5] proposed
StreamCloud, a scalable and elastic data streaming system



for processing large data stream volumes. StreamCloud splits
queries into subqueries for parallelization and dispatches
them to independent sets of nodes for minimal overhead of
distribution. It also provides a parallelization strategy that
is fully transparent, producing executions equivalent to non-
parallel Stream Processing Engine (SPEs).

Borealis [6] is a second-generation distributed stream
processing engine. It inherits core stream processing func-
tionality from Aurora [7] and distribution functionality from
Medusa [8], but has enhanced functionality that has evolved
as a result of new requirements from the applications.
Aurora is a high performance stream processing engine,
which has a collection of operators, workflow orientation,
and strives to maximize quality of service for connecting
applications. In contrast, Medusa was introduced to provide
networking infrastructure for Aurora operations. It does
some of the tasks including supporting a distributed naming
scheme, collection of distributed catalogs that store the
pieces of a distributed workflow and their interconnections,
and transportation of message between components. Borealis
modifies and extends both systems in non-trivial and critical
ways to provide advanced capabilities that are commonly
required by newly-emerging stream processing applications.

Some research efforts have been directed towards mak-
ing MapReduce a real-time stream processing engine. One
such effort is by Condie et al. [9] named Hadoop Online
Prototype (HOP). They modified Hadoop framework to
support online aggregation and continuous queries. HOP
is backwards compatible with Hadoop, with the property
that existing applications do not need to be modified. Other
research efforts include DEDUCE [10]. It extends IBM’s
System ‘S’ stream processing middleware with support for
MapReduce to combine the benefits of MapReduce and
stream processing to address the data processing needs of
some applications like market data analysis.

All the works described earlier are efforts done by the
researchers and evaluated by themselves. System ‘S’ from
IBM, Yahoo! S4 and TwitterStorm are some of commercial
stream processing distributed frameworks. From the analysis
of existing literature, we found out that although a lot of
work has been done on developing new platforms, there
exists a little work on the performance evaluation of these
platforms. In fact, we found only one existing work doing
such an evaluation.

Dayarathna, Takeno and Suzumura [11] compared the
performance of Yahoo! S4 and System ‘S’. The major aim of
their work was to investigate and characterize which archi-
tecture is better for handling which type of stream processing
workloads and observe the reasons for such characteristics.
They observed that properly designed stream applications
result in high throughput. Another conclusion they arrived
at is that choice of a stream processing system should
be done carefully considering factors such as performance,
platform independence, and size of the jobs. Our work can

be considered as an extension to their work. They focused
only on the scalability aspects of Yahoo! S4, while we have
also focused on other aspects like resource usage and fault
tolerance. Some of our findings like heavy network usage
in Yahoo! S4 confirms their results. However, our work also
presents some new insights about Yahoo! S4 performance
aspects.

IV. EXPERIMENTAL SETUP AND METHODOLOGY

In order to evaluate the performance of Yahoo! S4, a
4-node cluster is used in this work. All the nodes are
homogeneous and have the same configuration. Each node
consists of a Core 2 duo 2.4 Ghz processor with 2 GB of
memory and 1 GBps network card. All the machines are
part of the same rack. We designated one of the nodes as
a Client adapter to pump the events into the Yahoo! S4
cluster. The other 3 nodes form the Yahoo! S4 cluster. For
the experiments, we used Yahoo! S4 code base version 0.3.0.

Our experimental evaluation used a benchmark kernel
application that we developed that stressed the scalability
of the Yahoo! S4 architecture/infrastructure in a simple,
predictable manner. This application reads “words” from a
file through the client adapter. The number of words depends
on the data size in our experiments. For example, in case
of 10 MB of data size, the number of words were 200,000
and each of the words was 100 characters long. Most of
the words in the file are actually numbers as they don’t
contain any non-digit characters. The client adapter converts
them into events and pumps them to the Yahoo! S4 cluster.
Figure 2 shows the logical ordering of different PE’s and
the execution flow of events for our application in Yahoo!
S4. Our application works in the following way:

1) The client application reads from the file which con-
tain 100 character long words line by line and send
them to client adapter.

2) The client adapter gets each word which is 100 char-
acters long, converts it into an event and sends it to
the WordReceiver PE.

