
Proc. 2001 Computer Measurement Group Conference, Orlando, FL, Dec., 2001.

TESTING E-COMMERCE SITE SCALABILITY WITH TPC-W

Ronald C Dodge JR Daniel A. Menascé Daniel Barbará
United States Army Dept. of Computer Science Dept. of Information and

Software Engineering
Fort Leavenworth, KS 66027 George Mason University

Fairfax, VA 22030-444
ronald.dodge@us.army.mil menasce@cs.gmu.edu dbarbara@ise.gmu.edu

Being able to assess the scalability of Web and e-commerce sites is a challenge. The
Transaction Processing Council (TPC) recently released a benchmark for e-commerce
sites. This benchmark, called TPC-W, measures a system under test using Web
Interactions per Second (WIPS) as its primary metric. This paper describes the
benchmark's main features, the authors’ experience in building a TPC-W compliant e-
commerce site and a workload generator for TPC-W. It also presents performance
metrics and an analysis of self-similarity obtained with the TPC-W site.

1. Introduction

By any measure, the growth of e-commerce activity
is remarkable, prompting the need for continuing
evaluation of how to provide better services under
an enduring and increasing demand on Internet
resources. The scalability analysis of e-commerce
sites presents many challenges as described in [11].
 One of these challenges has to do with the need to
characterize the workload of these sites in a
representative way. Many studies have been
conducted with the purpose of understanding the
workload of e-commerce sites and searching for
invariants that cut across more than one type of e-
commerce site [12,13]. The workload imposed by
robots (e.g., pricebots and crawlers) was
characterized recently [3] and their impact on Web
caching was analyzed [4].

When comparing two systems (software, hardware,
and architecture) that deliver e-commerce services
we need to use a standard benchmark that is
representative of e-commerce workloads and that
can scale as needed. The term scalability here is
related to both an increase in the number of users
and an increase in the database size (e.g., number
of customer orders, number of items in the catalog).
The only available benchmark for e-commerce is
TPC-W, designed by the Transaction Processing
Council (www.tpc.org). This paper describes our
experience in building a TPC-W compliant e-

commerce site, called hereafter a TPC-W site, as
well as a workload generator for that site.

The rest of the paper is organized as follows.
Section two talks about workload characterization for
e-commerce and describes the Customer Behavior
Model Graph (CBMG). Section three, discusses
TPC-W and presents its main elements and metrics.
 The next section presents the TPC-W site we
developed along with the workload generator.
Section five discusses some results on the use of
the TPC-W workload generator. Section six
presents concluding remarks.

2. Workload Characterization for E-
commerce

The workload of Web sites that provide information
has been extensively studied and characterized at
the level of HTTP requests [1, 2, 5, 7]. In e-
commerce, customers interact with the site through
sessions, which are sequences of consecutive
requests to execute e-business functions (e.g.,
search, browse, select, add to cart, login, register,
and pay) during a single visit to the site. Therefore,
the workload of e-commerce sites is better described
at the level of sessions. One way to capture the
navigational pattern within a session is through the
Customer Behavior Model Graph (CBMG) [10, 13],
which describes patterns of user behavior, i.e., how
users navigate through the site, which functions they

 1

http://www.tpc.org/

Proc. 2001 Computer Measurement Group Conference, Orlando, FL, Dec., 2001.

use and how often, and the frequency of transition
from one e-business function to the other. Figure
2.1 depicts an example of a CBMG showing that
customers may be in several different states—
Home, Browse, Search, Select, Add, and Pay—and
they may transition between these states as
indicated by the arcs connecting the states. The
numbers along the transitions indicate the probability
of making the transition. A state not explicitly
represented in the figure is the Exit state.
Transitions to the Exit state are indicated by arrows
leaving a state and not going to any other state in
the figure. For example, the probability of going to
the Exit state out of the Browse state is 0.15.

