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Being able to assess the scalability of Web and e-commerce sites is a challenge.  The 
Transaction Processing Council (TPC) recently released a benchmark for e-commerce 
sites. This benchmark, called TPC-W, measures a system under test using Web 
Interactions per Second (WIPS) as its primary metric.  This paper describes the 
benchmark's main features, the authors’ experience in building a TPC-W compliant e-
commerce site and a workload generator for TPC-W.  It also presents performance 
metrics and an analysis of self-similarity obtained with the TPC-W site. 

 

 

1. Introduction 

By any measure, the growth of e-commerce activity 
is remarkable, prompting the need for continuing 
evaluation of how to provide better services under 
an enduring and increasing demand on Internet 
resources.  The scalability analysis of e-commerce 
sites presents many challenges as described in [11]. 
 One of these challenges has to do with the need to 
characterize the workload of these sites in a 
representative way.  Many studies have been 
conducted with the purpose of understanding the 
workload of e-commerce sites and searching for 
invariants that cut across more than one type of e-
commerce site [12,13].  The workload imposed by 
robots (e.g., pricebots and crawlers) was 
characterized recently [3] and their impact on Web 
caching was analyzed [4]. 

When comparing two systems (software, hardware, 
and architecture) that deliver e-commerce services 
we need to use a standard benchmark that is 
representative of e-commerce workloads and that 
can scale as needed.  The term scalability here is 
related to both an increase in the number of users 
and an increase in the database size (e.g., number 
of customer orders, number of items in the catalog). 
The only available benchmark for e-commerce is 
TPC-W, designed by the Transaction Processing 
Council (www.tpc.org).  This paper describes our 
experience in building a TPC-W compliant e-

commerce site, called hereafter a TPC-W site, as 
well as a workload generator for that site.   

The rest of the paper is organized as follows.  
Section two talks about workload characterization for 
e-commerce and describes the Customer Behavior 
Model Graph (CBMG).  Section three, discusses 
TPC-W and presents its main elements and metrics. 
 The next section presents the TPC-W site we 
developed along with the workload generator.  
Section five discusses some results on the use of 
the TPC-W workload generator.  Section six 
presents concluding remarks. 

2. Workload Characterization for E-
commerce 

The workload of Web sites that provide information 
has been extensively studied and characterized at 
the level of HTTP requests [1, 2, 5, 7].  In e-
commerce, customers interact with the site through 
sessions, which are sequences of consecutive 
requests to execute e-business functions (e.g., 
search, browse, select, add to cart, login, register, 
and pay) during a single visit to the site.  Therefore, 
the workload of e-commerce sites is better described 
at the level of sessions.  One way to capture the 
navigational pattern within a session is through the 
Customer Behavior Model Graph (CBMG) [10, 13], 
which describes patterns of user behavior, i.e., how 
users navigate through the site, which functions they 
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use and how often, and the frequency of transition 
from one e-business function to the other.  Figure 
2.1 depicts an example of a CBMG showing that 
customers may be in several different states—
Home, Browse, Search, Select, Add, and Pay—and 
they may transition between these states as 
indicated by the arcs connecting the states.  The 
numbers along the transitions indicate the probability 
of making the transition.  A state not explicitly 
represented in the figure is the Exit state.  
Transitions to the Exit state are indicated by arrows 
leaving a state and not going to any other state in 
the figure.  For example, the probability of going to 
the Exit state out of the Browse state is 0.15.   
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Figure 2.1 – Example of a Customer Behavior 

Model Graph (CBMG) 
Clearly, several patterns of user behavior may be 
detected for the same site.  For example, a fraction 
of the visits may come from occasional buyers who 
spend a lot of time “window-shopping” but very 
seldom buy anything.  Other visits to the site may 
exhibit a pattern of heavy buyers, i.e., customers 
who know what they want and with a few clicks 
select one or more items, order and pay for them.  It 
is important to realize that different customer 
behavior patterns generate different loads on the IT 
resources that support the site.   