3) WordReceiver PE gets the event RawWords. It checks
if the word is a number, create events named Eleven
and Three and send them for further processing.

4) Both ElevenReceiver and ThreeReceiver PE get events
from WordReceiver PE. ElevenReceiver PE checks if
the number is divisible by 11. Similarly, ThreeRe-
ceiver checks if the number is divisible by 3.

5) AggregationReceiver gets the number of events pro-
cessed by ThreeReceiver PE and counts them and puts
it in a output file.

The size of the numbers make the work of ElevenReceiver
and ThreeReceiver significantly more computationally ex-
pensive as simple division operation can not be applied. In
order to check if a number is divisible by 3 or 11, appropriate
string operations were applied. Although, not a typical
benchmark, the size of the words make the processing



Figure 2. Event Flow

computationally expensive enough to evaluate Yahoo! S4 in
our case. Each experiment was repeated 5 times and the
average results are shown here. We did not observe any
significant variance in any case.

We focused on three different performance metrics in our
study:

• Scalability and lost events: We checked how increasing
the number of nodes affects the execution time and lost
events rate.

• Resource usage: We measured the CPU, memory, disk
and network usage at each node to see how resources
are used in Yahoo! S4.

• Fault tolerance: We looked for the events handled when
some nodes goes down in cluster. We also checked how
many events were missed after the node goes down in
cluster.

V. ANALYSIS

A. Scalability

In this scenario we evaluated the scalability of the Ya-
hoo! S4 cluster. We used two different data sizes in these
experiments. The size of one data input was 10 MB and
size of second data set was 100 MB. The other parameter
we changed was the number of keys. The number of keys
defines the number of PEs, which can be instantiated in the
cluster. We also controlled the rate of event injection into
the Yahoo! S4 cluster. It was done at two places. The first
place was the client adapter where in one case we pumped
data at the rate of 500 events/second, while in the other
case the rate was 1000 events/second. The second place was
at WordReceiver PE. Depending on the number of keys,
we multiplied the number of events. For example, if the
number of keys we instantiated is 4, then the number of
new events created in WordReceiver PE for ElevenReceiver
and ThreeReceiver PE was multiplied by 4.

The first result is shown in Figure 3(a) for 10 MB of
streaming data. The AggregateReceiver PE gives the count
of the events processed by the Yahoo! S4 cluster for events
of type Three. In the input data file, 50000 words were
numbers divisible by three out of 200,000 words. Therefore,
in an ideal scenario the number of processed events should
be 50,000 when number of keys is 1. With increasing
number of keys, the events are multiplied at WordReceiver
as explained before and hence the number of events are
increased by factor of 2, 4 and 8, respectively. We can
see from the graph that the number of events processed by
Yahoo! S4 increases when the number of nodes goes from
1 to 2. This is expected because with increasing nodes the
scalability will increase. With increasing number of keys (i.e.
PEs), the effect becomes more pronounced. As the amount
of data is huge, it become difficult for just one node to
process and the result is the loss of many events.

The most important observation which can be seen from
the graph is that when the number of nodes is increased
from 2 to 3, the number of processed events goes down or
remains similar when the number of key is 1, 2 and 4. This
emphasizes that increasing the number of nodes does not al-
ways increase throughput. The overhead of communication,
and distribution can be attributed for this phenomenon. We
can see that when the number of keys is 8 (which means a
deluge of events), the extra third node helps as it overcomes
the overhead we observed with fewer keys. The graph in
Figure 3(b) shows the results when the data size is 100 MB,
showing the same trends as the 10 MB case.

Figure 4 shows the event loss percentage for both the
data sizes. The number of events lost is highest for single
node scenario. The number of events lost is lower for 2-
node scenario than 3-node scenario, except the case where
the number of keys is 8.

We initially were keen to measure the execution time
and we expected that with increasing number of nodes the
time shall decrease. We did not set any event injection
rate in such case. However, what we observed was that
with increasing number of nodes the time for execution
was increasing. After deep investigation, we found out that
the shorter execution time for a single node was because
more events were dropped. Thus, when the number of nodes
was increased, the number of events successfully processed
increased and hence execution time increased.

Sending and processing are asynchronous (incoming
events are queued and sequentially processed, like in the
actors model [12]) in Yahoo! S4. However, in the current
version of S4, there is only 1 thread that processes events
at the application level.