home

browse

search

add select

pay

0.5

0.5
0.3

0.3

0.35

0.35 0.15

0.15 0.2

0.2

0.3

0.3

0.3

0.1

0.2

0.1
0.4

0.10.1

0.1 1.0

entry

1.0

Figure 2.1 – Example of a Customer Behavior

Model Graph (CBMG)
Clearly, several patterns of user behavior may be
detected for the same site. For example, a fraction
of the visits may come from occasional buyers who
spend a lot of time “window-shopping” but very
seldom buy anything. Other visits to the site may
exhibit a pattern of heavy buyers, i.e., customers
who know what they want and with a few clicks
select one or more items, order and pay for them. It
is important to realize that different customer
behavior patterns generate different loads on the IT
resources that support the site.

Another important result that has been reported in
the recent literature [1,12] on workload
characterization of Web and e-commerce sites
shows a strong indication of Zipf’s Law behavior.
Zipf’s Law [14]—a rather old result that empirically
related the occurrence and popularity of words in a
text—rephrased for the Web, states that if the
objects requested are ranked from most popular
(rank = 1) to least popular, then the number of
references, P, to an object is inversely proportional
to its rank r. That is, for some positive
constant k. This result indicates that relatively few
objects account for the majority of the references.
The workload of high-volume online bookstore and
auction sites was analyzed in [12]. The results
indicated that 71% and 85.3% of all requests (from
the bookstore and auction site, respectively) were

for inline images. This high percentage of
cacheable data coupled with the results of Zipf’s
Law strongly support the effectiveness of caching
and the use of Content Delivery Networks (CDNs) in
e-commerce environments.

rkP /�

Another result from [12] furthered the evidence
presented in [2,5,7] of self-similar and bursty
behavior. The resulting data showed both the
bursty nature of e-commerce sessions and self-
similar behavior. Self-similarity refers to similar
bursty behavior across multiple time scales. The
workload spikes experienced in WWW traffic are
particularly critical for an e-business.

The results from [12] show that the session length,
measured in number of requests to execute e-
business functions, is heavy-tailed. In particular, the
study showed that e-commerce sites are subject to
factors that impact the tail of this distribution. Such
factors include robot agents from price comparison
robots and search engines that traverse the
structure of an e-commerce site and tend to skew
the length of sessions toward heavy-tailed
distributions (e.g., Pareto). Sites that do not exhibit
the agent behavior in the logs tend to exhibit lighter
tails than those where the agent activity is observed.

3. TPC-W: A Benchmark for E-commerce

The Transaction Processing Performance Council
(TPC) (www.tpc.org) provides industry standard
methods for quantitatively measuring a system’s
transaction processing performance against a
common standard as well as the performance of
other systems. The TPC regards a transaction, as it
is commonly understood in the business world: as a
commercial exchange of goods, services, or money.
A typical transaction, as defined by the TPC, would
include the updating of a database system for such
things as inventory control (goods), airline
reservations (services), or banking (money). The
council has developed performance benchmarks
that measure transaction processing (TP) and
database (DB) performance in terms of how many
transactions a given system and database can
perform per unit of time, e.g., transactions per
second or transactions per minute.

The TPC expanded its suite of benchmarks in 2000
to include a transactional web benchmark for E-
commerce systems, the TPC™ Benchmark W (TPC-
W). The workload is performed in a controlled
Internet commerce environment that simulates the
activities of a business-oriented transactional web
site. In the case of TPC-W the benchmark mimics
the functionality of an online bookstore. The
workload exercises a breadth of system components
associated with such environments, which are
characterized by:

 2

Proc. 2001 Computer Measurement Group Conference, Orlando, FL, Dec., 2001.

�� Multiple on-line browser sessions

�� Dynamic page generation with database
access and update

�� Consistent web objects

�� Use of Secure Socket Layers (SSL) for
authentication

�� Databases consisting of many tables with a
wide variety of sizes, attributes, and
relationships

�� Database transaction integrity (ACID
property, i.e., atomicity, consistency,
isolation, and durability)

The primary performance metric reported by TPC-W
is the number of web interactions processed per
second (WIPS). TPC-W simulates three different
profiles by varying the ratio of browse to buy
activities: primarily shopping (WIPS), browsing
(WIPSb), and web-based ordering (WIPSo). The
primary metrics are the WIPS rate, the associated
price per WIPS ($/WIPS), and the availability date of
the priced configuration.