Another important result that has been reported in 
the recent literature [1,12] on workload 
characterization of Web and e-commerce sites 
shows a strong indication of Zipf’s Law behavior.  
Zipf’s Law [14]—a rather old result that empirically 
related the occurrence and popularity of words in a 
text—rephrased for the Web, states that if the 
objects requested are ranked from most popular 
(rank = 1) to least popular, then the number of 
references, P, to an object is inversely proportional 
to its rank r.  That is,  for some positive 
constant k.  This result indicates that relatively few 
objects account for the majority of the references. 
The workload of high-volume online bookstore and 
auction sites was analyzed in [12].  The results 
indicated that 71% and 85.3% of all requests (from 
the bookstore and auction site, respectively) were 

for inline images.  This high percentage of 
cacheable data coupled with the results of Zipf’s 
Law strongly support the effectiveness of caching 
and the use of Content Delivery Networks (CDNs) in 
e-commerce environments.   

rkP /�

Another result from [12] furthered the evidence 
presented in [2,5,7] of self-similar and bursty 
behavior.  The resulting data showed both the 
bursty nature of e-commerce sessions and self-
similar behavior.  Self-similarity refers to similar 
bursty behavior across multiple time scales.  The 
workload spikes experienced in WWW traffic are 
particularly critical for an e-business.   

The results from [12] show that the session length, 
measured in number of requests to execute e-
business functions, is heavy-tailed.  In particular, the 
study showed that e-commerce sites are subject to 
factors that impact the tail of this distribution.  Such 
factors include robot agents from price comparison 
robots and search engines that traverse the 
structure of an e-commerce site and tend to skew 
the length of sessions toward heavy-tailed 
distributions (e.g., Pareto).  Sites that do not exhibit 
the agent behavior in the logs tend to exhibit lighter 
tails than those where the agent activity is observed.  

3. TPC-W: A Benchmark for E-commerce 

The Transaction Processing Performance Council 
(TPC) (www.tpc.org) provides industry standard 
methods for quantitatively measuring a system’s 
transaction processing performance against a 
common standard as well as the performance of 
other systems.  The TPC regards a transaction, as it 
is commonly understood in the business world: as a 
commercial exchange of goods, services, or money. 
A typical transaction, as defined by the TPC, would 
include the updating of a database system for such 
things as inventory control (goods), airline 
reservations (services), or banking (money).  The 
council has developed performance benchmarks 
that measure transaction processing (TP) and 
database (DB) performance in terms of how many 
transactions a given system and database can 
perform per unit of time, e.g., transactions per 
second or transactions per minute.   

The TPC expanded its suite of benchmarks in 2000 
to include a transactional web benchmark for E-
commerce systems, the TPC™ Benchmark W (TPC-
W). The workload is performed in a controlled 
Internet commerce environment that simulates the 
activities of a business-oriented transactional web 
site.  In the case of TPC-W the benchmark mimics 
the functionality of an online bookstore.  The 
workload exercises a breadth of system components 
associated with such environments, which are 
characterized by:  
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�� Multiple on-line browser sessions   

�� Dynamic page generation with database 
access and update  

�� Consistent web objects  

�� Use of Secure Socket Layers (SSL) for 
authentication 

�� Databases consisting of many tables with a 
wide variety of sizes, attributes, and 
relationships  

�� Database transaction integrity (ACID 
property, i.e., atomicity, consistency, 
isolation, and durability) 

The primary performance metric reported by TPC-W 
is the number of web interactions processed per 
second (WIPS).  TPC-W simulates three different 
profiles by varying the ratio of browse to buy 
activities: primarily shopping (WIPS), browsing 
(WIPSb), and web-based ordering (WIPSo). The 
primary metrics are the WIPS rate, the associated 
price per WIPS ($/WIPS), and the availability date of 
the priced configuration.   

Some examples of actual values of the metrics 
posted on the TPC site as of June 14, 2001 are 
shown in Table 3.1 for illustration purposes.  The 
names of the system that were used to obtain the 
results are omitted.  The table was obtained for 
databases with 10,000 items and shows that the 
best system (system A) is able to process 5,745 
Web Interactions per Second at the price of 
$69,00/WIPS.  So, the total price (software + 
hardware + maintenance) of System A is $396,405, 
i.e., 5,745 x $69.00.  System D costs almost the 
same, i.e., $349,675 but can only deliver 22% of the 
maximum throughput measured in WIPS. 

Table 3.1 – Example of TPC-W for 10,000 
Items in the Catalog. 

Rank System WIPS $/WIPS 

1 A 5,745 69.00 US $ 

2 B 3,130 67.50 US $ 

3 C 3,008 81.77 US $ 

4 D 1,262 277.08 US $ 

3.1 TPC-W Emulated Browsers 
The derivation of the WIPS family of metrics to 
describe the performance of the system under test 
(SUT) requires that a series of requests be 
presented to the system.  TPC-W uses the concept 
of a group of Emulated Browsers (EB) to facilitate 
the generation of requests.  An EB is defined as a 

process or thread that emulates a user 
communicating with the system under test using a 
browser by sending and receiving HTML content 
using HTTP and TCP/IP over a network connection. 
The number of EBs used for a given test is 
determined by the size and scaling factor of the 
SUT, as described further in section 3.4. 