B. Resource usage

The resource usage of all the nodes for 10 MB and 100
MB of input data is shown in various tables and graphs in
this section. Table I and Figure 5 show the resource usage



(a) Scalability for data size of 10 MB (b) Scalability for data size of 100 MB

Figure 3. Scalability results

(a) Event Loss percentage for data size of 10 MB (b) Event Loss percentage for data size of 100 MB

Figure 4. Event Loss percentage results

stats when only one node is present in Yahoo! S4 cluster.
The usage of resources increase with more events and a
larger number of keys. We did not show the disk usage as
it was not more than 5% in any of the executed scenarios.
This shows that the Yahoo! S4 architecture fulfills the design
goal of removing the I/O bottleneck and performing most of
the execution in memory.

We can see how memory is used heavily in Table II.
We can also observe an interesting fact that the network
transmitted packets are less than network received packets
for node 2, which is quite opposite in all other cases. The
same trend can be seen in Table III. The reason is the
unequal sharing of work between the nodes by Yahoo! S4.
So, one of the nodes may get less work compared to others
and hence their resources are not used as much, compared
to the other nodes. From the logs we saw that in the 3-node
case, one of the nodes was getting twice the amount of work
in terms of event processing than the other 2 nodes. Node 2
in Table II and Table III gets most of the work and hence its
resource usage is highest and as number of events coming
for processing are more than other nodes. In Figures 6 and
7, the stats for network reception are shown to be higher
than network transmission for node 2.

Table IV and Figure 8 show the resource usage statistics

Keys
1 2 4 8

Rate
500 CPU % 17.5 25 50 75

Memory % 65 65 65 78

1000 CPU % 22.5 47.5 70 80
Memory % 65 65 74 72

Table I
RESOURCE USAGE FOR 1-NODE CLUSTER (10 MB OF DATA)

Figure 5. Network stats for data size of 10 MB (1-node cluster)

for data size of 100 MB and a single node cluster. Due to
high event loss, the resource usage goes down for data rate
of 1000 and 8 keys. Tables V and VI show similar trends



Keys
Node Rate Resource 1 2 4 8

1
500 CPU % 5 15 30 50

Memory % 71 71 71 71

1000 CPU % 10 25 55 80
Memory % 71 71 71 78

2
500 CPU % 15 20 40 60

Memory % 88 82 92 92

1000 CPU % 20 35 70 85
Memory % 96 96 96 96

Table II
RESOURCE USAGE FOR 2-NODE CLUSTER (10 MB OF DATA)

Figure 6. Network stats for data size of 10 MB (2-node cluster)

with 100 MB data size as the results for 10 MB data size,
for the CPU and Memory usage. This was expected as the
data injection rate is the same; the only difference is the
data size. The network statistics are shown in Figures 9 and
10. Node 2 gets the bulk of work and hence its resource
consumption is the highest.

C. Fault Tolerance

In this section, we measured how throughput is affected
when nodes in the cluster go down and how this affects

Keys
Node Rate Resource 1 2 4 8

1
500 CPU 5 12 18 40

Memory 65 65 65 65

1000 CPU 7 25 30 70
Memory 65 65 65 68

2
500 CPU 8 18 35 60

Memory 88 96 90 96

1000 CPU 15 35 70 85
Memory 95 96 96 96

3
500 CPU 17 15 25 40

Memory 61 64 64 64

1000 CPU 23 20 40 60
Memory 61 62 66 66

Table III
RESOURCE USAGE FOR 3-NODE CLUSTER (10 MB OF DATA)

Figure 7. Network stats for data size of 10 MB - 3-node cluster

Keys
1 2 4 8

Rate
500 CPU 15 25 45 70

Memory 56 57 62 87

1000 CPU 25 45 70 70
Memory 56 60 96 70

Table IV
RESOURCE USAGE FOR 1-NODE CLUSTER (100 MB OF DATA)

Figure 8. Network stats for data size of 100 MB (1-node cluster)

Keys
Node Rate Resource 1 2 4 8

1
500 CPU 5 15 28 52

Memory 51 50 48 50

1000 CPU 8 28 55 82
Memory 53 50 52 72

2
500 CPU 14 20 38 75

Memory 96 96 96 96

1000 CPU 22 35 72 85
Memory 96 96 96 96

Table V
RESOURCE USAGE FOR 2-NODE CLUSTER (100 MB OF DATA)