Some examples of actual values of the metrics
posted on the TPC site as of June 14, 2001 are
shown in Table 3.1 for illustration purposes. The
names of the system that were used to obtain the
results are omitted. The table was obtained for
databases with 10,000 items and shows that the
best system (system A) is able to process 5,745
Web Interactions per Second at the price of
$69,00/WIPS. So, the total price (software +
hardware + maintenance) of System A is $396,405,
i.e., 5,745 x $69.00. System D costs almost the
same, i.e., $349,675 but can only deliver 22% of the
maximum throughput measured in WIPS.

Table 3.1 – Example of TPC-W for 10,000
Items in the Catalog.

Rank System WIPS $/WIPS

1 A 5,745 69.00 US $

2 B 3,130 67.50 US $

3 C 3,008 81.77 US $

4 D 1,262 277.08 US $

3.1 TPC-W Emulated Browsers
The derivation of the WIPS family of metrics to
describe the performance of the system under test
(SUT) requires that a series of requests be
presented to the system. TPC-W uses the concept
of a group of Emulated Browsers (EB) to facilitate
the generation of requests. An EB is defined as a

process or thread that emulates a user
communicating with the system under test using a
browser by sending and receiving HTML content
using HTTP and TCP/IP over a network connection.
The number of EBs used for a given test is
determined by the size and scaling factor of the
SUT, as described further in section 3.4.

The software component that implements the EBs is
called the Remote Browser Emulator (RBE). The
RBE is responsible for starting each individual EB.
The number of EBs created is subject to the scaling
factor and each EB is responsible for executing a
series of requests known as a user session. TPC-W
defines a user session duration as the elapsed time
between the first transaction executed by an EB and
the current time. The session duration is controlled
by a User Session Minimum Duration (USMD) time,
defined as the minimum session duration for which a
user session must last. The USMD is calculated as:

����)ln(rUSMD (1)

where r = rand (0.0, 1.0] and ����15 minutes �the
mean session duration) to mimic an exponentially
distributed USMD. The USMD is truncated at 4
times the mean value (i.e., 60 minutes) in the case
of extreme results. Each EB must generate a new
USMD for each new session.

Each user session, is composed of multiple requests
to the SUT. These requests are separated by a
unique think time value Z defined as

12 TTZ �� , (2)

where T1 is the time at which the last byte of the
current page is received (this includes all requests
for in-line images) and T2 is the time before the first
byte of the next request is sent to the SUT. Think
times implemented by emulated browsers are
derived from an exponential distribution as

����)ln(rZ (3)

where r = rand (0.0, 1.0] and ����7 sec���the mean
think time duration. The think time value is
truncated at 10 times the mean value (i.e., 70
seconds) in the case of extreme results. Each EB
must generate a new think time for each new
request.

Since it is expected that the EB does some
processing during the think time (e.g., parsing the
response page, generating the next request, logging
statistics, etc.), the amount of time the EB must wait
before submitting the next request is actually the
difference between the sampled think time and the
processing time at the EB. This closely follows the
concept of active and inactive think times first
defined in [6].

 3

Proc. 2001 Computer Measurement Group Conference, Orlando, FL, Dec., 2001.

We can now use the Response Time Law [8] to
establish a relationship between the average
response time R and the number M of Emulated
Browsers. According to the Response Time Law,

Z
WIPS

MR �� , (4)

where WIPS is the throughput of the site and Z the
average think time. Using �Z 7 sec, the value
specified by TPC-W for the average think time, and
considering system A in Table 3.1, we would get an
average response time of 1.7 sec for 50,000
concurrent users (1.7 = 50,000 / 5,745 – 7). System
D in Table 3.1 would provide an average response
time of 32.6 sec for the same number of concurrent
users and the same average think time (32.6 =
50,000 / 1,262 – 7).