The software component that implements the EBs is 
called the Remote Browser Emulator (RBE).  The 
RBE is responsible for starting each individual EB.  
The number of EBs created is subject to the scaling 
factor and each EB is responsible for executing a 
series of requests known as a user session.  TPC-W 
defines a user session duration as the elapsed time 
between the first transaction executed by an EB and 
the current time.  The session duration is controlled 
by a User Session Minimum Duration (USMD) time, 
defined as the minimum session duration for which a 
user session must last.  The USMD is calculated as: 

���� )ln(rUSMD    (1) 

where r = rand (0.0, 1.0] and ����15 minutes �the 
mean session duration) to mimic an exponentially 
distributed USMD.  The USMD is truncated at 4 
times the mean value (i.e., 60 minutes) in the case 
of extreme results.  Each EB must generate a new 
USMD for each new session.   

Each user session, is composed of multiple requests 
to the SUT.  These requests are separated by a 
unique think time value Z defined as 

12 TTZ �� ,    (2) 

where T1 is the time at which the last byte of the 
current page is received (this includes all requests 
for in-line images) and T2 is the time before the first 
byte of the next request is sent to the SUT.  Think 
times implemented by emulated browsers are 
derived from an exponential distribution as 

���� )ln(rZ    (3) 

where r = rand (0.0, 1.0] and ����7 sec���the mean 
think time duration.  The think time value is 
truncated at 10 times the mean value (i.e., 70 
seconds) in the case of extreme results.  Each EB 
must generate a new think time for each new 
request. 

Since it is expected that the EB does some 
processing during the think time (e.g., parsing the 
response page, generating the next request, logging 
statistics, etc.), the amount of time the EB must wait 
before submitting the next request is actually the 
difference between the sampled think time and the 
processing time at the EB.  This closely follows the 
concept of active and inactive think times first 
defined in [6]. 
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We can now use the Response Time Law [8] to 
establish a relationship between the average 
response time R and the number M of Emulated 
Browsers. According to the Response Time Law, 

Z
WIPS

MR �� ,   (4) 

where WIPS is the throughput of the site and Z  the 
average think time.  Using �Z  7 sec, the value 
specified by TPC-W for the average think time, and 
considering system A in Table 3.1, we would get an 
average response time of 1.7 sec for 50,000 
concurrent users (1.7 = 50,000 / 5,745 – 7).  System 
D in Table 3.1 would provide an average response 
time of 32.6 sec for the same number of concurrent 
users and the same average think time (32.6 = 
50,000 / 1,262 – 7). 

The session duration can be viewed graphically in 
Fig. 3.1. 

session start
first request

EB SUT

parse page
request in-line images
perform EB processing
wait think time balance

T1

Response time

Think Time

T2

USMD

Session Duration

end last request
session end

end request N

start request  N

start request N + 1

EB processing time

 
Figure 3.1 –Session Sequence 

A new session can be started when the following 
conditions hold: 

�� The USMD has been met. 

�� The EB has just completed the think time 
following a request. 

�� The next request is determined to be the 
Home Page (this maintains the consistency 
of the CBMG.) 

Each EB will continue to generate sessions until at 
least the minimum experiment run time has been 

met (30 minutes after steady state has been 
achieved). 

A specific web interaction mix, i.e., a CBMG, guides 
an EB’s request generation. 

3.2 TPC-W CBMG 
As we discussed, TPC-W is designed to mimic an 
online bookstore.  A simplified version of the CBMG 
for TPC-W is shown in Fig. 3.2. A session always 
starts at the Home Page state.  

 
Figure 3.2 - Simplified CBMG for TPC-W 

The full CBMG for the system, specified by TPC-W, 
consists of 14 unique pages, shown in Table 3.2.  
The pages are divided into two categories, Browse 
and Order.  The Browse pages typically consist of 
non-secure requests with few transaction processing 
requirements.  The Order pages are distinguished 
from the Browse pages by their greater processing 
requirements (i.e., database transaction count 
and/or secure processing requirement, SSL.)   