Figure 9. Network stats for data size of 100 MB for 2-node cluster

Keys
Node Rate Resource 1 2 4 8

1
500 CPU 5 12 18 40

Memory 57 58 68 70

1000 CPU 6 25 30 70
Memory 57 68 69 75

2
500 CPU 8 18 35 65

Memory 96 96 96 96

1000 CPU 12 35 60 85
Memory 96 96 96 96

3
500 CPU 10 8 18 35

Memory 58 60 61 62

1000 CPU 18 12 35 60
Memory 60 63 62 66

Table VI
RESOURCE USAGE FOR 3-NODE CLUSTER (100 MB OF DATA)

the remaining standing nodes. We only did experiments on
the 10 MB input data size. We examined a few selected
scenarios and results are shown in Figure 11. The stacked
column shows the number of events processed by each node.
For each experiment, we first measured the total execution
time. After measuring it, we did the same experiment but
killed the nodes when the execution was half way through.
In the 2-node scenario, we only killed a single node. In the

Figure 10. Network stats for data size of 100 MB for 3-node cluster

3-node scenario, we killed 1 or 2 nodes in different runs.
We can see that as expected the number of events processed
by Yahoo! S4 cluster goes down substantially. We can check
this by comparing Figure 11 with Figure 3. In Figure 11,
the first two columns show the 2-node scenario with one
node going down, while the other columns shows the 3-
node scenario with 1 or 2 nodes failed as indicated. The
throughput dropped to 55% in the 2 node scenario. The
throughput dropped to 68% in the 3-node scenario with a
single node failure and when 2 nodes failed, it dropped to
around 50%. We expected that when one node goes down,
the other node shall take the responsibility and shall process
more events than it was processing earlier in the normal
scenario. This was not the case and we obtained a different
outcome. With one or more nodes down, the number of
events being sent to the remaining nodes become very high
and overwhelms them, leading to much higher event loss.
Due to this sudden unexpected data rate, the remaining nodes
could not even keep up their earlier processing rate and they
perform even worse (i.e. processing fewer events than they
were doing under normal conditions).

Figure 11. Total Events Processed for data size of 10 MB under node
failures.

VI. CONCLUSIONS AND FURTHER WORK

We did an empirical evaluation on a Yahoo! S4 cluster
to measure its scalability, resource usage patterns and fault
tolerance. Based on our empirical study we can conclude a
few key points:

• The throughout in terms of number of events processed
does not necessarily increase with increasing number of
nodes. The initial overhead can be sometimes high to
subdue the advantage of adding more nodes. However,
once the overhead is diminished the throughput is
increased. We can see that in our experiment, increasing
the number of nodes from 2 to 3 helps only when the
number of keys was 8. This articulates that appropriate
understanding of the actual workload is necessary be-
fore deciding the number of nodes in Yahoo! S4 and is
not an easy task.



• Yahoo! S4 distributes the events unequally which leads
to more resource consumption on some nodes than oth-
ers. We think that event distribution algorithm should
be improved in Yahoo! S4 and the event distribution
should be equal to have better load balancing among
the nodes.

• Yahoo! S4 fault tolerance is not up to the expectation.
When a node goes down, Yahoo! S4 tries to send the
events to the remaining nodes but the rate of events
overwhelm the remaining nodes and leads them to
under-perform. This means the remaining nodes must
have extra processing capabilities compared to failed
nodes to handle unexpected conditions but it is not pos-
sible in a homogeneous environment. The experimental
results also suggests that these nodes have to be over-
provisioned to meet performance requirements, which
is not a good way to manage the resources in a cluster.

• For platforms like Yahoo! S4, the rate of event loss, not
the execution time, is the correct performance metric to
investigate for the type of benchmark we evaluated.

• The network is used heavily in Yahoo! S4 and the
availability can be an issue for high network bandwidth
demanding applications. Most of the processing of
events is done in memory, which totally eliminates the
disk bottleneck.

• The events are passed from one PE to another one using
UDP. So, in case UDP datagrams get lost because of
network issues, there is no acknowledgement technique
currently available at application level.