The session duration can be viewed graphically in
Fig. 3.1.

session start
first request

EB SUT

parse page
request in-line images
perform EB processing
wait think time balance

T1

Response time

Think Time

T2

USMD

Session Duration

end last request
session end

end request N

start request N

start request N + 1

EB processing time

Figure 3.1 –Session Sequence

A new session can be started when the following
conditions hold:

�� The USMD has been met.

�� The EB has just completed the think time
following a request.

�� The next request is determined to be the
Home Page (this maintains the consistency
of the CBMG.)

Each EB will continue to generate sessions until at
least the minimum experiment run time has been

met (30 minutes after steady state has been
achieved).

A specific web interaction mix, i.e., a CBMG, guides
an EB’s request generation.

3.2 TPC-W CBMG
As we discussed, TPC-W is designed to mimic an
online bookstore. A simplified version of the CBMG
for TPC-W is shown in Fig. 3.2. A session always
starts at the Home Page state.

Figure 3.2 - Simplified CBMG for TPC-W

The full CBMG for the system, specified by TPC-W,
consists of 14 unique pages, shown in Table 3.2.
The pages are divided into two categories, Browse
and Order. The Browse pages typically consist of
non-secure requests with few transaction processing
requirements. The Order pages are distinguished
from the Browse pages by their greater processing
requirements (i.e., database transaction count
and/or secure processing requirement, SSL.)

Table 3.2 – TPC-W specified states

Browse Order
Home Shopping Cart
New Products Customer Registration
Best Sellers Buy Request
Product Detail Buy Confirm
Search Request Order Inquiry
Search Results Order Display
 Admin Request
 Admin Confirm

TPC-W defines the set of probabilities that drive user
transitions from one state to another as a Web
Interaction Mix or CBMG. TPC-W defines three
CBMGs: shopping, browsing, and ordering. The

 4

Proc. 2001 Computer Measurement Group Conference, Orlando, FL, Dec., 2001.

shopping mix defines a browsing CBMG based on
an average shopping scenario, and is the primary
web interaction pattern. The browsing and ordering
CBMGs present the SUT with requests that offer a
significant change in the percentage of order
requests being processed. Typically an order
request requires the most processing time by the
SUT due to increased database transactions and
secure communication protocols (SSL).

The TPC-W specification outlines a set of minimum
requirements for each page. These requirements
include input and output requirements, minimum
HTML page size, minimum number and size of inline
objects, transaction processing requirements, and
90-percentile for the response time. For example,
90% of the Buy Confirm pages need to return in 5
seconds whereas 90% of Search Requests must
have a response not exceeding 1 sec. The TPC
provides an image generation function that produces
JPEG images for use in each page.

3.3 The TPC-W Database
In addition to describing the requirements for each
state of the CBMG, TPC-W also outlines the content
of the e-commerce site database.

The database and the set of transaction
requirements posed by each page are designed to
exercise the e-commerce site in a manner
representative of an Internet commerce application.
The database is required to support look-up, insert,
and update functionality as well as the capability to
commit and rollback transactions.

The database consists of a minimum of eight tables
with a defined minimum number of fields:

�� Customer: Customer name and ID
information,

�� Address: Customer address data,

�� Country: Country name and exchange rate
information,

�� Order: Order total and shipping information,

�� Order line: Order line item data,

�� Credit card: Credit card data,

�� Item: Book information, and

�� Author: Author data.

Additional tables required to support shopping cart
transactions and state preservation are left to the
individual implementation. The entity relationship
(ER) diagram in Fig. 3.3 shows the implementation
we used in our experiments.

TPC-W provides a function called WGEN to
generate the item title (I_TITLE) and author last
name (A_LNAME) fields in the database. We wrote

the program required to populated all other fields
and tables of the database.