Table 3.2 – TPC-W specified states 

Browse Order 
Home Shopping Cart 
New Products Customer Registration 
Best Sellers Buy Request 
Product Detail Buy Confirm 
Search Request Order Inquiry 
Search Results Order Display 
 Admin Request 
 Admin Confirm 

 

TPC-W defines the set of probabilities that drive user 
transitions from one state to another as a Web 
Interaction Mix or CBMG.  TPC-W defines three 
CBMGs: shopping, browsing, and ordering.  The 
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shopping mix defines a browsing CBMG based on 
an average shopping scenario, and is the primary 
web interaction pattern.  The browsing and ordering 
CBMGs present the SUT with requests that offer a 
significant change in the percentage of order 
requests being processed.  Typically an order 
request requires the most processing time by the 
SUT due to increased database transactions and 
secure communication protocols (SSL). 

The TPC-W specification outlines a set of minimum 
requirements for each page.  These requirements 
include input and output requirements, minimum 
HTML page size, minimum number and size of inline 
objects, transaction processing requirements, and 
90-percentile for the response time.  For example, 
90% of the Buy Confirm pages need to return in 5 
seconds whereas 90% of Search Requests must 
have a response not exceeding 1 sec.  The TPC 
provides an image generation function that produces 
JPEG images for use in each page. 

3.3 The TPC-W Database 
In addition to describing the requirements for each 
state of the CBMG, TPC-W also outlines the content 
of the e-commerce site database.   

The database and the set of transaction 
requirements posed by each page are designed to 
exercise the e-commerce site in a manner 
representative of an Internet commerce application.  
The database is required to support look-up, insert, 
and update functionality as well as the capability to 
commit and rollback transactions. 

The database consists of a minimum of eight tables 
with a defined minimum number of fields: 

�� Customer:  Customer name and ID 
information, 

�� Address:  Customer address data, 

�� Country:  Country name and exchange rate 
information, 

�� Order:  Order total and shipping information, 

�� Order line:  Order line item data, 

�� Credit card:  Credit card data, 

�� Item:  Book information, and 

�� Author:  Author data. 

Additional tables required to support shopping cart 
transactions and state preservation are left to the 
individual implementation.  The entity relationship 
(ER) diagram in Fig. 3.3 shows the implementation 
we used in our experiments. 

TPC-W provides a function called WGEN to 
generate the item title (I_TITLE) and author last 
name (A_LNAME) fields in the database.  We wrote 

the program required to populated all other fields 
and tables of the database. 

 
Figure 3.3 – Entity Relationship Diagram for  

TPC-W Implementation 

3.4 TPC-W Scalability 
The different components of the framework for the 
TPC-W e-commerce web site are tightly integrated.  
Scaling is fundamentally defined by the size of the 
concurrent customer population and the size of the 
store.  Scaling requirements maintain the ratio 
between the cardinality of the database tables, the 
required storage space for the database, the 
transactional load placed on the site, and the 
number of EBs.  Figures 3.4 and 3.5 display the 
relationships, specified by TPC-W, between the 
required data base table cardinalities and the 
desired concurrent customer population and store 
size.  The cardinality of the country database table is 
constant at 92.   

The idea behind the scaling method is that as the 
online store supports a higher number of concurrent 
users (i.e., EBs), the size of the databases that 
support the store operation has to scale up to 
accordingly.  In other words, more users mean more 
customers in the CUSTOMER table, more orders in 
the ORDER table and more addresses stored in the 
ADDRESS table.  The number of order lines and 
credit card transactions grows with the number of 
orders. 
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For example, according to Fig. 3.4, if 100 EBs are 
used, the CUSTOMER table should have 288,000 
(=100 x 2,880) rows. The ORDER table should have 
259,200 (= 288,000 x 0.9) rows and the ADDRESS 
table should have 576,000 (=288,000 x 2) rows.  
The ORDER_LINE table should have 777,600 
(=259,200 x 3) rows and the CC_XACTS table 
should have 259,200 rows. 

When reporting a value for the WIPS metric, the 
cardinality of the ITEM table has to be specified. For 
example, the WIPS value for system A in Table 3.1 
would be specified as 5,745@10,000 . 

It is important to note that since the number of EBs 
is constant throughout a TPC-W experiment, the 
number of initial EBs determines the achievable 
throughput (WIPS) of a given system for that run.  
The TPC-W specification places upper and lower 
bounds on the value of the WIPS metric that can be 
reported.  Let us first look at the maximum possible 
theoretical value for the WIPS value.  We rewrite 
below the Response Time Law equation given in Eq. 
(4).   