We performed experiments at two input data rates: 500
and 1000 events/second. Un-throttled event generation over-
saturated the system, providing unacceptable performance.
Rates much lower than 500 did not stress the system at all.
A systematic evaluation of the effect of input data rate on
the resource usage, event loss and packet processing rates is
planned as future work.

TwitterStorm is yet another platform similar to Yahoo! S4.
As these frameworks are young and new, there is need to
understand their performance and this motivates us to do this
work. As future work, we plan to compare the performance
of Yahoo! S4 and TwitterStorm. We are especially interested
to find out the scenarios where one of them outperforms
another. This evaluation will help us to identify the good
features from both of the tools, which might be instrumental
for future development of stream-based, data intensive tools.

REFERENCES

[1] L. Neumeyer, B. Robbins, A. Nair, and A. Kesari, “S4:
Distributed Stream Computing Platform,” in 2010 IEEE Data

Mining Workshops (ICDMW), Sydney, Australia, Dec. 2010,
pp. 170 –177.

[2] B. Edelman, M. Ostrovsky, M. Schwarz, T. D. Fudenberg,
L. Kaplow, R. Lee, P. Milgrom, M. Niederle, and A. Pakes,

“Internet Advertising and the Generalized Second Price Auc-
tion: Selling Billions of Dollars Worth of Keywords,” Amer-
ican Economic Review, vol. 97, 2005.

[3] J. Dean and S. Ghemawat, “Mapreduce: Simplified Data
Processing on Large Clusters,” Communications of the ACM,
vol. 51, no. 1, pp. 107–113, Jan. 2008.

[4] M. Stonebraker, U. Çetintemel, and S. Zdonik, “The 8 Re-
quirements of Real-Time Stream Processing,” SIGMOD Rec.,
vol. 34, no. 4, pp. 42–47, Dec. 2005.

[5] V. Gulisano, R. Jimenez-Peris, M. Patino-Martinez, C. Sori-
ente, and P. Valduriez, “Streamcloud: An Elastic and Scalable
Data Streaming System,” IEEE Transactions on Parallel and
Distributed Systems, vol. PP, no. 99, p. 1, Jan. 2012.

[6] D. J. Abadi, Y. Ahmad, M. Balazinska, M. Cherniack, J. hyon
Hwang, W. Lindner, A. S. Maskey, E. Rasin, E. Ryvkina,
N. Tatbul, Y. Xing, and S. Zdonik, “The Design of the Bore-
alis Stream Processing Engine,” in Conference on Innovative
Data Systems Research (CIDR), Asilomar, CA, Jan. 2005, pp.
277–289.

[7] D. Carney, U. Çetintemel, M. Cherniack, C. Convey, S. Lee,
G. Seidman, M. Stonebraker, N. Tatbul, and S. Zdonik,
“Monitoring Streams: a New Class of Data Management
Applications,” in Proceedings of the 28th VLDB Conference,
Hong Kong, China, Aug. 2002, pp. 215–226.

[8] S. Z. Sbz, S. Zdonik, M. Stonebraker, M. Cherniack, U. C.
Etintemel, M. Balazinska, and H. Balakrishnan, “The Au-
rora and Medusa projects,” IEEE Data Engineering Bulletin,
vol. 26, 2003.

[9] T. Condie, N. Conway, P. Alvaro, J. M. Hellerstein, J. Gerth,
J. Talbot, K. Elmeleegy, and R. Sears, “Online Aggregation
and Continuous Query Support in MapReduce,” in Proceed-
ings of the 2010 SIGMOD Conference, Indianapolis, Indiana,
Jun. 2010, pp. 1115–1118.

[10] V. Kumar, H. Andrade, B. Gedik, and K.-L. Wu, “Deduce:
at the Intersection of MapReduce and Stream Processing,”
in Proceedings of the 13th EDBT Conference, Lausanne,
Switzerland, Mar. 2010, pp. 657–662.

[11] M. Dayarathna, S. Takeno, and T. Suzumura, “A Performance
Study on Operator-Based Stream Processing Systems,” in
2011 IEEE International Symposium on Workload Charac-
terization (IISWC), Austin, TX, Nov. 2011, p. 79.

[12] G. Agha, Actors: A Model of Concurrent Computation in
Distributed Systems. Cambridge, MA: MIT Press, 1986.