Figure 3.3 – Entity Relationship Diagram for

TPC-W Implementation

3.4 TPC-W Scalability
The different components of the framework for the
TPC-W e-commerce web site are tightly integrated.
Scaling is fundamentally defined by the size of the
concurrent customer population and the size of the
store. Scaling requirements maintain the ratio
between the cardinality of the database tables, the
required storage space for the database, the
transactional load placed on the site, and the
number of EBs. Figures 3.4 and 3.5 display the
relationships, specified by TPC-W, between the
required data base table cardinalities and the
desired concurrent customer population and store
size. The cardinality of the country database table is
constant at 92.

The idea behind the scaling method is that as the
online store supports a higher number of concurrent
users (i.e., EBs), the size of the databases that
support the store operation has to scale up to
accordingly. In other words, more users mean more
customers in the CUSTOMER table, more orders in
the ORDER table and more addresses stored in the
ADDRESS table. The number of order lines and
credit card transactions grows with the number of
orders.

 5

Proc. 2001 Computer Measurement Group Conference, Orlando, FL, Dec., 2001.

For example, according to Fig. 3.4, if 100 EBs are
used, the CUSTOMER table should have 288,000
(=100 x 2,880) rows. The ORDER table should have
259,200 (= 288,000 x 0.9) rows and the ADDRESS
table should have 576,000 (=288,000 x 2) rows.
The ORDER_LINE table should have 777,600
(=259,200 x 3) rows and the CC_XACTS table
should have 259,200 rows.

When reporting a value for the WIPS metric, the
cardinality of the ITEM table has to be specified. For
example, the WIPS value for system A in Table 3.1
would be specified as 5,745@10,000 .

It is important to note that since the number of EBs
is constant throughout a TPC-W experiment, the
number of initial EBs determines the achievable
throughput (WIPS) of a given system for that run.
The TPC-W specification places upper and lower
bounds on the value of the WIPS metric that can be
reported. Let us first look at the maximum possible
theoretical value for the WIPS value. We rewrite
below the Response Time Law equation given in Eq.
(4).

ZR ��

WIPS
EBs No.

 (5)

Using Z = 7, we can rewrite Eq. (5) as

7
EBs No.WIPS
�

�

R
 (6)

An upper bound for Eq. (6) is obtained when the
response time is zero. So, an upper bound on the
throughput is given by,

7
EBs No.WIPS� . (7)

On the other hand, if the response is too high, the
value of WIPS will be very small, according to Eq.
(6). To further constrain the system configuration,
the reported WIPS must be at least 50% of its
maximum theoretical value of No EBS/7. So, the
value of WIPS must satisfy the following constraint:

(No. of EBs / 7) > WIPS > (No. of EBs / 14). (8)

This requirement is implemented to prevent under or
over scaling the SUT for a given number of EBs.

4. TPC-W Workload Generator
The workload is generated from a multi-threaded
Browser Emulator application connected to the e-
commerce system by a 100Mbps Ethernet LAN.
Figure 4.1 depicts the TPC-W site we built as well as
the TPC-W Workload Generator.

Number of Emulated Browsers (1, 2, …, M)

CUSTOMER = Number of EBs x 2,880

ORDER = Number of Customers x 0.9

ADDRESS = Number of Customers x 2

ORDER_LINE = Number of Orders x 3

CC_XACTS = Number of Orders

Number of Emulated Browsers (1, 2, …, M)

CUSTOMER = Number of EBs x 2,880

ORDER = Number of Customers x 0.9

ADDRESS = Number of Customers x 2

ORDER_LINE = Number of Orders x 3

CC_XACTS = Number of Orders
Figure 3.4 – Scalability: Concurrent Emulated

Browsers

Number of Items (1k, 10k, 100k, 1M, 10M)