ZR ��

WIPS
EBs No.

    (5) 

Using Z = 7, we can rewrite Eq. (5) as  

7
EBs No.WIPS
�

�

R
     (6) 

An upper bound for Eq. (6) is obtained when the 
response time is zero.  So, an upper bound on the 
throughput is given by, 

7
EBs No.WIPS� .    (7) 

On the other hand, if the response is too high, the 
value of WIPS will be very small, according to Eq. 
(6).  To further constrain the system configuration, 
the reported WIPS must be at least 50% of its 
maximum theoretical value of No EBS/7.  So, the 
value of WIPS must satisfy the following constraint: 

(No. of EBs / 7) > WIPS > (No. of EBs / 14). (8) 

This requirement is implemented to prevent under or 
over scaling the SUT for a given number of EBs.   

4. TPC-W Workload Generator 
The workload is generated from a multi-threaded 
Browser Emulator application connected to the e-
commerce system by a 100Mbps Ethernet LAN. 
Figure 4.1 depicts the TPC-W site we built as well as 
the TPC-W Workload Generator. 

Number of Emulated Browsers (1, 2, …, M)

CUSTOMER = Number of EBs x 2,880

ORDER = Number of Customers x 0.9

ADDRESS = Number of Customers x 2

ORDER_LINE = Number of Orders x 3

CC_XACTS = Number of Orders

Number of Emulated Browsers (1, 2, …, M)

CUSTOMER = Number of EBs x 2,880

ORDER = Number of Customers x 0.9

ADDRESS = Number of Customers x 2

ORDER_LINE = Number of Orders x 3

CC_XACTS = Number of Orders  
Figure 3.4 – Scalability: Concurrent Emulated 

Browsers 
 
 

Number of Items (1k, 10k, 100k, 1M, 10M)

Author = Item * .25
 

Figure 3.5 – Scalability: Store Size 
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Figure 4.1 – Architecture of the TPC-W Site and 

TPC-W Workload Generator. 
The Browser application uses multi-threading to 
emulate a group of client browsers and consists of a 
controller process and a variable number of browser 
threads.  Each of the browser threads presents a 
unique workload to the e-commerce system.  The 
navigation of a given thread through the e-
commerce system follows the TPC-W navigation 
probabilities.  
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The workload generator can provide repeatable 
workloads to the server by having each thread seed 
its random number generator with the same number 
each time it is run.  For example, if the experiment 
starts with ten initial simultaneous sessions, each 
browser thread seeds its random number generator 
with its generation number (e.g., 0, 1, 2… 9).  When 
additional threads are created to increase the 
number of active sessions, they will continue the 
series and seed the random number generator 
accordingly.  While this provides a very high degree 
of repeatability, the randomness with which the e-
commerce system will refuse connections when it 
becomes heavily loaded will inject variability in the 
results.  This however is unavoidable and would 
occur even if each browser used a trace for its 
workload generation.  To statistically distinguish two 
workloads, each client browser can use a random 
seed for its random number generator. 

Each browser thread emulates an HTTP/1.1 
compliant browser.  The browser thread first 
requests the HTML home page for the e-commerce 
site (dynamically generated).  After receiving the 
response from the server, the browser parses the 
page, extracting information such as inline objects to 
request (images), customer ID and session ID, and 
any items that may be in the shopping cart.   

Once the page has been parsed, the browser thread 
divides up the inline requests between a set of 
reader threads (three in our experiments) that use a 
pipelined/keep-alive request framework to retrieve 
the images.  This technique, common in today’s 
browsers, involves combining a series of requests 
into a single request message (pipelining) and then 
retrieving the response for each segment of the 
message without opening a new TCP connection to 
the server (keep-alive).  

After the inline images have been received, the 
browser thread determines the composition of its 
next request. Again, this is accomplished through a 
routing table based on a given CBMG.  Each 
possible request available to the browser has a set 
of tasks associated with it, as outlined in the TPC-W 
specification.  For example, if the next state chosen 
is the shopping cart page, the browser thread 
determines if it has any item already in its cart, and 
then determines which items to increase, decrease 
or remove from the cart.  

The controller process in the workload generator 
expands the TPC-W specified generator capabilities 
by optionally allowing for variability in the workload 
presented to the e-commerce system by increasing 
or decreasing the number of active sessions.  When 
the controller process needs to reduce the workload, 
it signals the browser threads that the number of 
active sessions has been reduced.  At the 
completion of each request, a browser thread will 

check to see if the browser population has been 
reduced to the new level.  If not, it decrements the 
population count by one and sets its own session 
stop flag to true.  The next time the browser thread 
completes a home page request it will exit.  This is 
done to retain the probability distribution in the 
CBMG.  If additional browsers are needed, the 
controller increments the population counter by the 
additional browser count and spawns the required 
number of browsers. 

 

5. Experimental Results 
This section describes some of the results we 
obtained when using the TPC-W workload generator 
in our TPC-W site.  The first set of graphs shows 
average response time and the probability that 
requests are rejected, using exponentially distributed 
think times, as prescribed by TPC-W. 

Figure 5.1, shows how the average response time 
varies as the arrival rate of requests increases.   The 
vertical bars in the figure are the 95% confidence 
intervals on the measurements.  Each point in the 
curve corresponds to an average over a very large 
number, in the thousands, of requests.  As we can 
see, the response time increases and then levels off 
at high loads due to the fact that at that point, the 
probability of requests being rejected starts to 
increase very fast because the maximum number of 
requests in the system is achieved.  This can be 
seen in Fig. 5.2. 
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Figure 5.1 – Average Response Time vs. Request 

Arrival Rate. 
We conducted an analysis of self-similarity on the 
number of requests that arrive at the TPC-W site.  
We used a data set from one of the experiments, 
which contained roughly 250,000 requests over a 
period of one hour and fifteen minutes and used a 
Pareto distribution to generate the think time values, 
which has been shown to more accurately represent 
the arrival characteristics at e-commerce sites [12].   

 7



Proc. 2001 Computer Measurement Group Conference, Orlando, FL, Dec., 2001. 

The specification of TPC-W does not really reflect 
the bursty behavior of e-commerce workloads found 
in [MARPFM00].  It is our belief that a more realistic 
assessment of e-commerce sites should be carried 
out by slightly modifiying TPC-W to account for 
these more realistic distributions that exhibit heavy 
tails.   
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Figure 5.2 – Probability of Rejection vs. Arrival 

Rate 
To carry out the analysis, we used a technique 
called the Variance Time Plot (VTP), which works as 
follows.  We start with a time series {  

where  is the number of requests that arrived at 
time interval i.  A time interval in our case is 2 sec.  
We now take the following steps: 

,...}1, �iNi

iN

1. For each m = 1, 2, …, build an aggregated 
time series by dividing the original time 
series {  into blocks of m values 
and averaging these values.  The resulting 
series is denoted { , where k 
is the index of a block obtained by averaging 
m values in the original sequence. In other 
words, 
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2. For each m = 1, 2, … compute the variance 
, i.e., the variance of all values in 

the aggregated series for m.  Suppose there 
are K blocks for a value of m in the series 

, then 
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, is the average of all 

values in the aggregated m-series. 

3. Plot log  vs. .  This is 
the Variance Time Plot (VTP).  If the original 
sequence  has a short-range 
dependence or no dependence, then for 
large values of m,  tends to m , 
which implies in a slope of –1 in the VTP.  
For long-range dependences (LRD),  

][ )(
2

mNVar

1,{ �iNi

Var

m2log

])m

,...}

[N ( 1�

.10,~][ )(
����

� �� mmNVar m  

So, the more ���deviates from 1, the more 
LRD the series is. 

4. Compute the Hurst parameter H, commonly 
used to measure the intensity of LRD 
processes, defined as H = 1 - ��/2, ½ < H < 
1.  LRD sequences tend to have Hurst 
parameter values closer to 1. 

The results of our experiments showed strong long-
range dependence, indicated by a Hurst parameter 
(H) of .9966, i.e., a value of ����0.0068.   

6. Concluding Remarks 

The work presented here provides an overview of 
the TPC benchmark for e-commerce and some 
introductory results from a test bed developed to 
implement the benchmark framework and a 
workload generator.   

The e-commerce site was built and designed around 
the specifications outlined by TPC-W.  The workload 
generator was built to not only meet the workload 
characteristics required by TPC-W, but also to 
expand them to allow for more realistic workloads.  
Experiments using the TPC-W workload 
characteristics showed very predictable results when 
compared with theoretical models.  Using a model 
more reflective of real-world e-commerce workload 
characteristics, we found that the traffic at the e-
commerce site exhibited strong self-similarity; a 
common and important factor in today’s e-commerce 
workloads. 

The testbed described in this paper was used to test 
methods designed to dynamically adjust the QoS of 
E-commerce sites [9].  
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