Author = Item * .25

Figure 3.5 – Scalability: Store Size

W orkstation

100 Mbps switched HUB

Dell Octiplex
GX 110
PIII 667

128 MB RAM
10 GB HDD

Dell Octiplex
GX 110
PIII 667

128 MB RAM
40 GB HDD

Dell Octiplex
GX 110
PIII 667

256 MB RAM
40 GB HDD

Dell Octiplex
GX 110
PIII 667

128 MB RAM
40 GB HDD

W eb
Server

Application
Server

Database
Server

W orkload
Generator

Figure 4.1 – Architecture of the TPC-W Site and

TPC-W Workload Generator.
The Browser application uses multi-threading to
emulate a group of client browsers and consists of a
controller process and a variable number of browser
threads. Each of the browser threads presents a
unique workload to the e-commerce system. The
navigation of a given thread through the e-
commerce system follows the TPC-W navigation
probabilities.

 6

Proc. 2001 Computer Measurement Group Conference, Orlando, FL, Dec., 2001.

The workload generator can provide repeatable
workloads to the server by having each thread seed
its random number generator with the same number
each time it is run. For example, if the experiment
starts with ten initial simultaneous sessions, each
browser thread seeds its random number generator
with its generation number (e.g., 0, 1, 2… 9). When
additional threads are created to increase the
number of active sessions, they will continue the
series and seed the random number generator
accordingly. While this provides a very high degree
of repeatability, the randomness with which the e-
commerce system will refuse connections when it
becomes heavily loaded will inject variability in the
results. This however is unavoidable and would
occur even if each browser used a trace for its
workload generation. To statistically distinguish two
workloads, each client browser can use a random
seed for its random number generator.

Each browser thread emulates an HTTP/1.1
compliant browser. The browser thread first
requests the HTML home page for the e-commerce
site (dynamically generated). After receiving the
response from the server, the browser parses the
page, extracting information such as inline objects to
request (images), customer ID and session ID, and
any items that may be in the shopping cart.

Once the page has been parsed, the browser thread
divides up the inline requests between a set of
reader threads (three in our experiments) that use a
pipelined/keep-alive request framework to retrieve
the images. This technique, common in today’s
browsers, involves combining a series of requests
into a single request message (pipelining) and then
retrieving the response for each segment of the
message without opening a new TCP connection to
the server (keep-alive).

After the inline images have been received, the
browser thread determines the composition of its
next request. Again, this is accomplished through a
routing table based on a given CBMG. Each
possible request available to the browser has a set
of tasks associated with it, as outlined in the TPC-W
specification. For example, if the next state chosen
is the shopping cart page, the browser thread
determines if it has any item already in its cart, and
then determines which items to increase, decrease
or remove from the cart.

The controller process in the workload generator
expands the TPC-W specified generator capabilities
by optionally allowing for variability in the workload
presented to the e-commerce system by increasing
or decreasing the number of active sessions. When
the controller process needs to reduce the workload,
it signals the browser threads that the number of
active sessions has been reduced. At the
completion of each request, a browser thread will

check to see if the browser population has been
reduced to the new level. If not, it decrements the
population count by one and sets its own session
stop flag to true. The next time the browser thread
completes a home page request it will exit. This is
done to retain the probability distribution in the
CBMG. If additional browsers are needed, the
controller increments the population counter by the
additional browser count and spawns the required
number of browsers.

5. Experimental Results
This section describes some of the results we
obtained when using the TPC-W workload generator
in our TPC-W site. The first set of graphs shows
average response time and the probability that
requests are rejected, using exponentially distributed
think times, as prescribed by TPC-W.

Figure 5.1, shows how the average response time
varies as the arrival rate of requests increases. The
vertical bars in the figure are the 95% confidence
intervals on the measurements. Each point in the
curve corresponds to an average over a very large
number, in the thousands, of requests. As we can
see, the response time increases and then levels off
at high loads due to the fact that at that point, the
probability of requests being rejected starts to
increase very fast because the maximum number of
requests in the system is achieved. This can be
seen in Fig. 5.2.

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0 10 20 30 40 50 60 70 8
Request Arrival Rate (req/sec)

R
es

po
ns

e
Ti

m
e

(s
ec

)

0

Figure 5.1 – Average Response Time vs. Request

Arrival Rate.
We conducted an analysis of self-similarity on the
number of requests that arrive at the TPC-W site.
We used a data set from one of the experiments,
which contained roughly 250,000 requests over a
period of one hour and fifteen minutes and used a
Pareto distribution to generate the think time values,
which has been shown to more accurately represent
the arrival characteristics at e-commerce sites [12].

 7

Proc. 2001 Computer Measurement Group Conference, Orlando, FL, Dec., 2001.

The specification of TPC-W does not really reflect
the bursty behavior of e-commerce workloads found
in [MARPFM00]. It is our belief that a more realistic
assessment of e-commerce sites should be carried
out by slightly modifiying TPC-W to account for
these more realistic distributions that exhibit heavy
tails.

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0 10 20 30 40 50 60 70 8
Request Arrival Rate (req/sec)

Pr
ob

. o
f R

ej
ec

tio
n

0

Figure 5.2 – Probability of Rejection vs. Arrival

Rate
To carry out the analysis, we used a technique
called the Variance Time Plot (VTP), which works as
follows. We start with a time series {

where is the number of requests that arrived at
time interval i. A time interval in our case is 2 sec.
We now take the following steps:

,...}1, �iNi

iN

1. For each m = 1, 2, …, build an aggregated
time series by dividing the original time
series { into blocks of m values
and averaging these values. The resulting
series is denoted { , where k
is the index of a block obtained by averaging
m values in the original sequence. In other
words,

,...}1, �iNi

N ,...}1,)(
�km

k

�
���

�

km

kmi
i

m
k N

m
N

1)1(

)(1

2. For each m = 1, 2, … compute the variance
, i.e., the variance of all values in

the aggregated series for m. Suppose there
are K blocks for a value of m in the series

, then

][)(mNVar

,{)(
�kN m

k ,...}1

2)(

1

)()()(
1

1][m
K

k

m
k

m NN
K

NVar �

�

� �
�

where

�
�

�

K

k

m
k

m N
K

N
1

)()(1
, is the average of all

values in the aggregated m-series.

3. Plot log vs. . This is
the Variance Time Plot (VTP). If the original
sequence has a short-range
dependence or no dependence, then for
large values of m, tends to m ,
which implies in a slope of –1 in the VTP.
For long-range dependences (LRD),

][)(
2

mNVar

1,{ �iNi

Var

m2log

])m

,...}

[N (1�

.10,~][)(
����

� �� mmNVar m

So, the more ���deviates from 1, the more
LRD the series is.

4. Compute the Hurst parameter H, commonly
used to measure the intensity of LRD
processes, defined as H = 1 - ��/2, ½ < H <
1. LRD sequences tend to have Hurst
parameter values closer to 1.

The results of our experiments showed strong long-
range dependence, indicated by a Hurst parameter
(H) of .9966, i.e., a value of ����0.0068.

6. Concluding Remarks

The work presented here provides an overview of
the TPC benchmark for e-commerce and some
introductory results from a test bed developed to
implement the benchmark framework and a
workload generator.

The e-commerce site was built and designed around
the specifications outlined by TPC-W. The workload
generator was built to not only meet the workload
characteristics required by TPC-W, but also to
expand them to allow for more realistic workloads.
Experiments using the TPC-W workload
characteristics showed very predictable results when
compared with theoretical models. Using a model
more reflective of real-world e-commerce workload
characteristics, we found that the traffic at the e-
commerce site exhibited strong self-similarity; a
common and important factor in today’s e-commerce
workloads.

The testbed described in this paper was used to test
methods designed to dynamically adjust the QoS of
E-commerce sites [9].

Acknowledgements
This research was conducted at the E-Center for E-
business at George Mason University, with the
support of Virginia’s Center for Innovative

 8

Proc. 2001 Computer Measurement Group Conference, Orlando, FL, Dec., 2001.

Technology,under award number INF-00-22, and of
the TRW Foundation.

References
[1] V. Almeida, A. Bestavros, M. Crovella, and A. de
Oliveira. “Characterizing Reference Locality in the
WWW,” In IEEE Conference on Parallel and
Distributed Information Systems, Miami Beach,
Florida, December 1996.

[2] M. Arlitt, R. Friedrich, and T. Jin, “Workload
Characterization of a Web Proxy in a Cable
Environment,” ACM Performance Evaluation
Review, 27 (2), Aug. 1999, pp. 25--36.

[3] V. Almeida, D. A. Menascé, R. Riedi, F.
Pelegrinelli, R. Fonseca, and W. Meira, Jr.,
"Characterizing and Modeling Robot Workload on E-
Business Sites," Proc. 2001 ACM Sigmetrics
Conference, Cambridge, MA, June 16-20, 2001

[4] V. Almeida, D. A. Menascé, R. Riedi, F.
Pelegrinelli, R. Fonseca, and W. Meira, Jr.,
"Analyzing Web Robots and their Impact on
Caching," Proc. Sixth Workshop on Web Caching
and Content Distribution, Boston, MA, June 20-22,
2001.

[5] M. Arlitt and C. Williamson, “Web Server
Workload Characterization: the Search for
Invariants,” Proc. 1996 ACM Sigmetrics Conf.
Measurement & Modeling of Computer Systems,
Philadelphia, PA, May 23-26, pp. 126—137.

[6] Paul Barford and Mark Crovella, “Generating
Representative Web Workloads for Network and
Server Performance Evaluation,” Computer Science
Department Boston University, Dec 1997.

[7] M. Crovella and A. Bestravos, “Self-Similarity in
Word Wide Web Traffic: evidence and possible
causes,” Proc. 1996 SIGMETRICS Conf.
Measurements Compt Syst. ACM, Philidelphia, May
1996.

[8] Denning, P. J. and J. P. Buzen, “The Operational
Analysis of Queuing Network Models,” Computing
Surveys, vol. 10, no. 3, Sept. 1978, pp. 225-261.

[9] D. A. Menascé, D. Barbara, and R. Dodge,
“Preserving QoS of E-commerce Sites Through Self-
Tuning: A Performance Model Approach,” Proc.
2001 ACM Conference on E-commerce, Tampa, FL,
October 14-17, 2001.

[10] D. A. Menascé and V. A. F. Almeida, Scaling for
E-Business: technologies, models, performance,
and capacity planning, Prentice Hall, 2000.

[11] D. A. Menascé and V. A. F. Almeida,
“Challenges in Scaling E-Business Sites," Proc.
2000 Computer Measurement Group Conference,
Orlando, FL, December 10-15, 2000.

[12] D. A. Menascé, V. Almeida, R. Riedi, F.
Pelegrinelli, R. Fonseca, and W. Meira Jr, “In Search
of Invariants for E-Business Workloads," Proc.
Second ACM Conference on Electronic Commerce,
Minneapolis, MN, October 17-20, 2000

[13] D. A. Menascé, V. Almeida, R. Fonseca, and M.
A. Mendes, "A Methodology for Workload
Characterization of E-commerce Sites,'' Proc. First
ACM Conference on Electronic Commerce, Denver,
CO, November 3-5, 1999.

[14] G Zipf, “Human behaviour and the Principle of
Least Effort,” Addison-Wesley, Cambridge, MA,
1949.

 9

	TESTING E-COMMERCE SITE SCALABILITY WITH TPC-W
	1. Introduction
	2. Workload Characterization for E-commerce
	3. TPC-W: A Benchmark for E-commerce
	Table 3.1 – Example of TPC-W for 10,000 Items in
	3.1 TPC-W Emulated Browsers
	3.2 TPC-W CBMG
	
	
	
	
	Table 3.2 – TPC-W specified states

	3.3 The TPC-W Database
	4. TPC-W Workload Generator
	�

	6. Concluding Remarks
	Acknowledgements
	References

